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Abstract. By showing hidden hypotheses in Schur’s lemma on spaces of constant cur-
vature we get a new version for locally symmetric spaces.

0. Statement

Let M be a connected Riemannian manifold with dimension »>3. Schur proved in
1886 that M is a space of constant curvature if the sectional curvature depends only on
the points (see [2], [8]). In the present note we improve the theorem and have a theo-
rem of the same type for locally symmetric spaces.

Let V be the Riemannian connection and let R be the Riemannian curvature tensor
given by

VxVyZ—VyVxZ—Vix,viZ=R(X, Y)Z

where X, ¥, Z are vector fields and [, ] is the Lie bracket. We say that the eigen-
spaces of R are parallel if the following condition is satisfied: For any geodesic » and
for any unit parallel vector field v along v the eigenspaces of R (+, v) v: THoM —> T)M
are parallel along v where p is the foot point of v. The locally symmetric spaces have
this property. If the sectional curvature depends only on the points, then the condition
is automatically satisfied, since the eigenspaces of R (¢, v)v: ToM —> T»M is either vl
or Tp»M which are parallel along v, where vl is the space orthogonal to v.

Theorem. Let M be a connected Riemannian manifold with dimension n>3. Suppose
there exist functions cy, ..., ci on M such that (1) the distinct eigenvalues of R( -, v)v:TsM
—>TpM are c1(p), ..., ci(p) for any point p & M and any unit vector v & TpM with c;
(p)=0and (2)if cj=2Ajc1 then A; are constants on M for j=1,...,i—1 (always ;=1 and
2i=0). If the eigenspaces of R are parallel and dim Ker R(+, v) v<n—2 for any unit vector
v, then M is a locally symmetric space.

Here, Ker R (-, v)v is by definition the kernel of R(-, v)v: TsM —> TpM. The
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Schur theorem covers two cases, namely, i=1, or i=2 and dim Ker R(-, v)v=1. In those
cases it is not necessary to assume the condition (2) for ¢;’s and the parallel property of
R, because they are automatically satisfied.

1. Preliminaries

Let M be a Riemannian manifold. We say that M is a locally symmetric space if the
geodesic symmetry is isometry in some neighborhood of each point of M. The condition
is equivalent to that the Riemannian curvature tensor is parallel.

A tensor field K of type (1, 3) is called a curvature tensor if it satisfies the following
condition:

1) K, »)z=—K(y, x)z.

(2) K(x, )z+K(y, 2)x+K(z, %)y=0.

2) (K&, y)z, wy=—<K(, 9w, 2).

@) <(K(x, 3z, wy=<(K(z, w)x, 3.

The curvature tensor K is said to satisfy the second Bianchi identity if

(WwK) (X, Y)Z+(VxK) (Y, W)Z+(VyK) (W, X)Z=0

for any vector fields X, ¥, Z and W on M. The Riemannian curvature tensor satisfies

the second Bianchi identity.
For the proof of Theorem we provide a lemma. We write F=For.

LEMMA. Let M be a connected Riemannian manifold with dimension n>3. Suppose
there exist a function F on M and a curvature tensor K such that R=FK. If K satisfies
the second Bianchi identity and dim Ker K(-,v)v < n—2 fnr any unitl vector v, then F is
constant. In particular, if K is in addition parallel, then M is locally symmetric.

ProoF. From the assumption we have
(VWRY(X, Y) Z=(WF)K(X, Y)Z+((VwK) (X, Y))Z
where X, Y, Z, W are vector fields. By the second Bianchi identity we find
1.1) (WF)K(X, Y)ZH+(XF)K(Y, WZ+(YF)K(W X)Z=0.
Let p be a point of M. Put
c=max { |[<K@, v)v, u)|; u, 0 EToM, |v|=|u|=1, u_Lv}.

Let x, z be orthonormal vectors in T»M such that [{K (x, z)z, x)|=c. Then x is an
eigenvector of K (-, z)z with eigenvalue b+0 (b=c or —c). Since {K(z, x)x, z)=<{K(x,
2)z, x)=>b, we find also that z is an eigenvector of K(-, x)x with eigenvalue b. Let y be
a unit eigenvectdr of K(+, z)z with eigenvalue d such that ¥ 1 z, ¥y 1 x. Then, putting
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Z=W=z X=x, Y=y in (1.1), we have

@)K (x, v z+(&F)dy—(F)bx=0.

Hence,
(2F) <K(x, 9)2, £)+(xF)d{y, )—(F)b{x, %)=0.
Therefore,
yF=0,
since

CK(%, )2, x>=CK(z, £)%, y>=0b<?, y>=0.
Let ey, e; be orthonormal eigenvectors of K(+, y)y with e; | y, e; 1 y. Again, putting
W=Z=y, X=e;, Y=e,in (1. 1), we have
(e1F) boes—(ea F)biey=0,

where by, b, are eigenvalues of K(-, y)y for e; and e,, resp. Since we may assume that
b:#0 because of dim Ker(., y)y<n—2, we see that e; F/=0. Further, by the same
reasoning, we can find a unit vector e;’ | e; which is an eigenvector of K(., y)y with
eigenvalue b,'#0. Hence, e; F=0 also. Since y and the eigenvectors of R(, y)y span
T» M, the derivative of F is zero. This implies that F is constant on M.

We can get the same result even if R is not the Riemannian curvature tensor but
any curvature tensor satisfying the second Bianchi identity.

2. Proof of Theorem

We prove the theorem here. Let v be a geodesic in M with v(0)=wv, |v|=1 and let
w be a unit parallel vector field along v. Let E; C w' be the eigenspace of R(-, w)w
with eigenvalue c; for each j=1,...,i. If a parallel vector field e along v is given by
e=e;+ ... t+e; ej & Ej, then e; is parallel along v, since so is E; for all j. Let K be a
tensor field on M of type (1, 3) given by K=(1/¢;) R. Then ,we have

K(e, w)w= Z§'=1 —6_11— Re, wyw= Z§=1 Ajej.
Hence, -
(Vv K) (e, w)w=0.
Therefore, it follows that

{VvK) (%, y)x, y>=0
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for any point p & M and any vectors v, x, y & TpM. By the identity (1.10) in [1] and
the definition of K, we know that (K (x, y)z, w) is a sum of terms of the form +{K(*, «)
%, «>. From this we have that K is parallel on M. Lemma implies that ¢; is constant
on M and therefore the Riemannian curvature tensor is parallel on M. This completes
the proof.
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