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1. Introduction

Let f(x) be a (unknown) probability density function (p.d.f.) on.the p-dimensional
Euclidean space R? with respect to Lebesgue measure. Based on a sequence X;, X, ...
of independent identically distributed p-dimensional random vectors having the common
p.d.f. f(x), we wish to estimate the p.d.f. f(x). Yamato [8] proposed recursive kernel
estimators of the form

Fo®)=0
(1.1) T D=Fn—1(®)+ 1" {Kn(%, Xn)—Fn_s(x)}  foreachn=1,
where
(1.2) Kn(x, )=h7;?K((x—>)/hn)  for x, yER? and each n =1,

{hn} is a sequence of positive numbers and K(x) is a real-valued Borel measurable func-
tion on R?, on which certain properties were imposed. He showed the weak uniform
consistency of these estimators as well as the weak pointwise consistency. DEVROYE [4]
discussed several results related to the weak or the strong pointwise consistency of 7n(x).
Davies [3] showed the strong uniform consistency of ﬁ(x) as well as the strong pointwise
consistency.

In this paper we consider a class of recursive kernel estimators of the form

Jo(x) = K(x)
1.3) Fn(X)=Fn—1(x)+an { Kn(%, Xn)—fn_1(x)} for each n =1,
or equivalently,
S n(x)=n§:.:0am Bmn Km(x, Xm)  for each n =0,

where Kn(x, v) is defined by (1. 2), K,(x,X,) = K(x), {@x»} is a sequence of positive numbers
satisfying

(1. 4) 2y=1,0<an<1forall =1, lim a»=0 and 3} a@n=oo,

n-—>00 n=1
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and let

(1.5) Bon= TI (1—aj) ifn>m=0
j=m+1
=1 if n=m=0.

We note that if K(x) is a p.d.f., then f»(x) is a p.d.f. for each n=0. It is easy to see that
the class of our estimators contains both the estimators of YamaTo (1.1) and the
estimators of Isocarl [6] with axn=an~1 for 2-1< e <1 and each » = 1. Putting ea.=an™?

for 271 < a =1, the differences of properties between the estimators of (1.1) and (1. 3)
were discussed in Isocal [5].

In Section 2 we shall make some preparations for sections that follow. In Section 3
we shall show the weak or the strong pointwise consistency of f»(x). In Section 4 we shall
show that fx(x) is strongly uniformly consistent and that E [ sup|f»(x)—f(x)|2] converges

xeR?b

to 0 as n tends to infinity. We also consider a problem of estimating the mode @ of f(x).

2. Preliminaries and auxiliary results

Let K(x) in (1.2) be a bounded, integrable, real-valued Borel measurable function on
R? satisfying

(K 1) S K(x) dx=1,

where all integrals with respect to Lebesgue measure are over R?, unless otherwise
specified. Let {#s} in (1.2) be a sequence of positive numbers satisfying nlim hn=0. On

this sequence {#.} we shall impose some of the following conditions:

(H1)  ankz? -0,

(H2)  Nahz? <o,
(H 3) h=h=kh=...,
(H4)  halhns—>1,
(H5)  Sankz?)’ < o,

n=1
An 1 1
H6 & — ,
(H6) ”};-1 pap—1 hn i1 hn <o

where a» and Bm» are defined by (1. 4) and (1. 5) respectively, and let A,= é la%, 2m for
m=

each » =1. Throughout this paper C,, C,,... denote positive constants, and let | g|
=sup |g(x)| for any real-valued function g on R?, where supremum is taken over R?,
unless otherwise specified.
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DEeFINITION 2.1 Let g(x) be a real-valued Borel measurable function on R?. Then a
point x is said to be a Lebesgue point of g if it holds that
o= lsb)—g@)ldy—>0  asp—0,
S,

where S(x, p) denotes a closed sphere in R? centered at x with radius p.

Remark 2.1. If g(x) is integrable then almost every x is a Lebesgue point of g (see
STEIN [7], p. 25). If x is a continuity point of g then x is a Lebesgue point of g.

The following lemma is a modification of Lemma 2 of DeEVrROYE [4].

LeMMA 2.1. Let g(x) be a real-valued Borel measurable function on R?, let K(x) be a
bounded, integrable, real-valued Borel measurable function on R?, let {(hx} be a sequence of
positive numbers converging to zero, and let Condition A(x, g, K) hold.

Condition A (x, g, K). Omne of the following is true:

(i) X 1S @ continuily point of g, g is integrable and
(K 2) Iyl2| K(y)|—>0 as |ly]|—->co,
where | + || denotes the Euclidean norm on R?,
(ii) % is @ Lebesgue point of g and g is bounded on R?,
(iii) x is @ Lebesgue point of g and K has compact support.
Then

{ 52? K ((x—9)ime)dy — 2 | Ko .

Proor. In case (i) the lemma holds by Theorem 2.1 of CacourrLos [2]. Thus we
need only show that in both cases (ii) and (iii)

|§ ? K (=) b)) dy—g(0) | K dy |

< { i? | K(G—9)/ )] |20)— @] dy —0.

Let Un= S he? | K((x—3)/hn)| |g(y)—g(x)|dy. Thus we need only show
2.1) lim U,=0.
For any p >0

@2 U= | m? K@)k || g0)—g ()| dy
SE¢(%, Phn)

+ g Bz ? | K((x—)/hn) | | &(5)—g(%)| dy
S, Phn)

=Vaut Wn, say,

where S° denotes the complement of a set S. First we consider case (ii). Letany >0
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be fixed. Since K(x) is integrable, there exists a positive constant p such that

|K(y)|dy <e. Such p is fixed. It is easy to see that
S0, ©)

(2.3) Va < 2|2l S | K@) |dy < 2| gllee forall n = 1.
S¢€@0, #)

Since x is a Lebesgue point of g and ’}im hn=0, we get

Wa = |Klep®oly? |  120)—g@|dy—>0,
S€(0, £

which implies that
(2.4) lim W,=0.

Nn—o00

Combining (2. 2), (2. 3) and (2. 4) we obtain (2.1). We next consider case (iii). Since K(x)
has compact support, there exists a positive constant p such that K(y)=0 for all y & S°(0,
p), which implies that

(2.5) V= S K| |g(x—hny) —g(x)|dy=0  forall n=1.
S¢(0, #

Thus by (2. 2), (2. 4) and (2.5) we get (2.1). This completes the proof.

Lemma 2. 2. Condition (iii) iz Condition A (x, g, K) is replaced by the following:
(ii1)’ x is a Lebesgue point of g, g is integrable and K has compact support.
Then, under all assumptions of Lemma 2.1

sup { 7 | K((x—9)/hn)]| |20)]dy < oo.

Proor. If g(x)is integrable we get that
Un= hz? | K((x—3)/ )| |20 dy
= IKlhn? { |g0)dy < oo foralln=1.
If g(x) is bounded we have
Un= gl | IKDIdy <o  forallnz=1.
Thus, under Condition A (x, g, K)
(2.6) Un<< o0 for all » = 1.
Replacing g(x) and K(x) of Lemma 2.1 by | g(x)| and | K(x)| respectively, and using Lemma
2.1, we get

Un= Sh;"IK((x—y)/hn)l lg(y)|dy = Ig(x)ls |K()|dy,
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which, together with (2. 6), yields the lemma. The proof is complete.

3. Weak or strong pointwise consistency

In this section we shall show the weak or the strong pointwise consistency of fx»(x).

THEOREM 3. 1. Suppose that Condition A(x, f, K) holds. If {hn} satisfies (H1).
then

EL (fa(x)—F (%) 2] —> 0,

which implies that fa(x) —> (%) in probability.
If (H2) is true, then

Fal®)—— F(%)  with probability one (w.p. 1)
and

EL (fa8)—F(2))2 T —> 0.

Proor. We note that
B.1 | fa)—f ()| = fn(D)—E Lfu(0)] |+ | ELfn(x) 1—f (x)]
and
(3.2) EL(fu()—f(0) P I=EL(fn()—ELS#(%) 12 J+(EL fa(x) I—F (%) )
It follows from (1. 4) and (1. 5) that
am Bmn =0 for all m=1,..., n, n=1,2,..., lim Bmn=0 for each m=1,

n—>o0

n

ﬁ amPBmn =1 foralln=1,
m=1

n
am ﬂmn —1.
m=1

Thus from Lemma 2.1 and the Toeplitz lemma (see LokvE [6], p. 238), we get
@3.3) E[ fu(x) :|=m2=10m BrnE[ Km(x, Xm) ]+ BonK(x) —> f(x).

Since fu(x)—E [fn(m:méamﬁmn ( Em (%, Xm)—E [Km(%, Xm)1},
EL(fu(x)—E[fa(2)])?]
= 3 @y Bon E LK (3, Xom)]

= K lex 31 6 Bnhin? i | K ((5—=9)/ ) | F(5) .
From Lemma 2.2 we get
{ i | K (=) 1mm)| f0)dy < € forallm=1.

Hence
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B4 ELUw®—EL/®)] 2= Co 3 b Bhun i

= széldm ,an (amhr_n-p) ’

because of the fact that 0 < fmn =< 1. By (H1) and the Toeplitz lemma the last term of
(3.4) approaches to 0 as # tends to infinity.
Hence

3.5)  EL(A®—ELfa® 171 —0,

which, together with (3. 2) and (3. 3), yields the first assertion of the lemma. The proof
of the second assertion parallels the proof of Theorem 3.1 of Isocal [5]. Since

EL(fa(H)—ELfa(x) 12| Xy, ..., Xn_1]
= (1—an) fn—1(®) —E[fn-1(2)1)?
+IKlwah i ? B ? | K(G—3)[B) | F Dy wopd,
where E[-|+] denotes a conditional expectation, we get, by Lemma 2. 2,
EL(fa)—ELfa(x) 12Xy, ..., Xn]
= A—=an)(fr—iD—E[fa1(0)]I 2+ Coab hz?  wpl.
Hence by (H2) and Proposition 2. 4 of Isocarl [5] we have (3.5) and
3.6)  |fa@—Elfx®1—0 w.pl.

Thus combining (3. 1)~(3. 3), (3.5) and (3. 6), the second assertion is established. The proof
of the lemma is complete.

ReEMARK 3.1. The conditions (H1) and (H2) do not imply each other. Let
an=mn"1,
ht=pn1 if n=2* for k=0,1, 2,...
=t if n£2k,

whose sequences are given by DEVROYE [4]. These sequences satisfy (1.4) and (H2) but
not (H1). Let

a1=1, an=(n(logn)¥) 1 forn =2,
ht=n"1

Then, these sequences satisfy (1. 4) and (H1) but not (H2). Putting ax=an~! with 0<la<1
in (1.4), the conditions (H1) and (H2) coincide with (3) and (12) of DevrROYE [4] respec-
tively. The following sequences satisfy (1. 4), (H1) and (H2):

a1=1, an=mlogn)"! for n=2, hE=n"1.
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4. Strong uniform consistency

In this section we shall show the strong uniform consistency of f»(x) and show that
E[sup|fu(x)—f(x)|2] converges to 0 as » tends to infinity. Furthermore, the strong con-
sistency of the mode estimator will be shown.

First we shall show the strong uniform consistency of f.(x) and the convergence of
ETsup| fa(x)—f(x)|2] to 0. The method of proof is similar to that of Davies [3]. Let

)
k (t)———S eit* uK (w)du for & R? be the Fourier transform of K(x), where ¢« u = gltj u; for ¢t
=

=(ty,...,tp) and u=(uy,..., up), and i2=—1. Also let ¢ (¥)=E [eit- X1] for & R? be the
characteristic function of the random vector X;. The next theorem is concerned with
the strong uniform consistency of fx(x).

THEOREM 4. 1. In addition to the conditions (H3)~(H6), suppose that K (x) is continuous
on R? and satisfies (K2) and
K3 [ le@lat< o,

where |k(t)|is non-increasing on a ray R(u)= {v=gqu; ¢ >0} for eachu+0E R?. (That is, | k(vy)|
=|k(vy)| for vy, v2E R () with |vi||<||vs). If f(x) is uniformly continuous on R?, then it holds
that

sup|fn(®)—f(H)|—> 0 w.pl
and .

E[sup| fa(%)—f(%)]2] —> 0.

Proor. It is easy to see that the theorem holds if we show that
@1 sup|ELfal0)1—1 ()| —>0,
42 suplfu®—E[fa(®)]—>0 wpl
and
4.3)  E[Gup|fax)—ELfa(x)][*] —>0,

because of the fact that E[sup|f.(*)—f(*)|2]=FE[ (sup|fa(®)—f(x)|)2]. First we shall
show (4.1). Note that since f(x) is uniformly continuous p.d.f., f(x) is bounded. Since by
Lemma 1 of YamaTo [8] sup|E[Kn(x, X»n)]—f(x)|—>0, using the Toeplitz lemma we
get

sup| E[fa(x) ]—f (x)| ‘

= 31 am Bun (SUD | ELKonCx, Xom) 1—F () )+ Bon(| K e F ) =0,

which implies (4.1). Next we shall show (4.2) and (4.3). Since both K(«) and & (x) are
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integrable and K (%) is continuous on R?, we have, by using the inversion theorem for the
Fourier transform (see BocHNER and CHANDRASEKHARAN [17, p. 66),

—(2n)~-? S [ei%* Xpm—o () Je—iv* sk(hmu)du  forall x€R?  w.pl.

Hence
4.9 sup | fa(x)— E[ fa ()]
< (2m)—? S lmél am Bmnl €% Xm—@ () 1k(hmu) | du w.p.l.
For simplicity we shall introduce the following notations:
w= {4 ER?; k(hnu)+0},
Emn(W=amBmnle* Xm—ew)]  forl<m=<n,
mn(W)=k(hmu)|k(hnu)  if uE Sn
=0 if u&S; forl=m=<mn
and
Zmn (0)=Emn(4) Gmn (u) for 1 < m=n.
By the assumption on |k(%)| and Condition (H3) we get
| B (hmu)| < | k(Bnw)| foruc R’ and1<m=<n,

which implies that
4.5) S5 C S forl=m<mn
and
(4.6) |gmn(w)|=1  for 1=m=n and » € R?.

Hence by the definition of gmn(%) and (4.5) we have
wn | "élémn(u)k(hmu)ldu= {1 mz’f]__lzmn(un |kh)|du  w.p.l.

In view of (4. 4) and (4. 7) we obtain, by the Schwarz inequality,
sup|fu(®)—E[fa(x)]|

= @02 § 1) | duT L | 33 Zonn @) |21 Kt} | du Tt

= @0 § k@l ault U2 § | 33 ZounC) 2 B Gt | duTE

= C1 Y% W.p.i,
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where Yn=/i? |m§1 Zonn) |2 F Giwtd) | .
Thus, in order to prove (4. 2) and (4. 3) it suffices to show that
48 Y0 wpl
and
4.9)  E[Ys]—>0.
It is clear that
Yits
==y 17000 |21 oo 110) | d
+an+1(1—0n+1>h;—€1 { S () e Xnps —o(—u) 18 n+1 n+10) | b (hn+10) | du

@10) (7m0 [ Xnr— (@) Tgn1 b1 (0) | 410) | d)
+“%z+1k;f1 S |eiveXnis—@ (u)|2| gn+1 n+1() | 2| B (Bn+10)| du,

where 7n (%) =§£ 1’Emn(u)gm n+1(w) and b denotes the conjugate of a complex number b. It
follows from the independence of X,’s that

EleivXup—ow)| Xy, ..., Xu]=0 w.p.l
and

El|ei* Xpp—o(u)|2| X1, ..., Xul=1—|e@w)|2 <=1 w.p.l.
Hence, taking conditional expectations of both sides of (4.10) and using (4. 6) we have

4.11) ElYn+1| X1, ..., Xl

= (l—an+1)h;f1 S | 7n(2) | 2| B (Bnt1) | du-+Cy (an+1h;f1)2 w.p.l.

By the definition of gm»(%) and (4.5) we can prove that
S | ’éé_lfmn (w)gm n+100) |2k (hnt100) | du

”

= S fmélfmn (%) gmn(®) |2| gn nt1(n0) | | k(hnw)|du  w.p.1

n

and

§ 1132 &mn i 4100 21 Chn 1)

= S ImZ;Emn(u)gmn(u) 12| gn n+1(u)| | B(Annt) | du=0 w.p.1,
Sa

which, together with (4. 6) and (4. 11), yields that
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E[Yns1| X1, ..., Xn]
(4.12) = (A—ansDh2hnl  Ya+Colantihnl)?
< U—ant)Ynt bE |hfy =k | Yut- Colonaabinfy? Wl
Since by (H4)  hnly—hn? ~ phi? (hyl, —hzY) as n—> oo, where “gn ~ bn as n—> co”
means that a»/br—1 as n— oo, we get /
B \hy?, —hz? | < Cohn | hidy —h7l|  forallm=1,
which, together with (4. 12), yields that
(4.13) ElYp 11Xy, ..., Xnl
= (1—0n+2) Yot Can iy — | Yot Co(@naabinfy)” WL,
It follows from (4. 6) that
E[|Znn(w))?] = @5 Boun E[| €% Xm—¢ () |2]
=a%bhn for 1<m=<n and » & R?.
Thus, by the independence of Zix(%), ..., Znn (%) With E[ Zmn(x)] =0 and Fubini’s theorem

we get

ECYnl=hi? 33 § ET| Zon() |21 e Chut) | s

= csh;t_zp i @ Boun,
m=]1
which, together with Condition (H6), implies that
4.14) ﬁlhnm;il —kxt |E[Ya] < oo.

Thus, by the use of (4.13), (4.14), Condition (H5) and Proposition 2.4 of Isoca1 [5], we
obtain (4. 8) and (4.9). The proof is complete.

We shall present the strong uniform consistency of the estimators of Isocar [5] which
contains the estimators of YamaTo [8] in a special case.

CorOLLARY 4.1. In (1.4) we put an=an' with0<a<1. Suppose that instead of Con-
dition (H6) the sequence {(hn} satisfies

7 30 L _ 1 <o,

A=t mbp2p-l | hnyy hn

where b=min (1, 2a), dy=d,=1, and
dn=logn if a=2"1

=1 otherwise forn=3,4,....
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Then, under all conditions of Theorem 4.1 we obtain
sup|fa(x)—f(x)|—0  w.pl
and

E [sup| fa(#)— (%) | 2] —> 0.

Proor. In order to prove the corollary it suffices to verify Condition (H6). It is easy
to see that 0 < Bmn = 2man—e for 1 =< m = », which implies that

(4.15) An =< Cyn—2a ‘Z‘, m2@—D for each #n.
m=1
After some calculations we can show the following inequality:
(4.16) n—2a ‘ﬁ m2@—1 < Cy(dn/nb) for each .
m=1

Thus, combining (4.15), (4.16) and Condition (H7) we obtain Condition (H6). This com-
pletes the proof.

REMARK 4.1. If we put ¢=1 in (H7) then Condition (H7) coincides with Condition (11)
of Davies [3]. Thus, Corollary 4.1 contains Theorem 2 of Davies [3] in a special case.

We shall give an example of {4»} satisfying all conditions of Corollary 4. 1.

ExamrLE 4. 1.
Let an=an—1 with 0<e <1 and A,=n"7/# with 0 < r<1. Then Conditions (H1)~
(H5) and (H7) are fulfilled if we choose 0 < < min (271, @) for fixed a with 0 < a < 1.

Now, we consider a problem of estimating a mode ¢ of the continuous p.d.f. f(x) defined
by f(0)= }cna}ex f(x). We assume that 6 is unique. If in Theorem 4.1 all conditions on K (%)
€R?

are fulfilled, there exists a random vector 6, (called the sample mode) which satisfies
4.17) Jn(0rn)=max fn(x) for each #,
XeRp

where fa(x) is defined by (1. 3).
The following theorem is concerned with strong consistency of the sample mode .

THEOREM 4. 2. If all conditions of Theorem 4.1 or Corollary 4.1 are satisfied, then
10a—0]—> 0  wpl.

Proor. Since the p.d.f. f(x) is uniformly continuous on R? and the mode @ is unique,
for arbitrary ¢ >> 0 there exists =) >> 0 such that

4.18 l#—6| = e implies |f(x)—f(0)|= 7.
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It is easily verified from (4.17) that
4.19 | f(02)—F(0)| =< 2 sup| fu(x)—f(x)] for each .
Let any € > dr >’5> 0 be fixed. By (4.18) and (4.19) we have
P{sup [|0m—0| > 3z}
mzn _
=< P{sup|fm—0]>0d}
mzn -
= P{sgp sup | fm()—f(x)| = 7(0)/2} for each #,
mz=n
which implies that as dx 1 ¢
P{sup [|0m—0| = ¢}
mz=n -
= P{Ség sup | fm(x)—f(x)| = 7(38)/2} for each #n.
x

By Theorem 4.1 or Corollary 4.1 the second term in the above inequality converges to
zero as # tends to infinity. Thus
n
P{sup |O0mn—0| =c}—0 for each ¢ >0,
mzn

n
which implies that [|#,—@8||—> 0 w.p.1. This complets the proof.

We close this section with a presentation of sufficient conditions on K(x) which are re-
quired in Theorem 4. 1.

ProrosiTION 4.1. Let Kj(x) for 1 =< j < p be bounded, integrable, continuous functions
on the real line R satisfying

(4. 20) |2|#| Ki(x)| —>0  as |x]—>c

and

S K i(®dz=1.
R
Suppose that for each j=1, ..., p

@21 {|kiwldu< oo,
R

where |ki(u)|= S eivx K; (x)dx| is non-decreasing for u <0 and non-incereasing for u = 0.
R

Let K ()= ﬁlK i(x5) for x=(x1, ..., xp). Then K(x) satisfies all conditions of Theorem 4. 1.
j=

Proor. It is easy to see that K(x) is a bounded, integrable, continuous function on R?
satisfying (K1). We shall verify Condition (K2). For x=(xy,..., xp) let (x) be the small-
est integer j such that max {|x:i|; 1<i=<p}=|xj|. Then we get

(4.22) I x)|2 < p| Xicxy |2
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»
Let C=max {1l sug)e |Ki(»)|;1=<qg=p}. By the boundedness of K;(y)’s, C is finite. It

i=1ye
i#q

follows from (4. 22) that

(4.23) 2112 | K(x)| < pP/2C| %y | P | Ky (Ficay) |-
Thus, by (4. 20) and (4. 23) we have Condition (K2), since |%j)|— o as [ %|—> c by (4. 22).
From (4. 21) and the fact that

@20 k@)= 1 k)] for t=t..., 1)

it holds that S | k(¢)| dt< o, that is, Condition (K3) holds. Let s=(s1,...,sp) and t=(fy,...,
tp) in a ray R(x) for u+0& R? with |s||<|¢]| be fixed. Then we can write s and ¢ as s=q;u
and t=gqu with 0< ¢, < ¢, respectively. Hence, for each j=1,...,p we get |k;(sj)|
=|k;(t;)| by the property of |k;(»)|. Thus by (4.24) we have |k(s)|=|k(?)|, that is, |k (#)|
is non-increasing on the ray R(x). This completes the proof.

ExaMPLE 4. 2.
The following functions satisfy all conditions of Proposition 4.1: For x=(x1,..., %)

(i) K(x)=2-? exp(—}g‘_.llle) forp=1
=
(ii) K@x)=@2r)~?2exp(—|x]2/2) forp=1
(iii) Kx)=>1/m)(1+4x2)"1 for p=1
Gv) K(x)=@1/2r) (sin (x/2)/(x/2))? for p=1.
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