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1. Introduction

Let M be a finite von Neumann algebra on a separable Hilbert space H. Let a be a
* -automorphism of M. Suppose that there is an a-invariant faithful normal semi-finite
trace ¢ of M. Let &+ be an analytic crossed product on L2 determined by M and a (see
the definition to § 2). We have an interest in the invariant subspace structure of L? with
respect to &+. In [3, 5], McAsey introduced the notion of canonical models for invariant
subspaces of L2. That is, a family of left-pure, left-full, left-invairant subspaces {:} i1
constitutes a complete set of canonical models for all invariant subspaces of L2 in case
(a) for no two distinct indices i and j, Pm; is unitary equivalent to Pur; by a unitary
operator in R(=Y"); and (b) for every left-pure, left-invariant subspace of L2, there is an
iin I and a partial isometry V in R such that VPm;:V*=Pyy, so that M=1"M:. McAsey
found the canonical model in case that M= (X ), where X is a finite set with elements
to, t1, ..., tx_y, and the automorphism of M induced by a permutation of X. Further, in
(9, 18, 197, we studied the canonical models of invariant subspaces in case that ¢
is a finite trace. On the other hand, in [2], we studied the canonical models when M
=L>(X, ), (X )=o0 and a is an ergodic automorphism of M. That is, we constructed a
left-pure, left-full, left-invariant subspace M., of L2 with the multiplicity function m of
M., which is m()=cc for almost all £ in X. Thus, for every left-pure, left-invariant
subspace M of L2, there exists a partial isometry V in R(=%') such that M=VMWM... That
is, the canonical model in this case is the singletone {t.}.

Our aim in this note is to extend the results in [2]. That is, suppose that ¢(1)=o0
and that a is ergodic on the center Z of M. Then we will construct a left-pure, left-
full, left-invariant subspace M., of L2 with the multiplicity function m of M., which is
m(t)=oco for almost everywhere ¢ in X. Therefore, we prove that for every left-pure,
left-invariant subspace Mt of L2, there exists a partial isometry V in R(=%’) such that
M=VIR...

* The second author was supported in part by a Grant-in-Aid for Scientific Research from the Japanese
Ministry of Education.
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2. Preliminaries

Let M be a finite von Neumann algebra on a separable Hilbert space H. Let a be a
* -automorphism of M such that a is ergodic on the center Z of M. Suppose that there
is an a-invariant faithful normal semifinite trace of M that is not finite i.e. ¢(1)=oo.
Let I2(M, ¢) be the noncommutative L2-space associated with M and ¢. Let 4x (resp. 7x)
be the left (resp. right) multiplication on L2(M, ¢); 4xy=xy (resp. rxy=yx). Put ((M)=
{6x: xEM} and r(M)={rx: xEM}. Since ¢ is a-invariant, there is a unitary operator «
on L2(M, ¢) induced by @. To construct a crossed product, we consider the Hilbert space
L2 defined by

U+ 2> (M, $)] Z 1wz < o},

where ||« |, is the norm of I?(M, ¢). For x & M, we define operators Lx, Rx, L; and R; on
L2 by the formulae

(Laf Xn)=4+f (n),
RxYm)=7ancx) f(n),
(Lsf) (m)=uf(n—1)

and

(Raf Y(m)=S(n—D).

Put LIM)={Ls: x&M) and R(M)={Rx: x=M}. We set L={L(M), Ls}’’ and R= {R(M),
R;}’’ and define the left (resp. right) analytic crossed product £+ (resp. R+) to be the o-
weakly closed subalgebra of & (resp. R) generated by L(M) (resp. R(M)) and L; (resp.
R;). The automorphism group {83:}:cr of € dual to « is implemented by the unitary re-
presentation of R, {W;}:er, defined by the formula, (W,f ) (n)=e?*int f(n), f € L2; that is,
B:(T)=W,TW,* T &, by the definition. Let E» be the projection on L2 defined by the

formula

f(n), k=n,
(Enf)(R)=
0, k#n.

DEerFINITION 2.1. Let M be a closed subspace of L2. We shall say that M is: left-
invarant, if &+IMCM; left-reducing, if LM CM; left-pure, if M contains no non-trivial
left-reducing subspace containing MM is all of L2. The right-hand versions of these con-
cepts are defined similarly, and a closed subspace which is both left- and right-invariant
will be called two-sided invariant.

We write Z for MMM’ and identify it L”(X, p) for some locally compact Hausdorff
space X with a o-finite measure ¢ (#(X)=o0) such that
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Vo rau=9(r),  rer=x, p.

Since « is ergodic on Z and ¢-a=¢, there exists an invertible measure-preserving ergodic
transformation = on X such that a(f)(#)=7(c"1t), FEL7(X, p), tEX.

At first, we consider a direct integral of M with respect to Z according to [1]. By
[1, Part II, Chapter 6, Theorems 1 and 2], there exists a p-measurable field ¢ > H(#) of
non-zero complex Hilbert spaces over X, a pg-measurable field ¢# — M (¥) of factors in the
H(%)’s and an isomorphism of H onto f®H(¢) du(t) which transforms M into f S M O)dp ().
Therefore, we identify H, M and Z with f®H()du(t), f®M(!)du(t) and the space of
diagonal operators, respectively. By [1, Part II, Chapter 5, Corollary of Theorem 2],
there exists a pg-measurable field ¢ — ¢, of faithful, normal finite traces on M (H)+’s such
that ¢=[®¢,du(t). Let I2(M, ¢;) be the non-commutative L2-space associated with M)
and ¢;. Then the field t > I2(M(¢), ¢;) of complex Hilbert spaces over X is ¢-measura-
ble and I?(M, ¢)=f®I2(M(t), ¢;)du(t). Further, by [1, Part I, Chapter 4, Definition 1],
the field £ — M(?) of achieved Hilbert algebras over X in f®L2(M(2), $:)dp(t) is p-measura-
ble. Let 4x¢) (resp. 7x) be the left (resp. right) multiplication on I2(M(¢#), ¢;) and put
LM®) = {bxrr: x@E M)} (resp. (M ®))= (rxwy: x)EM()}). Then the field #—
R(M(2)) (resp. t —> r(M(2))) of factors over X is u-measurable and (M )= SUM () det)
(resp. r(M)=f®r(M())dr(t)). Next we define the Hilbert space L2 by

L= {f1: Z - 2(M (), ¢t)]n§2”ft(”)”% <L )

and define the operators Lx¢) on L2; by (Lxyfs)(n)=~8xq f:(n). Then the field ¢ — Lz
of complex Hilbert spaces over X is pg-measurable and L2=f®L2,du(¢) and the field #—
L(M(®) of factors over X is p-measurable and L(M)=®L(M (O)du(2). Therefore, by [1,
Part II, Chapter 3, Theorem 4], the field t— L(M(¥)) of semi-finite factors over X is 7
measurable and L(M)Y =f®L(M () du(t). By the definition of Lx (resp. Lz), we may
identify L(M) (resp. L(M(¢¥))) with the von Neumann algebra tensor product C,2zy&Q
L(M) (resp. C2xQ (M (2))), where C,2¢z denotes the algebras of scalar multiples of the
identity acting on (2(Z). From this, we can identify the commutant of LM): LMY
=(Co2zp QUM )Y =C 22 QUM Y =BXZ ))RQr(M), where B(R2(Z)) is the full algebra of
operators on (% Z). Analogously, we can identify the commutant of L(M(%)): LM@Y
=B(%(Z)) ®r(M(#)). Then we have L(M)Y=f®BWAZ))Qr(M®))du(). Put ¢(rx)
—@(x) (resp. b (rx) =, (x(D)). Let TrQ¢ (resp. Tr®$:) be the tensor product of Tr
and ¢ (resp. ¢;) on B(RX(Z)) Q@ r(M) (resp. B(2(Z))Rr(M(¢t))), where Tr is the canonical
trace on B(Q?2(Z)). Then i — Tr® 933\; is a p-measurable field of faithful normal semi-
finite traces over X and 77 ® d=f @Tr(X);S;dp(t). By [9, Lemma 2.3], E,L(M) E, is
unitarily isomorphic to »(M) and so, in particular, E, is a finite projection in L(M)Y.
Let E.(#) be the projection on L2; defined by the formula

{ ft(n)r k:n,
0, k+n.

(En(®) fr) (B)=
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Then ¢t - E, (¢) is a p-measurable field of projections over X and Ey= [® Ey(f)du(t).
By [1, Part II, Chapter 5, Theorem 2], Ey(¢) is a finite projection for almost everywhere
tin X. Since M is finite, M(¢) is a finite factor almost everywhere and so ¢, is a faithful
normal finite trace on M (¢#). Hence we have (Tr ®$,) (Eyt))=¢,(1)< o a.e. Therefore
we put

v,= ~1 Tr @ é;.
(TrR¢:) (Eo?))
Then ¢t > ¥, is a p-measurable field of faithful normal semifinite traces on M(¢) such
that T(E(#))=1 and we put T=[O ¥ ,du(?).

Next we will define an L(Z)-trace following ([1, Chapter III, § 4]). Since the algebra
L(Z) is *-isomorphic to the algebra L~”(X, g), we define 3 to be the set of nonnegative
measurable functions, finite or not, on X. For every T'=fOT(#)dp(t) e L(M ), let ¢(T) be
the function ¢ — & ;(T(¢)) which is an element in 8. By [1, Part III, Chapter 4, Exercise 4],
¢ is a faithful normal semifinite L(Z)-trace on L(M)’+ such that ¢(Ey)=I1. The L(Z)-
trace @ induces a map p from (EoL(M) Eo)+ into (L(Z)Ey)+, by oT)=E@(T), T &
(EyL(M)Y Ep)+. Then p is a faithful normal finite center valued trace on (EoL(M ) Eq)+.

LeEMMA 2.2. For each ¢c € (L(Z)E o)+, p(c)=c.
Proofr. Let c&(L(Z)Ey)+. Then there exists an element ¢;& L(Z) such that c=c,E,.
Hence we have

p(O)=ED (c)=E P (c,Eo)=c,E@ (Eq)=ciEol=c.

This completes the proof.

Hence we define a multiplicity function of a left-invariant subspace of L2 as in [9].
Let M be a left-pure, left-invariant subspace with the wandering subspace =M L; M.
We denote the projection of L2 onto & by P(M). By [6. Proposition 3. 1], we know that
the projection P(M) lies in L(M)’. By the preceding discussions, we may write P(It)
=f®P()du(t), where P(¢) is a projection in B(RA(Z)) R r(M(?)) for almost all 2. The
multiplicity function of M is the function defined by the equation m(#)=¥ ,(P(¢)). Since
the field ¢ > P(¢) of projections is z-measurable, 7 is a non-negative measurable function
over X. By the definition of @, it is clear that @(P(M)) (£)=¥ (P(¢)). Therefore we
have the following theorem as in [4, Theorem 3. 4] and [9, Theorem 3. 1].

THEOREM 2.3. For i=1, 2, let Wi be a left-pure, left-invariant subspace of L2 with a
multiplicity function mi. Let P(I:) be the projection of L2 onto Fi=Mi©L;Mi. Then the
following assertions are equivalent :

(1) there exists a partial isometry V in R such that Pam,=VPm,V*, where PMm; is the
projection of L2 onto M;
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(2) mi() <my(D), ae.;

(3) O(P(My)) L O(P(My)); and

4 PNy < P(My) in LMY
Furthermore, if the condition (1) is satisfied, then My=VM,.

Proor. (1) — (2) and (4) — (1) are clear from [9, Theorem 3.1]. (2)— (3) is clear
from [1, Part III, Chapter 4, Exercise 4]. (2)— (4). Since m(t) < my(f) < oo, by [1,
Part II., Chapter 2, Proposition 13], Pi(¢) < Py(#). Suppose that m(#) < mz(t)=oo; Since
BWXZ))Rr(M(t)) is a factor, Py(#) <P;(¢). Finally, if m;()=ms(t)=co, then P;(#) and
P, (#) are infinite projections. By [1, Part III, Chapter 8, Corollary 5], Pi(£) ~ P, (®).
Thus Py(t) < P»(¢) a.e. t=X. Therefore, by [1, Part III, Chapter 1, Exercise 15], PRy
< P(I,). This completes the proof.

3. Invariant subspace structure

Keep the notations and the assumptions in § 2. Qur aim in this section is to construct
a left-pure left-full left-invariant subspace of L2 such that the multiplicity function m(¥)
=oo for almost everywhere ¢ in X. To do this, we need some lemmas.

Lemma 3.1 (cf. [18, Lemma 3.17). Let {(Wilicr be a finite or countable collection of
left-pure, left-invariant subspace of L2 such that Wi is orthogonal to Wj, for i+j. Then M
=2 D Mi is a left-pure, left-invariant subspace with the multiplicity function Z_‘,I mi(t),

iel i€

where mi is the multiplicity function of Mi.

Let Xr be a characteristic function of a measurable subset F in X. We define a
projection Pr in L(M)’ by

lef«))’ n= 0)

(Prf )(n)={
0, n#+0, fEL-2,

Thus it is clear that Pr=1,,.E,=L(M). By Lemma 2.2,
O (PF)=0 (L1 Eo)= L1, O Eq)= Ly I=Ly,.

Since Pr < E, {L;"Pr Ls*"}nez is mutually orthogonal. Thus, we define a closed sub-
space M(Pr)= >} @(L,"PrL;*"} L2 As in [18, Lemma 3. 2] and [9, Lemma 5. 1], we have
nez

Lemma 3.2. () M(PF) is a left-pure, left-invariant subspace of L? with the multiplicity
Junction Xg.

(i) If w(F)<oo, then M(PF) is the closed linear span of {(S+eq}, where eq(n)=0 if n=+0
and ey(0)=Xp.

Proor. (i) It is clear that MM(F) is a left-pure, left-invariant subspace of L2. Since.
O(Pr)= Ly, the multiplicity function of M(Pr) is Xp.

(i) Since ey(n)=0xu,0 X, We have
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(3 Ls"PrLy*"ey) (k)= 33 u"(PrLs*"ey) (k—n)
= kD) 1 (Ls*be0) (0) =kl tt* ke () =Rabcupp Ok 0 L
=X k(F)Ok,0X p=0k,0X F=60(R).

Thus, eo&M(F) and so [L+egls CMM(PF). Conversely, for every » >0, let f & L;" PrL;*" L2.
Then we have, for all kEZ,

F(R)=(L"PrLs*"f) (k) =u"(PrLs*"f) (k—n)
= U1y, n (L™ "F) (k=)= B, U 1 S B

Since M= {xEM: ¢(x*x) < oo} is dense in I2(M, ¢), there exists a sequence {xi}iczin N
such that |[xi—f(n)||s — 0. Then we have

(Lxi Ls"eo) (R)=xi(Ls"eo) (R)=xiu"eo(k—n)
= ak, nxiu”Xp=6k, n xm”( XF)Z 3]@, nx,-X,n(F)
= Ok, n) oy S (W)=1 (k).

This implies that || Lx; Ls”eo—f s — 0. Thus, L;”"PrLs*" L2 C [8+e)s where [L1e0]s is the
closure of £+¢p in L2, and so M(Pr) C [¥+eol:. This completes the proof.

Let E and F be measurable subsets of X such that there are measurable subsets
{En)}3_o and {Fa}y_, with the following properties:

(1) EnxCEand FxCF, n>0;

2) ExNEn=FuxN\Fm=¢, n+m;

®) mEN U En)= (PN U Fa) =0; and

(4) Fp=1tn(F2), n>0.

Then we have the following lemma.

LemMaA 3.4 ([18, Lemma 3.4]). U= ki;oLszL,;k is a partial isometry in &+ with initial

projection Ly, and final projection Ly.

LeMMA 3.5. Keep the nolations as above. Suppose that p(E)=p(F)<oo. Then there
exists a left-pure, left-invariant subspace WM of WM (Pe) such that @ (P(M))=Xr and
21 L"P(M) Ls*" =Ry,

nez
Proor. We define a projection P in L(M)" by

Xrf(k), k>0,

(Pf) (k)={
0, k<o, feL
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That is, P= 5;0 L(Fk E,. Then itis clear that (L;”PL;*") (L,"PL:*")=0, for n, meZ,

n#m. This implies that P is a wandering projection in L(M)’. Therefore, we define a

closed subspace Mt by M= (% L;"PL;*™)L2. Then it is clear that M is left-pure and
n=0 o - o

left-invariant. Further, @ (P)= 3} @ (L, Er)= > Ly, @ (R;*E\R;*k)= >} Ly, @ (E¢)=

. n=0 Fr F=0 T =0 "Fr

kZO L Fk:LxF' Thus the multiplicity function of M is Xp.

On the other hand, since PE= L, Eo= %0 Ly EkEO’ we have, for £>0,
k=
LskaEkEoLa_kzLakaEkLa“kLskEoLa_kzLak(xEk)Ek
= Lx,k(Ek)Ek=LkaEk,
and so

nio LJ"LxEkEoLa_" > ZkLaanEkEoLa_"

M3

Lén—kLakLXEkEOLB—kL5~n+k: ikLﬁn_kLZFkEk Lg—n+k
n=

n=k

n

= 3\ L Ly, ExLs ™
n=0 k

n=-—o°

Thus, 31 L,"PeLy™" > 3 L"PL,~" and so MPRDMY(P). Since 3 L Ly EoLy™"
n= n=

=n§w L5"LxEkEkL5‘", we havenimL,;”PL{": f‘, Li"PEL;™ =Ry, This completes

Nn=—00

the proof.

THEOREM 3. 6. Let m be a measurable function on X such that m(t)=oo for almost all
tEX. Then there eixsts a left-pure, left-full, left-invariant subspace M., of L2 such that
the multiplicity function of M., is m.

Proor. Since (X, p) is o-finite, there exists a family {Ex}3-; of measurable sub-

sets of X such that X= flen, E,CE,C - CEnC - and w(Ex) < o, n>1. Asin the

proof of [2, Theorem 3.5], we can define the measurable subsets {Fax}5_;, {Ex®} 72, and

{Fn ®}y_; with the following properties: for n>>1,

(1) F, = iFn(k) and £, = iEnUe);

k=0 k=0

(2) Ex®=ck(F,®), k>0; and

3) FuNFm=9¢, for n+m.
By Lemma 3.5, for all #>>1, there exists a left-pure, left-invariant subspace M of M(Pr,,)
such that @ (P(M»))=XE,. Put Fy=X\ Gan. Since {F.};_; is mutually disjoint,

e
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{M(PFa)}r_iis mutually orthogonal. Put P=Pr, + i}lP(SRn). Then P is a wandering

projection and

O(P)=0(Pr,)+ ?jl@ (P(Mn))=Xpo+ §1x5”=xpo+oc1 —ool.
n= n=
Thus we define a left-pure, left-invariant subspace Mt by (i‘, L;* PL;—%) L2, Further,
k=0

since, 3% L#PMwLy~*= 31 Li*Pr,Ls~ by Lemma 3.5,

5 LAPLi*= 5y LAPrL*+ 31 3 LAP(RL,

k=—00 k= o =1

= 3 L#Pr L%+ 3 3 L#+Pp, L,—*

k= —00 k=— n=1

= k_i - LﬁkPFo+ by F,,L"—kz . i Li*EyL;—k= . f_‘. Ep=1I.
= n=1 == =—0

This implies that M is left-full. This completes the proof.

By Theorem 3. 6, we can construct a left-pure, left-full, left-invariant subspace of L2
such that m (£)=oco for almost all #&X. We denote this space by M... Then we have
the following.

THEOREM 3.7. Let M be a left-pure, left-invariant subspace of L2. Then there exists
a partial isometry V in R such that Psp=VPwm.. V¥, so that M=VIR...
Proor. Since @(P(M))<ool, by Theorem 3. 1, we have this theorem.
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