Certain Invariant Subspace Structure of Analytic Crossed Products II

By
Tomomi Kominato and Kichi-Suke Saito*

(Received October 27, 1986)

1. Introduction

Let M be a finite von Neumann algebra on a separable Hilbert space H. Let α be a *-automorphism of M. Suppose that there is an α -invariant faithful normal semi-finite trace ϕ of M. Let \mathfrak{L}_+ be an analytic crossed product on L^2 determined by M and α (see the definition to § 2). We have an interest in the invariant subspace structure of L^2 with respect to \mathfrak{L}_+ . In [3, 5], McAsey introduced the notion of canonical models for invariant subspaces of L^2 . That is, a family of left-pure, left-full, left-invairant subspaces $\{\mathfrak{M}_i\}_{i\in I}$ constitutes a complete set of canonical models for all invariant subspaces of L^2 in case (a) for no two distinct indices i and j, $P\mathfrak{m}_i$ is unitary equivalent to $P\mathfrak{m}_j$ by a unitary operator in $\Re(=\Re')$; and (b) for every left-pure, left-invariant subspace of L^2 , there is an *i* in I and a partial isometry V in \Re such that $VP \mathfrak{M}_i V^* = P \mathfrak{M}$, so that $\mathfrak{M} = V \mathfrak{M}_i$. McAsey found the canonical model in case that $M = \ell^{\infty}(X)$, where X is a finite set with elements $t_0, t_1, \ldots, t_{K-1}$, and the automorphism of M induced by a permutation of X. Further, in [9, 18, 19], we studied the canonical models of invariant subspaces in case that ϕ is a finite trace. On the other hand, in [2], we studied the canonical models when M $=L^{\infty}(X,\mu), \mu(X)=\infty$ and α is an ergodic automorphism of M. That is, we constructed a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 with the multiplicity function m of \mathfrak{M}_{∞} which is $m(t) = \infty$ for almost all t in X. Thus, for every left-pure, left-invariant subspace \mathfrak{M} of L^2 , there exists a partial isometry V in $\mathfrak{R}(=\mathfrak{L}')$ such that $\mathfrak{M}=V\mathfrak{M}_{\infty}$. That is, the canonical model in this case is the singletone $\{\mathfrak{M}_{\infty}\}$.

Our aim in this note is to extend the results in [2]. That is, suppose that $\phi(1) = \infty$ and that α is ergodic on the center Z of M. Then we will construct a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 with the multiplicity function m of \mathfrak{M}_{∞} which is $m(t) = \infty$ for almost everywhere t in X. Therefore, we prove that for every left-pure, left-invariant subspace \mathfrak{M} of L^2 , there exists a partial isometry V in $\mathfrak{R}(=\mathfrak{L}')$ such that $\mathfrak{M} = V\mathfrak{M}_{\infty}$.

^{*} The second author was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education.

2. Preliminaries

$$\{f: \mathbf{Z} \to L^2(M, \phi) | \sum ||f(n)||_2^2 < \infty\},$$

where $\|\cdot\|_2$ is the norm of $L^2(M, \phi)$. For $x \in M$, we define operators L_x , R_x , L_δ and R_δ on L^2 by the formulae

$$(L_x f)(n) = \ell_x f(n),$$

$$(R_x f)(n) = r_{\alpha^n(x)} f(n),$$

$$(L_{\delta} f)(n) = u f(n-1)$$

and

$$(R_{\delta}f)(n)=f(n-1).$$

Put $L(M) = \{L_x : x \in M\}$ and $R(M) = \{R_x : x \in M\}$. We set $\mathfrak{L} = \{L(M), L_\delta\}''$ and $\mathfrak{R} = \{R(M), R_\delta\}''$ and define the left (resp. right) analytic crossed product \mathfrak{L}_+ (resp. \mathfrak{R}_+) to be the σ -weakly closed subalgebra of \mathfrak{L} (resp. \mathfrak{R}) generated by L(M) (resp. R(M)) and L_δ (resp. R_δ). The automorphism group $\{\beta_t\}_{t\in R}$ of \mathfrak{L} dual to α is implemented by the unitary representation of R, $\{W_t\}_{t\in R}$, defined by the formula, $(W_t f)(n) = e^{2\pi \inf f(n)}$, $f \in L^2$; that is, $\beta_t(T) = W_t T W_t^*$, $T \in \mathfrak{L}$, by the definition. Let E_n be the projection on L^2 defined by the formula

$$(E_n f)(k) = \begin{cases} f(n), & k=n, \\ 0, & k \neq n. \end{cases}$$

DEFINITION 2.1. Let \mathfrak{M} be a closed subspace of L^2 . We shall say that \mathfrak{M} is: left-invarant, if $\mathfrak{L}+\mathfrak{M}\subset\mathfrak{M}$; left-reducing, if $\mathfrak{L}\mathfrak{M}\subset\mathfrak{M}$; left-pure, if \mathfrak{M} contains no non-trivial left-reducing subspace containing \mathfrak{M} is all of L^2 . The right-hand versions of these concepts are defined similarly, and a closed subspace which is both left- and right-invariant will be called two-sided invariant.

We write Z for $M \cap M'$ and identify it $L^{\infty}(X, \mu)$ for some locally compact Hausdorff space X with a σ -finite measure μ ($\mu(X) = \infty$) such that

$$\int_X f d\mu = \phi(f), \qquad f \in L^{\infty}(X, \mu).$$

Since α is ergodic on Z and $\phi \circ \alpha = \phi$, there exists an invertible measure-preserving ergodic transformation τ on X such that $\alpha(f)(t) = f(\tau^{-1}t)$, $f \in L^{\infty}(X, \mu)$, $t \in X$.

At first, we consider a direct integral of M with respect to Z according to [1]. By [1, Part II, Chapter 6, Theorems 1 and 2], there exists a μ -measurable field $t \to H(t)$ of non-zero complex Hilbert spaces over X, a μ -measurable field $t \to M(t)$ of factors in the H(t)'s and an isomorphism of H onto $\int \oplus H(t) \, d\mu(t)$ which transforms M into $\int \oplus M(t) \, d\mu(t)$. Therefore, we identify H, M and Z with $\int \oplus H(t) \, d\mu(t)$, $\int \oplus M(t) \, d\mu(t)$ and the space of diagonal operators, respectively. By [1, Part II, Chapter 5, Corollary of Theorem 2], there exists a μ -measurable field $t \to \phi_t$ of faithful, normal finite traces on $M(t)_+$'s such that $\phi = \int \oplus \phi_t \, d\mu(t)$. Let $L^2(M, \phi_t)$ be the non-commutative L^2 -space associated with M(t) and ϕ_t . Then the field $t \to L^2(M(t), \phi_t)$ of complex Hilbert spaces over X is μ -measurable and $L^2(M, \phi) = \int \oplus L^2(M(t), \phi_t) \, d\mu(t)$. Further, by [1, Part II, Chapter 4, Definition 1], the field $t \to M(t)$ of achieved Hilbert algebras over X in $\int \oplus L^2(M(t), \phi_t) \, d\mu(t)$ is μ -measurable. Let $\ell_{X(t)}$ (resp. $r_{X(t)}$) be the left (resp. right) multiplication on $L^2(M(t), \phi_t)$ and put $\ell(M(t)) = \{\ell_{X(t)}: X(t) \in M(t)\}$ (resp. $r(M(t)) = \{r_{X(t)}: X(t) \in M(t)\}$). Then the field $t \to \ell(M(t))$ (resp. $t \to r(M(t))$) of factors over X is μ -measurable and $\ell(M) = \int \oplus \ell(M(t)) \, d\mu(t)$ (resp. $r(M) = \int \oplus r(M(t)) \, d\mu(t)$). Next we define the Hilbert space L^2_t by

$$\boldsymbol{L}^{2}_{t} = \{f_{t} \colon \boldsymbol{Z} \to L^{2}(M(t), \phi_{t}) | \sum_{\boldsymbol{n} \in \boldsymbol{Z}} \|f_{t}(\boldsymbol{n})\|_{2}^{2} < \infty \}$$

and define the operators $L_{x(t)}$ on L_t^2 by $(L_{x(t)}f_t)(n) = \ell_{x(t)}f_t(n)$. Then the field $t \to L_t^2$ of complex Hilbert spaces over X is μ -measurable and $L^2 = \int \oplus L^2_t d\mu(t)$ and the field $t \to \oplus L^2_t d\mu(t)$ L(M(t)) of factors over X is μ -measurable and $L(M) = \int \oplus L(M(t)) d\mu(t)$. Therefore, by [1, Part II, Chapter 3, Theorem 4], the field $t \to L(M(t))'$ of semi-finite factors over X is μ measurable and $L(M)' = \int \oplus L(M(t))' d\mu(t)$. By the definition of L_x (resp. $L_{x(t)}$), we may identify L(M) (resp. L(M(t))) with the von Neumann algebra tensor product $C_{\ell^2(\mathbf{Z})} \otimes$ $\ell(M)$ (resp. $C_{\ell^2(\mathbf{Z})} \otimes \ell(M(t))$), where $C_{\ell^2(\mathbf{Z})}$ denotes the algebras of scalar multiples of the identity acting on $\ell^2(\mathbf{Z})$. From this, we can identify the commutant of L(M): L(M)' $=(C_{\ell^2(\mathbf{Z})}\otimes \ell(M))'=C_{\ell^2(\mathbf{Z})}'\otimes \ell(M)'=B(\ell^2(\mathbf{Z}))\otimes r(M)$, where $B(\ell^2(\mathbf{Z}))$ is the full algebra of operators on $\ell^2(\mathbf{Z})$. Analogously, we can identify the commutant of L(M(t)): L(M(t))' $=B(\ell^2(\mathbf{Z})) \otimes r(M(t))$. Then we have $L(M)' = \int \mathcal{B}(\ell^2(\mathbf{Z})) \otimes r(M(t)) d\mu(t)$. Put $\widetilde{\phi}(r_x)$ $=\phi(x)$ (resp. $\widetilde{\phi}_t(r_{x(t)})=\phi_t(x(t))$). Let $Tr \otimes \widetilde{\phi}$ (resp. $Tr \otimes \widetilde{\phi}_t$) be the tensor product of Trand $\widetilde{\phi}$ (resp. $\widetilde{\phi_t}$) on $B(\ell^2(\mathbf{Z})) \otimes r(M)$ (resp. $B(\ell^2(\mathbf{Z})) \otimes r(M(t))$), where Tr is the canonical trace on $B(\ell^2(\mathbf{Z}))$. Then $t \to Tr \bigotimes \widetilde{\phi_t}$ is a μ -measurable field of faithful normal semifinite traces over X and $Tr \otimes \widetilde{\phi} = \int \oplus Tr \otimes \widetilde{\phi}_t d\mu(t)$. By [9, Lemma 2.3], $E_0 L(M)' E_0$ is unitarily isomorphic to r(M) and so, in particular, E_0 is a finite projection in L(M)'.

Let $E_n(t)$ be the projection on L_t^2 defined by the formula

$$(\boldsymbol{E}_n(t)f_t)(k) = \begin{cases} f_t(n), & k=n, \\ 0, & k \neq n. \end{cases}$$

Then $t \to E_0(t)$ is a μ -measurable field of projections over X and $E_0 = \int \oplus E_0(t) d\mu(t)$. By [1, Part II, Chapter 5, Theorem 2], $E_0(t)$ is a finite projection for almost everywhere t in X. Since M is finite, M(t) is a finite factor almost everywhere and so ϕ_t is a faithful normal finite trace on M(t). Hence we have $(Tr \otimes \widetilde{\phi}_t)(E_0(t)) = \phi_t(1) < \infty$ a.e. Therefore we put

$$\Psi_t = \frac{1}{(Tr \otimes \widetilde{\phi}_t)(E_0(t))} Tr \otimes \widetilde{\phi}_t.$$

Then $t \to \Psi_t$ is a μ -measurable field of faithful normal semifinite traces on M(t) such that $\Psi_t(E_0(t))=1$ and we put $\Psi = \int \Phi \Psi_t d\mu(t)$.

Next we will define an L(Z)-trace following ([1, Chapter III, § 4]). Since the algebra L(Z) is *-isomorphic to the algebra $L^{\infty}(X, \mu)$, we define 3 to be the set of nonnegative measurable functions, finite or not, on X. For every $T = \int \mathcal{T}(t) d\mu(t) \in L(M)'$, let $\phi(T)$ be the function $t \to \mathcal{T}_t(T(t))$ which is an element in 3. By [1, Part III, Chapter 4, Exercise 4], ϕ is a faithful normal semifinite L(Z)-trace on $L(M)'_+$ such that $\phi(E_0) = I$. The L(Z)-trace Φ induces a map ρ from $(E_0L(M)'E_0)_+$ into $(L(Z)E_0)_+$, by $\rho(T) = E_0\Phi(T)$, $T \in (E_0L(M)'E_0)_+$. Then ρ is a faithful normal finite center valued trace on $(E_0L(M)'E_0)_+$.

LEMMA 2.2. For each $c \in (L(Z)E_0)_+$, $\rho(c)=c$.

PROOF. Let $c \in (L(Z)E_0)_+$. Then there exists an element $c_1 \in L(Z)$ such that $c = c_1 E_0$. Hence we have

$$\rho(c) = E_0 \Phi(c) = E_0 \Phi(c_1 E_0) = c_1 E_0 \Phi(E_0) = c_1 E_0 I = c.$$

This completes the proof.

Hence we define a multiplicity function of a left-invariant subspace of L^2 as in [9]. Let \mathfrak{M} be a left-pure, left-invariant subspace with the wandering subspace $\mathfrak{F}=\mathfrak{M} \ominus L_{\delta} \mathfrak{M}$. We denote the projection of L^2 onto \mathfrak{F} by $P(\mathfrak{M})$. By [6. Proposition 3.1], we know that the projection $P(\mathfrak{M})$ lies in L(M)'. By the preceding discussions, we may write $P(\mathfrak{M}) = \int \mathfrak{P}(t) d\mu(t)$, where P(t) is a projection in $B(\ell^2(\mathbf{Z})) \otimes r(M(t))$ for almost all t. The multiplicity function of \mathfrak{M} is the function defined by the equation $m(t) = \Psi_t(P(t))$. Since the field $t \to P(t)$ of projections is μ -measurable, m is a non-negative measurable function over X. By the definition of Φ , it is clear that $\Phi(P(\mathfrak{M}))(t) = \Psi_t(P(t))$. Therefore we have the following theorem as in [4, Theorem 3.4] and [9, Theorem 3.1].

THEOREM 2.3. For i=1, 2, let \mathfrak{M}_i be a left-pure, left-invariant subspace of L^2 with a multiplicity function m_i . Let $P(\mathfrak{M}_i)$ be the projection of L^2 onto $\mathfrak{F}_i = \mathfrak{M}_i \ominus L_{\delta} \mathfrak{M}_i$. Then the following assertions are equivalent:

(1) there exists a partial isometry V in \Re such that $P\mathfrak{M}_1 = VP\mathfrak{M}_2V^*$, where $P\mathfrak{M}_i$ is the projection of L^2 onto \mathfrak{M}_i ;

- (2) $m_1(t) \leq m_2(t)$, a.e.;
- (3) $\Phi(P(\mathfrak{M}_1)) \leq \Phi(P(\mathfrak{M}_2))$; and
- (4) $P(\mathfrak{M}_1) \lesssim P(\mathfrak{M}_2)$ in L(M)'.

Furthermore, if the condition (1) is satisfied, then $\mathfrak{M}_1 = V \mathfrak{M}_2$.

PROOF. (1) \rightarrow (2) and (4) \rightarrow (1) are clear from [9, Theorem 3.1]. (2) \rightarrow (3) is clear from [1, Part III, Chapter 4, Exercise 4]. (2) \rightarrow (4). Since $m_1(t) \leq m_2(t) < \infty$, by [1, Part III, Chapter 2, Proposition 13], $P_1(t) \leq P_2(t)$. Suppose that $m_1(t) < m_2(t) = \infty$. Since $B(\ell^2(\mathbf{Z})) \otimes r(M(t))$ is a factor, $P_1(t) \leq P_2(t)$. Finally, if $m_1(t) = m_2(t) = \infty$, then $P_1(t)$ and $P_2(t)$ are infinite projections. By [1, Part III, Chapter 8, Corollary 5], $P_1(t) \sim P_2(t)$. Thus $P_1(t) \leq P_2(t)$ a.e. $t \in X$. Therefore, by [1, Part III, Chapter 1, Exercise 15], $P(\mathfrak{M}_1) \leq P(\mathfrak{M}_2)$. This completes the proof.

3. Invariant subspace structure

Keep the notations and the assumptions in § 2. Our aim in this section is to construct a left-pure left-full left-invariant subspace of L^2 such that the multiplicity function $m(t) = \infty$ for almost everywhere t in X. To do this, we need some lemmas.

Lemma 3.1 (cf. [18, Lemma 3.1]). Let $\{\mathfrak{M}_i\}_{i\in I}$ be a finite or countable collection of left-pure, left-invariant subspace of L^2 such that \mathfrak{M}_i is orthogonal to \mathfrak{M}_j , for $i\neq j$. Then $\mathfrak{M}=\sum_{i\in I}\oplus\mathfrak{M}_i$ is a left-pure, left-invariant subspace with the multiplicity function $\sum_{i\in I}m_i(t)$, where m_i is the multiplicity function of \mathfrak{M}_i .

Let χ_F be a characteristic function of a measurable subset F in X. We define a projection P_F in L(M)' by

$$(P_F f)(n) = \begin{cases} \ell_{\chi_F} f(0), & n=0, \\ 0, & n \neq 0, \end{cases}$$
 $f \in L^2$.

Thus it is clear that $P_F = L_{\chi_F} E_0 \subset L(M)'$. By Lemma 2.2,

$$\Phi(P_F) = \Phi(L_{\chi_F} E_0) = L_{\chi_F} \Phi(E_0) = L_{\chi_F} I = L_{\chi_F}.$$

Since $P_F \leq E_0$, $\{L_{\delta}^n P_F L_{\delta}^{*n}\}_{n \in \mathbb{Z}}$ is mutually orthogonal. Thus, we define a closed subspace $\mathfrak{M}(P_F) = \sum_{n \in \mathbb{Z}} \bigoplus (L_{\delta}^n P_F L_{\delta}^{*n}) L^2$. As in [18, Lemma 3. 2] and [9, Lemma 5. 1], we have

LEMMA 3.2. (i) $\mathfrak{M}(P_F)$ is a left-pure, left-invariant subspace of L^2 with the multiplicity function χ_F .

(ii) If $\mu(F) < \infty$, then $\mathfrak{M}(P_F)$ is the closed linear span of $\{\mathfrak{L}_{+}e_0\}$, where $e_0(n) = 0$ if $n \neq 0$ and $e_0(0) = \chi_F$.

PROOF. (i) It is clear that $\mathfrak{M}(F)$ is a left-pure, left-invariant subspace of L^2 . Since $\Phi(P_F) = L_{\chi_F}$, the multiplicity function of $\mathfrak{M}(P_F)$ is χ_F .

(ii) Since $e_0(n) = \delta_{n,0} \chi_F$, we have

$$(\sum_{n=0}^{\infty} L_{\delta}^{n} P_{F} L_{\delta}^{*n} e_{0})(k) = \sum_{n=0}^{\infty} u^{n} (P_{F} L_{\delta}^{*n} e_{0})(k-n)$$

$$= u^{k} \ell_{\chi_{F}}(L_{\delta}^{*k} e_{0})(0) = u^{k} \ell_{\chi_{F}} u^{*k} e_{0}(k) = \ell_{\alpha^{k}(\chi_{F})} \delta_{k,0} \chi_{F}$$

$$= \chi_{\chi_{K}(F)} \delta_{k,0} \chi_{F} = \delta_{k,0} \chi_{F} = e_{0}(k).$$

Thus, $e_0 \in \mathfrak{M}(F)$ and so $[\mathfrak{L}_+e_0]_2 \subset \mathfrak{M}(P_F)$. Conversely, for every $n \geq 0$, let $f \in L_{\delta}^n P_F L_{\delta}^{*n} L^2$. Then we have, for all $k \in \mathbb{Z}$,

$$f(k) = (L_{\delta}^{n} P_{F} L_{\delta}^{*n} f)(k) = u^{n} (P_{F} L_{\delta}^{*n} f)(k-n)$$

$$= u^{n} \ell_{\chi_{F}} \delta_{k,n} (L_{\delta}^{*n} f)(k-n) = \delta_{k,n} \ell_{\chi_{\tau^{n}(F)}} f(k).$$

Since $\mathfrak{N} = \{x \in M : \phi(x^*x) < \infty\}$ is dense in $L^2(M, \phi)$, there exists a sequence $\{x_i\}_{i \in \mathbb{Z}}$ in \mathfrak{N} such that $\|x_i - f(n)\|_2 \to 0$. Then we have

$$(L_{x_i}L_{\delta}^n e_0)(k) = x_i(L_{\delta}^n e_0)(k) = x_i u^n e_0(k-n)$$

$$= \delta_{k,n} x_i u^n \chi_F = \delta_{k,n} x_i \alpha^n (\chi_F) = \delta_{k,n} x_i \chi_{\tau^n(F)}$$

$$\to \delta_{k,n} \chi_{-n(F)} f(n) = f(k).$$

This implies that $||L_{x_i}L_{\delta}^n e_0 - f||_2 \to 0$. Thus, $L_{\delta}^n P_F L_{\delta}^{*n} L^2 \subset [\mathfrak{L}_+ e_0]_2$ where $[\mathfrak{L}_+ e_0]_2$ is the closure of $\mathfrak{L}_+ e_0$ in L^2 , and so $\mathfrak{M}(P_F) \subset [\mathfrak{L}_+ e_0]_2$. This completes the proof.

Let E and F be measurable subsets of X such that there are measurable subsets $\{E_n\}_{n=0}^{\infty}$ and $\{F_n\}_{n=0}^{\infty}$ with the following properties:

- (1) $E_n \subset E$ and $F_n \subset F$, n > 0:
- (2) $E_n \cap E_m = F_n \cap F_m = \phi, n \neq m$;
- (3) $\mu(E \setminus \bigcup_{n=0}^{\infty} E_n) = \mu(F \setminus \bigcup_{n=0}^{\infty} F_n) = 0$; and
- (4) $F_n = \tau^n(F_n), n > 0$

Then we have the following lemma.

Lemma 3.4 ([18, Lemma 3.4]). $U = \sum_{k=0}^{\infty} L_{\chi_{F_k}} L_{\delta}^{k}$ is a partial isometry in \mathfrak{L}_+ with initial projection L_{χ_F} and final projection L_{χ_F} .

LEMMA 3.5. Keep the notations as above. Suppose that $\mu(E) = \mu(F) < \infty$. Then there exists a left-pure, left-invariant subspace \mathfrak{M} of $\mathfrak{M}(P_E)$ such that $\Phi(P(\mathfrak{M})) = \chi_F$ and $\sum_{n \in \mathbb{Z}} L_{\delta}^n P(\mathfrak{M}) L_{\delta}^{*n} = R_{\chi_E}$.

Proof. We define a projection P in L(M)' by

$$(Pf)(k) = \begin{cases} \chi_{F_k} f(k), & k \geq 0, \\ 0, & k < 0, \quad f \in L^2. \end{cases}$$

That is, $P = \sum_{k=0}^{\infty} L_{\chi_{F_k}} \boldsymbol{E}_k$. Then it is clear that $(L_{\delta}^m P L_{\delta}^{*m})$ $(L_{\delta}^n P L_{\delta}^{*n}) = 0$, for $n, m \in \boldsymbol{Z}$, $n \neq m$. This implies that P is a wandering projection in L(M)'. Therefore, we define a closed subspace \mathfrak{M} by $\mathfrak{M} = (\sum_{n=0}^{\infty} L_{\delta}^n P L_{\delta}^{*n}) \boldsymbol{L}^2$. Then it is clear that \mathfrak{M} is left-pure and left-invariant. Further, $\boldsymbol{\Phi}(P) = \sum_{n=0}^{\infty} \boldsymbol{\Phi}(L_{\chi_{F_k}} \boldsymbol{E}_k) = \sum_{k=0}^{\infty} L_{\chi_{F_k}} \boldsymbol{\Phi}(R_{\delta}^k \boldsymbol{E}_0 R_{\delta}^{*k}) = \sum_{k=0}^{\infty} L_{\chi_{F_k}} \boldsymbol{\Phi}(\boldsymbol{E}_0) = \sum_{k=0}^{\infty} L_{\chi_{F_k}} \boldsymbol{E}_k$. Thus the multiplicity function of \mathfrak{M} is χ_F .

On the other hand, since
$$P_E = L_{\chi_F} E_0 = \sum_{k=0}^{\infty} L_{\chi_E} E_0$$
, we have, for $k \ge 0$,
$$L_{\delta}^k L_{\chi_E} E_0 L_{\delta}^{-k} = L_{\delta}^k L_{\chi_E} L_{\delta}^{-k} L_{\delta}^k E_0 L_{\delta}^{-k} = L_{\alpha^k (\chi_E)} E_k$$
$$= L_{\chi_{\tau^k(E_k)}} E_k = L_{\chi_F} E_k,$$

and so

$$\sum_{n=0}^{\infty} L_{\delta}^{n} L_{\chi_{E_{k}}} \mathbf{E}_{0} L_{\delta}^{-n} \geq \sum_{n=k}^{\infty} L_{\delta}^{n} L_{\chi_{E_{k}}} \mathbf{E}_{0} L_{\delta}^{-n}$$

$$= \sum_{n=k}^{\infty} L_{\delta}^{n-k} L_{\delta}^{k} L_{\chi_{E_{k}}} \mathbf{E}_{0} L_{\delta}^{-k} L_{\delta}^{-n+k} = \sum_{n=k}^{\infty} L_{\delta}^{n-k} L_{\chi_{F_{k}}} \mathbf{E}_{k} L_{\delta}^{-n+k}$$

$$= \sum_{n=0}^{\infty} L_{\delta}^{n} L_{\chi_{F_{k}}} \mathbf{E}_{k} L_{\delta}^{-n}.$$

Thus, $\sum_{n=0}^{\infty} L_{\delta}^{n} P_{E} L_{\delta}^{-n} \geq \sum_{n=0}^{\infty} L_{\delta}^{n} P L_{\delta}^{-n}$ and so $\mathfrak{M}(P_{F}) \supset \mathfrak{M}(P)$. Since $\sum_{n=-\infty}^{\infty} L_{\delta}^{n} L_{\chi_{E_{k}}} \mathbf{E}_{0} L_{\delta}^{-n} = \sum_{n=-\infty}^{\infty} L_{\delta}^{n} L_{\chi_{E_{k}}} \mathbf{E}_{k} L_{\delta}^{-n}$, we have $\sum_{n=-\infty}^{\infty} L_{\delta}^{n} P L_{\delta}^{-n} = \sum_{n=-\infty}^{\infty} L_{\delta}^{n} P_{E} L_{\delta}^{-n} = R_{\chi_{E}}$. This completes the proof.

THEOREM 3. 6. Let m be a measurable function on X such that $m(t) = \infty$ for almost all $t \in X$. Then there eixsts a left-pure, left-full, left-invariant subspace \mathfrak{M}_{∞} of L^2 such that the multiplicity function of \mathfrak{M}_{∞} is m.

PROOF. Since (X, μ) is σ -finite, there exists a family $\{E_n\}_{n=1}^{\infty}$ of measurable subsets of X such that $X = \bigcup_{n=1}^{\infty} E_n$, $E_1 \subset E_2 \subset \cdots \subset E_n \subset \cdots$ and $\mu(E_n) < \infty$, $n \ge 1$. As in the proof of [2, Theorem 3.5], we can define the measurable subsets $\{F_n\}_{n=1}^{\infty}$, $\{E_n^{(k)}\}_{k=1}^{\infty}$ and $\{F_n^{(k)}\}_{k=1}^{\infty}$ with the following properties: for $n \ge 1$,

- (1) $F_n = \sum_{k=0}^{\infty} F_n^{(k)}$ and $E_n = \sum_{k=0}^{\infty} E_n^{(k)}$;
- (2) $E_{n}^{(k)} = \tau^{k}(F_{n}^{(k)}), k > 0$; and
- (3) $F_n \cap F_m = \phi$, for $n \neq m$.

By Lemma 3. 5, for all $n \ge 1$, there exists a left-pure, left-invariant subspace \mathfrak{M}_n of $\mathfrak{M}(P_{F_n})$ such that $\Phi(P(\mathfrak{M}_n)) = \chi_{E_n}$. Put $F_0 = X \setminus \bigcup_{n=1}^{\infty} F_n$. Since $\{F_n\}_{n=1}^{\infty}$ is mutually disjoint,

 $\{\mathfrak{M}(P_{F_n})\}_{n=1}^{\infty}$ is mutually orthogonal. Put $P=P_{F_0}+\sum_{n=1}^{\infty}P(\mathfrak{M}_n)$. Then P is a wandering projection and

$$\Phi(P) = \Phi(P_{F_0}) + \sum_{n=1}^{\infty} \Phi(P(\mathfrak{M}_n)) = \chi_{F_0} + \sum_{n=1}^{\infty} \chi_{E_n} = \chi_{F_0} + \infty I = \infty I.$$

Thus we define a left-pure, left-invariant subspace \mathfrak{M} by $(\sum_{k=0}^{\infty} L_{\delta}^{k} P L_{\delta}^{-k}) L^{2}$. Further,

since
$$\sum_{k=-\infty}^{\infty} L_{\delta}^{k} P(\mathfrak{M}_{n}) L_{\delta}^{-k} = \sum_{k=-\infty}^{\infty} L_{\delta}^{k} P_{F_{n}} L_{\delta}^{-k}$$
 by Lemma 3.5,

$$\sum_{k=-\infty}^{\infty} L_{\delta}^{k} P L_{\delta}^{-k} = \sum_{k=-\infty}^{\infty} L_{\delta}^{k} P_{F_{0}} L_{\delta}^{-k} + \sum_{k=-\infty}^{\infty} \sum_{n=1}^{\infty} L_{\delta}^{k} P(\mathfrak{M}_{n}) L_{\delta}^{-k}$$

$$= \sum_{k=-\infty}^{\infty} L_{\delta}^{k} P_{F_{0}} L_{\delta}^{-k} + \sum_{k=-\infty}^{\infty} \sum_{n=1}^{\infty} L_{\delta}^{k} P_{F_{n}} L_{\delta}^{-k}$$

$$= \sum_{k=-\infty}^{\infty} L_{\delta}^{k} P_{F_{0} + \sum_{n=1}^{\infty} F_{n}} L_{\delta}^{-k} = \sum_{k=-\infty}^{\infty} L_{\delta}^{k} E_{0} L_{\delta}^{-k} = \sum_{k=-\infty}^{\infty} E_{k} = I.$$

This implies that \mathfrak{M} is left-full. This completes the proof.

By Theorem 3. 6, we can construct a left-pure, left-full, left-invariant subspace of L^2 such that $m(t) = \infty$ for almost all $t \in X$. We denote this space by \mathfrak{M}_{∞} . Then we have the following.

Theorem 3.7. Let $\mathfrak M$ be a left-pure, left-invariant subspace of L^2 . Then there exists a partial isometry V in $\mathfrak R$ such that $P_{\mathfrak M} = VP_{\mathfrak M_\infty}V^*$, so that $\mathfrak M = V\mathfrak M_\infty$.

PROOF. Since $\Phi(P(\mathfrak{M})) \leq \infty I$, by Theorem 3.1, we have this theorem.

References

- J. Dixmier, von Neumann algebras (English Edition), North Holland, Amsterdam-New York-Oxford, 1981.
- [2] T. Kominato and K.-S. Saito, Certain invariant subspace structure of analytic crossed products, preprint (1986).
- [3] M. McAsey, Invariant subspaces of nonselfadjoint crossed products, Thesis (1978), University of Iowa.
- [4] M. McAsey, Invariant subspace of nonselfadjoint crossed products, Pacific J. Math., 96(1981), 457-473
- [5] M. McAsey, Cananical models for invariant subspaces, Pacific J. Math., 91 (1980), 377-395.
- [6] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc., 248 (1979), 381-409.
- [7] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products II, J. Math. Soc. Japan, 33 (1981), 485-495.
- [8] M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products III (Infinite algebras), J Operator Theory, 12 (1984), 3-22.
- [9] M. McAsey, P. S. Muhly and K.-S. Saito, Equivalence classes of invariant subspaces in nonselfadjoint crossed products, Publ. RIMS, Kyoto Univ., 20 (1984), 1119-1138.

- [10] P. S. Muhly and K.-S. Saito, Analytic crossed products and outer conjugacy classes of automorphisms of von Neumann algebras, Math. Scand., 58 (1986), 55-68.
- [11] P. S. Muhly and K.-S. Saito, Analytic subalgebras in von Neumann algebras, to appear in Canad. Math. J.
- [12] P. S. Muhly and K.-S. Saito, Analytic crossed products and outer conjugacy classee of automorphisms of von Neumann algebras II, preprint (1986).
- [13] P. S. Muhly, K.-S. Saito and B. Solel, Coordinates for triangular operator algebras, preprint (1986).
- [14] K.-S. Saito, Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. Math., 93 (1981), 431-434.
- [15] K.-S. Saito, Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Analysis, 45 (1982), 177-193.
- [16] K.-S. Saito, Nonselfadjoint subalgebras associated with compact abelian group actions on finite von Neumann algebras, Tôhoku Math. J., 34 (1982), 485-495.
- [17] K.-S. Saito, Automorphisms and nonselfadjoint crossed products, Pacific J. Math., 102 (1982), 179-
- [18] B. Solel, The multiplicity functions of invariant subspaces for nonselfadjoint crossed products, Pacific J. Math., 113 (1984), 201-214.
- [19] B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer. Math. Soc., 279 (1983), 825-840

Tomomi Kominato Matsudai Highschool Matsudai, Higashikubiki, Niigata, 942–15 Japan Kichi-Suke Saito Department of Mathematics Faculty of Science Niigata University Niigata, 950-21 Japan