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Abstract. By showing hidden hypotheses in Schur’s lemma on spaces of constant cur-
vature we get a new version for locally symmetric spaces.

0. Statement

Let $M$ be a connected Riemannian manifold with dimension $n\geq 3$ . Schur proved in
1886 that $M$ is a space of constant curvature if the sectional curvature depends only on
the points (see [2], [3]). In the present note we improve the theorem and have a theo-
rem of the same type for locally symmetric spaces.

Let $\nabla$ be the Riemannian connection and let $R$ be the Riemannian curvature tensor
given by

$\nabla x\nabla YZ-\nabla Y\nabla xZ-\nabla\subset X,Y\supset Z=R(X, Y)Z$

where $X,$ $Y,$ $Z$ are vector fields and $[\cdot, ]$ is the Lie bracket. We say that the eigen-
spaces of $R$ are parallel if the following condition is satisfied: For any geodesic $\nu$ and
for any unit parallel vector field $v$ along $\nu$ the eigenspaces of $R(\cdot, v)v;TpM\rightarrow TpM$

are parallel along $lj$ where $p$ is the foot point of $v$ . The locally symmetric spaces have
this property. If the sectional curvature depends only on the points, then the condition
is automatically satisfied, since the eigenspaces of $R(\cdot, v)v:TpM\rightarrow TpM$ is either $ v\perp$

or $TpM$ which are parallel along $\nu$ , where $v^{1}$ is the space orthogonal to $v$ .

Theorem. Let $M$ be a connected Riemannian manif old with dimension $n\geq 3$ . Suppose
there exist functions $c_{1},$ $\ldots$ , ci on $M$ such that (1) the distinct eigenvalues of $R(\cdot, v)v:TpM$

$\rightarrow TpM$ are $c_{1}(p),$
$\ldots$ , ci $(p)$ for any point $p\in M$ and any unit vector $v\in\tau_{pM}$ with ci

$(p)=0$ and (2) if $Cj=\lambda jC_{1}$ then $\lambda j$ are constants on $M$ for $i=1,$
$\ldots,$

$i-1$ (always $\lambda_{1}=1$ and
$\lambda;=0)$ . If the eigenspaces of $R$ are parallel and $dimKerR(\cdot, v)v\leq n-2$ for any unit vector
$v$ , then $M$ is a locally symmetric space.

Here, $KerR(\cdot, v)v$ is by definition the kernel of $R(\cdot, v)v$ : $TpM\rightarrow TpM$. The
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Schur theorem covers two cases, namely, $i=1$ , or $i=2$ and $dimKerR(\cdot, v)v=1$ . In those

cases it is not necessary to assume the condition (2) for $CjS$ and the parallel property of

$R$, because they are automatically satisfied.

1. Preliminaries

Let $M$ be a Riemannian manifold. We say that $M$ is a locally symmetric space if the

geodesic symmetry is isometry in some neighborhood of each point of $M$. The condition

is equivalent to that the Riemannian curvature tensor is parallel.

A tensor field $K$ of type $(1, 3)$ is called a curvature tensor if it satisfies the following

condition:
(1) $K(x, y)z=-K(y, x)z$.
(2) $K(x, y)z+K(y, z)x+K(z, x)y=0$.
(2) $\langle K(x, y)z, w\rangle=-\langle K(x, y)w, z\rangle$ .
(4) $\langle K(x, y)z, w\rangle=\langle K(z, w)x, y\rangle$ .

The curvature tensor $K$ is said to satisfy the second Bianchi identity if

$(\nabla wK)(X, Y)Z+(\nabla xK)(Y, W)Z+(\nabla_{Y}K)(W, X)Z=0$

for any vector fields $X,$ $Y,$ $Z$ and $W$ on $M$ . The Riemannian curvature tensor satisfies

the second Bianchi identity.

For the proof of Theorem we provide a lemma. We write $ F=F\circ\pi$ .

LEMMA. Let $M$ be a connected Riemannian manifold with dimension $n\geq 3$ . Suppose

there exist a function $F$ on $M$ and a curvature tensor $K$ such that $R=FK$. If $K$ satisfies
the second Bianchi identity and $dimKerK(\cdot, v)v\leq n-2fnr$ any unit vector $v$ , then $F$ is

constant. In particular, if $K$ is in addition parallel, then $M$ is locally symmetric.

PROOF. From the assumption we have

$((\nabla wR)(X, Y))Z=(WF)K(X, Y)Z+((\nabla wK)(X, Y))Z$

where $X,$ $Y,$ $Z$, rv are vector fields. By the second Bianchi identity we find

(1. 1) $(WF)K(X, Y)Z+(XF)K(Y, W)Z+(YF)K(WX)Z=0$ .

Let $p$ be a point of $M$. Put

$c=\max\{|\langle K(u, v)v, u\rangle|;u, v\in TpM, |v|=|u|=1, u\perp v\}$ .

Let $x,$ $z$ be orthonormal vectors in $TpM$ such that $|\langle K(x, z)z, x\rangle|=c$ . Then $x$ is an

eigenvector of $K(\cdot, z)z$ with eigenvalue $b\neq 0(b=cor-c)$ . Since $\langle K(z, x)x, z\rangle=\langle K(x$ ,

$z)z,$ $ x\rangle$ $=b$ , we find also thatz is an eigenvector of K( $\cdot$ , x)xwith eigenvalue b. Lety be

a unit eigenvector of $K(\cdot, z)z$ with eigenvalue $d$ such that $y\perp z,$ $y\perp x$. Then, putting
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$Z=W=z,$ $X=x,$ $Y=y$ in (1. 1), we have

$(zF)K(x, y)z+(xF)dy-(yF)bx=0$ .
Hence,

$(zF)\langle K(x, y)z, x\rangle+(xF)d\langle y, x\rangle-(yF)b\langle x, x\rangle=0$ .
Therefore,

$yF=0$ ,

since

$\langle K(x, y)z, x\rangle=\langle K(z, x)x, y\rangle=b\langle z, y\rangle=0$ .
Let $e_{1},$ $e_{2}$ be orthonormal eigenvectors of $K(\cdot, y)y$ with $e_{1}\perp y,$ $e_{2}\perp y$ . Again, putting
$W=Z=y,$ $X=e_{1},$ $Y=e_{2}$ in (1. 1), we have

$(e_{1}F)b_{2}e_{2}-(e_{2}F)b_{1}e_{1}=0$ ,

where $b_{1},$ $b_{2}$ are eigenvalues of $K(\cdot, y)y$ for $e_{1}$ and $e_{2}$ , resp. Since we may assume that
$b_{1}\neq 0$ because of $dimKer(\cdot, y)y\leq n-2$ , we see that $e_{2}F=0$ . Further, by the same
reasoning, we can find a unit vector $e_{1^{\prime}}\perp e_{1}$ which is an eigenvector of $K(\cdot, y)y$ with
eigenvalue $b_{1^{\prime}}\neq 0$ . Hence, $e_{1}F=0$ also. Since $y$ and the eigenvectors of $R(\cdot, y)y$ span
$\tau_{pM}$, the derivative of $F$ is zero. This implies that $F$ is constant on $M$.

We can get the same result even if $R$ is not the Riemannian curvature tensor but
any curvature tensor satisfying the second Bianchi identity.

2. Proof of Theorem

We prove the theorem here. Let $\nu$ be a geodesic in $M$ with $\nu(0)=v,$ $|v|=1$ and let
$w$ be a unit parallel vector field along $\nu$ . Let $Ej\subset w^{1}$ be the eigenspace of $R(\cdot, w)w$

with eigenvalue $Cj$ for each $j=1,$ $\ldots$ , $i$ . If a parallel vector field $e$ along $\nu$ is given by
$e=e_{1}+\ldots+e;,$ $ej\in Ej$ , then $ej$ is parallel along $\nu$ , since so is $Ej$ for all $j$ . Let $K$ be a
tensor field onMof type $(1, 3)$ given byK $=(1/c_{1})R$ . Then,we have

$K(e, w)w=\Sigma_{j\subset 1}^{i}\frac{1}{c_{1}}R(e, w)w=\Sigma_{j=1}^{i}\lambda;ej$ .

Hence,

$(v_{v}K)(e, w)w=0$ .
Therefore, it follows that

$\langle(v_{v}K)(x, y)x, y\rangle=0$
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for any point $p\in M$ and any vectors $v,$ $x,$ $y\in TpM$. By the identity (1. 10) in [1] and
the definition of $K$, we know that $\langle K(x, y)z, w\rangle$ is a sum of terms of the form $\pm\langle K(*, )$

$*,$ \rangle . From this we have that $K$ is parallel on $M$. Lemma implies that $c_{1}$ is constant
on $M$ and therefore the Riemannian curvature tensor is parallel on $M$. This completes

the proof.

References

[1] J. Cheeger and D. Ebin: Comparison Theorems in Riemannian Geometry. North-Holland, Amster-
dam, 1975.

[2] B.-y. Chen: Geometry of Submanifolds. Marcel Dekker, New York, 1973.
[3] F. Schur: Ueber den Zusammenhang der Raume constanten Riemann’schen Kriimmungsmasses mit

den projectiven Raumen. Math. Ann., 27 (1886), 537-567.

Nobuhiro Innami
Department of Mathematics
Faculty of Science
Niigata University
Niigata, 950-21
JAPAN


	0. Statement
	1. Preliminaries
	2. Proof of Theorem
	References

