A remark on the existence of geometries on 4-dimensional aspherical Seifert fiber spaces

By Kazuo Saito and Tsuyoshi Watabe

> (Received November 4, 1987) (Revised December 23, 1987)

Introduction

In this note, we shall consider the existence of geometries on 4-dimensional Seifert fiber spaces. First we shall prove the followings.

THEOREM A. Let M be a 4-dimensional Seifert fiber space with typical fiber a surface F. Then F is aspherical and the homomorphism $i_*: \pi_1(F) \to \pi_1(M)$ induced by the inclusion is injective.

THEOREM B. If F is a toruse, then M or its finite covering is an injective Seifert fiber space.

In section 1, we shall define an injective Seifert fiber space ([LR]). As in the 3dimensional case, R. P. Filipkiewicz has classified the geometries on 4-dimensional manifolds (see $[W_1], [W_2]$).

The main results of this note are the followings.

THEOREM C. Let M be an injective Seifert fiber with typical fiber a torus. Suppose that exact sequence

 $1 \to \pi_1 \left(T^2 \right) \to \pi_1(M) \to Q \to 1$

is a central extension. Then M adimits a geometry.

THEOREM D. Let F be a surface except a torus. If M admits a geometry, then M is a product manifold up a finite covering.

Throughout this note, we shall work in the smooth category and a manifold means a closed connected manifold.

1. Preliminaries

DEFINITION. A closed manifold M is a Seifert fiber space if M is a union of a collection $\{F_{\alpha}\}$ of pairwise disjoint 2-dimensional manifold F_{α} (called fibers) such that for each α , there is a closed neighborhood V of F_{α} with a covering map $p: D^2 \times F \to V$ satisfying (1) p maps each $\{x\} \times F$ ($x \in D^2$) to some F_{β} ,

(2) $p^{-1}(F_a)$ is connected, and

(3) the covering transformation group G is a subgroup of O(2) and G acts on F freely. Here F is called a typical fiber.

DEFINITION Let X be a space, G and π subgroups of H(X) (=the group of all homeomorphisms of X). Suppose the followings are satisfied,

(1) G is a Lie group acting freely on X as subgroup of H(X) such that (G, X) is equivariantly isomorphic to $(G, G \times W)$, where W = X/G and G acts on $G \times W$ by the left translation.

(2) G is normalized by π .

Put $\Gamma = G \cap \pi$. Then Γ is a normal subgroup in π , and $Q = \pi/\Gamma$ acts on W naturally. (3) Q acts properly discontinuously on W.

It follows from (3) that π acts on X properly discontinuously. Put $B = W/\Gamma$ and $E = X/\pi$. E is called an injective Seifert fiber space with typical fiber G/Γ , B is called the base space and the natural map $E \to B$ is called the injective Seifert fibering.

Next we shall describe a construction of an injective Seifert fiber space.

- (1) Give a pair (W, Q), where a discrete group Q acts on W properly discontinuously, W/Q is compact and W is contractible.
- (2) $X=G \times W$, where Lie group G acts on $G \times W$ by the left translation. We denote this action by l_G and also $l_G(G)$ by l_G .
- (3) $D = \text{Maps}(W, G) = \{f : W \to G \text{ continuous}\}$. Define a multiplication on D by $(f*f')(w) = f'(w) \cdot f(w)$.
- (4) Define an action of Aut $(G) \times H(W)$ on D by $(g, h)f = g \cdot f \cdot h^{-1}$.
- (5) Construct a semidirect product D_{\circ} (Aut $(G) \times H(W)$). This group acts on $G \times W$ by (f, g, h)(x, w) = (g(x)fh(w), h(w)).
- (6) Let $H^{F}(G \times W)$ be the normalizer of l_{G} in $H(G \times W)$.

Then the followings are proved.

THEOREM 1 ([LR]). $H^{F}(G \times W) = D \circ (Aut (G) \times H(W)).$

THEOREM 2 ([LR]). Assume $G = R^n$. Then for any axact sequece $1 \to \Gamma \to \pi \to Q \to 1$, there exists a homomorphism $\psi : \pi \to H^F(G \times W)$ such that the following diagram is commutative; A remarka on the existence of geometries on 4-dimensional aspherical Seifert fiber spaces

Then it is clear that $G/\Gamma \to (G \times W)/\pi \to W/Q$ is an injective Seifert fiber space. We shall restrict ourselves to the case where $G=R^n$ and hence $\Gamma = Z^n$. Let U be a Lie subgroup of $H^F(R^n \times W)$ such that $K=U \cap D$ contains l_{R^n} . Let S=U/K be the quotient. Then the following diagram is commutative;

Let $\rho: Q \to S$ be a homomorphism defining a properly discotinuous action of Q on W. We have the following

THEOREM 3 ([LR]). The following statements are equivalent. (1) There exists a homomorphism $\Psi : \pi \to U$ such that the diagram

1	\rightarrow	Z^n	\rightarrow	π	\rightarrow	Q	\rightarrow	1
		↓ ε		$\downarrow \varPsi$		$\downarrow ho$		
1	\rightarrow	Κ	\rightarrow	U	\rightarrow	S	\rightarrow	1

is commutative, where $\varepsilon : Z^n \to R^n \subset K$ is an inclusion.

(2) $\varepsilon_*[\pi] = \rho^*[U]$ in $H^2(Q; K)$.

NOTE (1). If $U = Iso_{\circ} (\mathbb{R}^{n} \times W)$ (=the identity component of the isometry group of $\mathbb{R}^{n} \times W$), then $\mathbb{R}^{n} \times W/\pi$ admits a geometry modelled on $(\mathbb{R}^{n} \times W, U)$ in the sense of Wall ($[W_{1}]$). (2). We note that the extension $1 \to \mathbb{Z}^{n} \to \pi \to Q \to 1$ is central.

DEFINITION. A Riemannian manifold M is said to have a geometry modelled on (X, G_X) if M is diffeomorphic to $\Gamma \setminus G_X/K_X$.

We needs the following results on fundamental group of the Seifert fiber space.

THEOREM 4 ([V]). Let M be a Seifert manifold with typical fiber a surface F. Then $\pi_1(M)$ has one of the following two presentations

(A) The space B of fibers is orientable of genus g;

Generators;

 $(s_1, t_1, \ldots, s_g, t_g, q_1, \ldots, q_m, e_1, \ldots, e_m, c_{1, 1}, \ldots, c_{n, m_n+1}) = E$ and generators of $\pi_1(F)$. Relations:

 $cgc^{-1} = A(c)(g), g \ a \ generators \ of \ \pi_1(F), c \in E$ $c_{i,j}^2 = g_{i,j}$ $c_{i,1} e_i \ c_{i,mi+1} e_i^{-1} = f_{i,mi+1}$ $q_i^{h_i} = f_i$ $(c_{i,j} \ c_{i,j+1})^{h_{i,j}} = f_{i,j}, \ i = 1, \dots, n, \ i = 1, \dots, m_i$. $(*) = [s_1, \ t_1] \dots [s_g, \ t_g] q_1 \dots q_m \ e_1 \dots e_n = f_o \ where \ the \ f_i, \ f_{i,j}, \ g_{i,j} \ are \ all \ in \ \pi_1(F) \ and relations \ for \ \pi_1(F).$

(B) B is non orientable of genus g

Generators: $(v_1, \ldots, v_g, q_1, \ldots, q_m, e_1, \ldots, e_n, c_{1,1}, \ldots, c_{n,m_n+1}) = E$ and generators of $\pi_1(F)$. Relations: Asi n(A), one just has to replace (*) by $v_1^2 \ldots v_g^2 q_1 \ldots q_m e_1 \ldots e_n$.

2. Proofs of theorems

In this section, we shall prove the following theorems.

THEOREM A. Let M be a 4-dimensional aspherical Seifert fiber space with typical fiber a surface F. Then we have (1) F is aspherical (2) $j_*: \pi_1(F) \to \pi_1(M)$ injective, where $j: F \to M$ is an inclusion.

PROOF. From results in [V], we have a presentation of $\pi_1(M)$.

Put Γ be the image of j_* . Let \overline{M} be the covering space of M associated to Γ . It is clear that \overline{M} is also a Seifrt fiber space with the components of the inverse images of the fibers of M as fibers. Let \overline{B} be the space of fibers and $\overline{f}: \overline{M} \to \overline{B}$ the natural projection. We shall show that \overline{f} is a fibration. In fact, let F_i be a fiber in M and F'_i a component of the inverse image F_i . Let p denote the projection $p: \overline{M} \to M$. It is clear that the map $i \circ q$ $: F \to M$, where $q: E \to F_i$ is the natural map, lifts a map $q': F \to \overline{M}$ and is factored by $r: F \to F'_i$. Then we have the following commutative diagram;

$$F_{i}^{\prime} \subset \overline{M} \xrightarrow{\overline{f}} \overline{B}$$

$$r \not q^{\prime} \qquad \downarrow p \qquad \downarrow$$

$$F \xrightarrow{q} F_{i} \subset M \xrightarrow{f} B$$

We note that

(1) any loop in the neighborhood U of F'_i in \overline{M} is homotopic to a loop x, $q^{\alpha}_i x$ or $c^{\beta}_{i,j} x$, where x is a loop in F.

(2) any loop in U is in the kernel of $\pi_1(M) \to Q(=\pi_1(M)/\Gamma)$.

(3) any element of finite order in Q is conjugate to q_i or $c_{i,j}$. It follows that $\alpha = \beta = 0$, which means $F'_i = F$. Thus the fiber of $\overline{M} \to \overline{B}$ is all typical and hence \overline{M} is a locally trivial fiber space. So we have an injection $p_{*} \circ q'_* : \pi_1(F) \to \pi_1(M)$.

Next we shall prove that Q is an infinite group. Assume Q is finite. Then B is a sphere S^2 or a real projective plane P^2 . We may assume that B is S^2 . In fact, if not, consider the fiber space $M' \to S^2$ induced from $S^2 \to P^2$. Then M' is also a Seifert fiber space and is aspherical. Let \widetilde{M} be the universal covering space of M. Then the natural map $\widetilde{M} \to S^2$ is a fiber space with F as fibers. We have the following Wang exact sequence

$$\dots \to H_i(\widetilde{M}) \to H_{i-2}(F) \to H_{i-1}(F) \to H_{i-1}(\widetilde{M}) \to \dots$$

Since \tilde{M} is contractible, we have a contradiction. Thus Q is infinite and hence B is homeomorphic to R^2 . It is clear that F is aspherical. QED.

REMARK 1. We have just obtained an exact sequence;

$$1 \to \pi_1(F) \to \pi_1(M) \to Q \to 1,$$

where $Q = \pi_1(M)/\pi_1(F)$ is a planar discontinuous group in the sense of [ZVC]. It follows from a result in [ZVC] (Theorem 4. 10. 1 in [ZVC]) that Q contains a torsionfree subgroup Q_1 of finite index. Let M_1 be the finite covering of M corresponding to the subgroup of $\pi_1(M)$ which is the inverse image of Q_1 . It is clear that M_1 is a Seifert fiber space which is locally product. Since the existence of a geometry is not changed by taking a finte covering, we may assume that the structure of Seifert fiber space of M is locally product. Moreover we may assume the base space is orientable, if necessary, by taking the oriented double covering. If M is not orientable, then the oriented double of M is also a Seifert fiber space whose base space is orientable since it is a finte covering of B. Thus we may assume M is also orientable. Then typical fiber F is also orientable In fact, there is a relation of the tangent bundles;

 $\tau_M = \tau_F + p\tau *_B$, τ_F is a bundle along the fiber.

Then, considering the first Stiefel Whitney classes, we obtain $w_1(F)=0$. Thus F is orientable.

THEOREM B. Let M and F be as in Thorem A. If F is a torus, then M is an injective Seifert fiber space up to a finite covering.

PRUUF. Let *B* be the space of fibers (= base space). By the proof of Theorem *A*, we have the exact sequence

$$1 \to \pi_1(T^2) \to \pi_1(M) \to Q \to 1.$$

Q acts on \overline{B} properly discontinuously and its quotient space is B. Then Q contains a nor-

mal subgroup Q_1 of finite index that is torsionfree ([Z]). Let π be the inverse image of Q_1 and M_1 the finite covering space of M associated to π . Then M_1 is an aspherical fiber space with fiber T^2 , that is to say, $T^2 \rightarrow M_1 \rightarrow B_1$. Since Q_1 is a finitely generated discontinuous group of the plane, we obtain an injective Seifert fiber space $M(\pi)$ by an in jective Seifert fiber space construction.

Case 1. The base space B_1 is not a torus.

In this case, we can apply the classification Theorem in [V, (7, i)]. Since $2 = \operatorname{rank} \pi_1(T^2) < J(M_1)$, every isomorphism $\pi_1(M_1) \to \pi_1(M(\pi))$ is induced by an Seifert fiber space isomorphism $M_1 \to M(\pi)$.

Case 2. The base space B_1 is a torus.

In this case, we can apply the theorem in [SF]; the total spaces of two T^2 -bundles over T^2 are diffeomorphic if and only if their fundamental groups are isomorphic. Thus we obtain a diffeomorphism $M_1 \rightarrow M(\pi)$. QED.

THEOREM C. Let M be an injective Seifert fiber space with typical fiber T^2 . Then M admits a geometry.

PROOF. We have the following central exact sequece

 $1 \rightarrow \pi_1(T^2) \rightarrow \pi \rightarrow Q \rightarrow 1$,

where $\pi = \pi_1(M)$ and $Q = \pi/\pi_1(T^2)$.

Let $\chi(Q)$ denote Euler characteristic of Q and the above exact sequence represents an element $[\pi]$ of $H^2(Q; \mathbb{Z}^2)$.

Case 1. $\chi(Q) < 0$.

Subcase 1. $[\pi]$ has finite order in $H^2(Q; \mathbb{Z}^2)$.

Let $i: Z^2 \to R^2$ be the inclusion. From the assumption we have $i_*[\pi]=0$, where $i_*: H^2(Q; Z^2) \to H^2(Q; R^2)$. We shall consider the following commutative diagram;

 Z^2 1 $[\pi] \in H^2(Q; \mathbb{Z}^2)$ 1 π Q \rightarrow ↓ ↓ $\downarrow =$ R^2 $\bar{\pi}$ \rightarrow Q $1 \quad i_{*}[\pi] = \rho_{*}[U]$ 1 $\downarrow =$ ↓ $\downarrow \rho$ R^2 1

where ρ is an embedding as a cocompact discrete subgroup. This diagram exists from the theorem 3 ([LR]), since $i_* [\pi] = \rho^* [U] = 0$. Then we have an injection $\pi \to U = Iso_\circ$ $(R^2 \times H^2)$, thus *M* admits a geometry modelled on $R^2 \times H^2$, where H^2 denotes the hyperbolic 2-space.

Subcase 2. $[\pi]$ has infinite order in $H^2(Q; Z^2)$. Since $i_*[\pi]$ is nonzero, we can de-

fine \overline{Q} such that $1 \to \mathbb{R}^2 \to \overline{Q} \to Q \to 1$ is an exact sequence and $[\overline{Q}]$ is nonzero. In fact, we have the following exact sequences;

where $P\widetilde{SR}_2R$ is a universal covering of PSL_2R . Put $Q' = k^{-1}(Q)$ and $\overline{Q} = R \times Q'$. Then we have the commutative diagram;

1	\rightarrow	R^2	\rightarrow	\overline{Q}	\rightarrow	Q	\rightarrow	1
		↓ pr	•	↓ pr		11		
1	\rightarrow	R	\rightarrow	Q'	\rightarrow	Q	\rightarrow	1,

where pr is a projection on the second factor.

It is clear that the homomorphism $pr_* : H^2(Q; \mathbb{R}^2) \to H^2(Q; \mathbb{R})$ maps $[\overline{Q}]$ to [Q']. Since [Q'] is nonzero (see [KLR]), $[\overline{Q}]$ ls nonzero.

On the other hand, $i_*[\pi]$ is nonzero in $H^2(Q; \mathbb{R}^2)$. Since $H^2(Q; \mathbb{R}^2) \simeq \mathbb{R}^2([\text{KLR}])$, there exists a linear homomorphism $\varepsilon : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\epsilon_* i_*[\pi] = [\overline{Q}]$. Then we have the commutative diagram;

1	\rightarrow	Z^2	\rightarrow	π	\rightarrow	Q	\rightarrow	1
		↓ε∘	i	\downarrow		11		
1	\rightarrow	R^2	\rightarrow	\overline{Q}	\rightarrow	Q	\rightarrow	1
		П		\downarrow		$\downarrow ho$		
1	\rightarrow	R^2	$\rightarrow R$	\times Iso _° (1	$P\widetilde{SL}_2R) \rightarrow$	$\operatorname{Iso}_{\circ}(H^2)$	²) →	1.

Thus we have an injection $\pi \to \overline{Q} \subset R \times Iso_{\circ}(P\widetilde{SL}_2R) = Iso_{\circ}(R \times P\widetilde{SL}_2R)$ by the theorem 3 ([LR]). In other words, M admits a geometry modelled on $R \times P\widetilde{SL}_2R$. **Case 2.** $\chi(Q)=0$.

This case is very similar to the proof of the cace 1. When $[\pi]$ has finite order in $H^2(Q; Z^2)$, we have the following commutative diagram;

1	\rightarrow	Z^2	\rightarrow	π	\rightarrow	Q	\rightarrow	1
		↓ i		\downarrow		II		
1	\rightarrow	R^2	\rightarrow	$ar{\pi}$	\rightarrow	Q	\rightarrow	1
				\downarrow		$\downarrow ho$		
1	\rightarrow	R^2	\rightarrow	$R^2 imes Is$	$so_{\circ}(R^2)$ -	→Iso₀(.	$R^2) \rightarrow$	1.

Since $i_*[\pi] = \rho^*[U] = 0$, this diagram exists and the homomorphism $\pi \to U \subset Iso_{\circ}(R^2 \times R^2)$ is injective. Thus *M* admits a geometry modelled on R^4 .

Next we consider the case $[\pi]$ has infinite order in $H^2(Q; \mathbb{Z}^2)$. In the exact sequence

 $1 \to R \to Iso_{\circ}(Nil) \to Iso_{\circ}(R^2) \to 1$, let Q' be the inverse image of Q. Then an exact sequence $1 \to R \to Q' \to Q \to 1$ represents a nonzero element $[Q'] \in H^2(Q; R) (\simeq R) ([KLR])$. We have the commutative exact sequences;

The homomorphism $pr_* : H^2(Q; \mathbb{R}^2) \to H^2(Q; \mathbb{R})$ maps $[\overline{Q}]$ to [Q'], where $\overline{Q} = \mathbb{R} \times Q'$. Since $[Q_i]$ is nonzero, $[\overline{Q}]$ is so.

On the other hand, since $[\pi]$ has infinite order, $i_*[\pi]$ is nonzero. Therefore there exists a linear homomorphism $\varepsilon : Q^2 \to R^2$ such that $\varepsilon_* \circ i_*[\pi] = [\overline{Q}]$, because $H^2(Q; \mathbb{R}^2) \simeq \mathbb{R}^2([\text{KLR}])$. Thus the commutative diagram is obtained;

Since the homomorphism $\pi \to R \times Iso_{\circ}(Nil) = Iso_{\circ}(R \times Nil)$ is injective, M admits a geometry modelled on $R \times Nil$.

Case 3. $\chi(Q) > 0.$

In this case, since $\rho: Q \to Iso_{\circ}(S^2)$ is an embedding, Q is a finite group. Then we have $i_*[\pi] = \rho^*[U] = 0$, so the following commutative diagram is obtained by the Theorem 3 ([LR]);

1	\rightarrow	Z^2	\rightarrow	π	\rightarrow	\boldsymbol{Q}	\rightarrow	1
		↓i		\downarrow		$\downarrow ho$		
1	\rightarrow	R^2	$\rightarrow R^2$	$^{2} \times Iso_{\circ}(S^{2})$	$\rightarrow I$	so $(R^2 imes R^2)$	\rightarrow	1
				11				
				U				

Thus we have an injection $\pi \to U \subset Iso_{\circ}(\mathbb{R}^2 \times S^2)$ and M admits a geometry modelled on $\mathbb{R}^2 \times S^2$.

QED.

THEOREM D. Let M be a 4-dimensional aspherical Seifert fiber space wieh typical fiber

a surface F except for a torus. If M admits a geometry, then M is a product manifold up to a finite covering.

PROOF. It follows from Remark 1 that up to a finite covering M is a fiber space over B and both M and B are orientable. Then F is also orientable.

From the bundle relation $\tau_M = \tau_F + p * \tau_B$, the signature of M is always zero.

Case 1. *B* is not a torus.

We have the exact sequence; $1 \to \pi_1(F) \to \pi \to Q \to 1$, where $\pi = \pi_1(M)$ and $Q = \pi_1(B)$. We apply the following results of [S]; let Γ be a discrete group and Γ' its subgroup, if $X = K(\Gamma, 1)$, $Y = K(\Gamma', 1)$ and $Z = K(\Gamma/\Gamma', 1)$ are finite complexes, then (i) $\chi(\Gamma) = \chi(\Gamma')\chi(\Gamma/\Gamma')$ (ii) $\chi(\Gamma) = \chi(X)$ and so the others. Thus we obtain $\chi(M_1) = \chi(\pi) = \chi(\pi_1 \circ F)\chi(Q_1) > 0$. By the results ($[W_1]$) on the characteristic numbers of closed oriented geometric 4-manifolds, M admits a geometry on modelled on $H^2 \times H^2$. So π is contained in $Iso_o(H^2 \times H^2) = PSL_2R \times PSL_2R$. There exists a subgroup π' in π with a finite index such $\pi' = \pi_1 \times \pi_2 \subset PSL_2R \times PSL_2R([R, Theorem 5.22])$, where $\pi_i \subset PSL_2R$ for i=1, 2. Let M' be a finite covering of M associated to π' . Thus this M' is a product manifold $H^2/\pi_1 \times H^2/\pi_2$.

Case 2. B is a torus.

In this case we have a fiber bundle $F \to M \xrightarrow{p} T^2$. Since $p * \tau_T^2$ is trivial, τ_M has a nonzero cross-section. Thus $\chi(M)$ is zero. Applying the results of Wall ($[W_1]$), possible geometries on M are $R \times P\widetilde{S}L_2R$, $R^2 \times H^2$ or $R \times H^3$, because $\pi_1(M)$ is not solvable.

First we consider the case of $R \times P\widetilde{S}L_2R$. π is a cocompact discrete subgroup of $Iso_{\circ}(R \times P\widetilde{S}L_2R)$, we have the exact sequence;

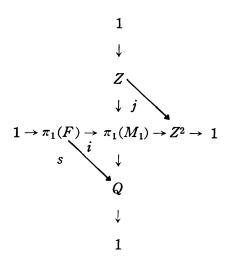
We may assume Q is torsionfree. If $R^2 \cap \pi = \{1\}$ or Z, then cohomological dimension of π is smaller than 4, which is a contradiction. Thus we have $R^2 \cap \pi = Z^2$. We have the following diagram;

$$1 \qquad \downarrow \\ Z^2 \qquad \downarrow j \\ 1 \rightarrow \pi_1(F) \rightarrow \pi_1(M_1) \rightarrow Z^2 \rightarrow 1 \\ i \qquad \downarrow \\ Q \qquad \downarrow \\ 1 \qquad 1$$

Since $\pi_1(F)$ does not contain Z as a normal subgroup by the assumption of F, $i(\pi_1(F)) \cap j(Z^2) = \{1\}$. The direct product $i(\pi_1(F)) \times j(Z^2)$ is a subgroup of $\pi_1(M)$ with a finite index. Let M' be a finite covering of M associated to this subgroup. It follows that $H_1(M) \simeq H_1(F) + Z^2$. Thus the rank of $H_1(M')$ is even. On the other hand, 1-st Betti number of a manifold that admits a geometry modelled on $R \times P\widetilde{SL}_2 R$ is odd ($[W_1]$). So we have a contradiction.

Next we consider the case of $R \times H^3$. Since π is a cocompact discrete subgroup of $Iso_{\circ}(R \times H^3)$, we have the exact sequence;

As before, we obtain $R \cap \pi = Z$. The following commutative diagram is obtained;



where there exist injectons $r: Z \to Z^2$ and $s: \pi_1(F) \to Q$ because of $j(Z) \cap i(\pi_1(F)) = \{1\}$. Thus there exists a subgroup Q_1 of Q with a finite index such that $1 \to \pi_1(F) \to Q_1 \to Z \to 1$ is an exact sequence. By results of ([H. Chap. 11]), H^3/Q_1 is diffeomorphic to a fiber bundle over S^1 with fiber a surface, because $Q_1 = \pi_1(H^3/Q_1)$. In fact, it was proved that there exist hyperbplic 3-manifolds which admits the structure of bundle over S^1 ([J]). Thus this case can happen and M is a product manifold $S^1 \times N$ up to a finite covering, where N is a hyperbolic 3-manifold.

In the case of $R^2 \times H^2$, it is clear that M has a product structure $F \times B$ up to a finite covering, where F and B are surfaces.

QED.

References

- [H] J. Hempel, 3-manifolds, Ann. of Math. Studies, No. 86, 1976.
- [J] T. Jørgensen, Compact 3-manifolds of negative curvature fibering over the circle, Ann. of Math., 106, 61-72, 1977.
- [KLR] R. Kulkarni, K. B. Lee and F. Raymond, Deformation spaces for Seifert manifolds, Springer LNM. No. 1167, 180-218.
- [LR] K. B. Lee and F. Raymond, The role of Seifert fiber spaces in transformation groups, Contemporary Math., Vol. 36, 367-425, 1985.
- [R] M. S. Raghunnathan, Discrete subgroups of Lie groups, Erg. der Math., Band 68, 1972.
- [S] J. P. Serre, Cohomologie des groupes discretes, Ann. of Math. studies, No. 70, 77-169, 1971.
- [SF] K. Sakamoto and S. Fukuhara, Classification of T²-bundles over T², Tokyo J. Math., Vol. 6, 311– 327, 1983.
- [V] E. Vogt, Foliations of codimension 2 with all leaves compact on closed 3-, 4-, and 5-manifolds, Math., Z., Vol. 157, 201-223 1977.
- [W₁] C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology, Vol. 25, No. 2, 119–153, 1986.
- [W₂] C. T. C. Wall, Geometries and geometric structures in real dimension 4 and complex dimension 2, Ssringer LNM. No. 1167, 268-292.
- [Z] H. Zieschang, Finite groups of mapping classes of surfaces, Springer LNM. Vol. 875.
- [ZVC] H. Zieschang, E. Vogt and H. Coldeway, Surfaces and Planar Discontinuous Groups, Springer LNM. No. 835.

Tsuyoshi WATANABE Department of Mathematics Faculty of Science Niigata University Niigata 950-21, Japan Kazuo SAITO Department of Mathematics Faculty of Education Kanazawa University Kanazawa 920, Japan