On a type I factor direct summand of a W^* -tensor product

By

Tadasi Huruya*

(Received October 31, 1979)

As pointed out by A. Wulfsohn in Zbl. 372 #46061, the argument of the theorem of [3] is incomplete. We give a correct proof (Theorem 5) as a consequence of a characterization of a type I factor direct summand of a W^* -tensor product of two W^* -algebras. The author wishes to take this opportunity to deeply thank Professor A. Wulfsohn for his useful suggestions.

1. Tensor products of abelian W*-algebras

For a locally compact Hausdorff space X with a Radon measure m let $L^{\infty}(X, m)$ be the algebra of all essentially bounded measurable functions on X, and let $L^2(X, m)$ be the Hilbert space of all measurable square integrable functions on X. Each function $f \in L^{\infty}(X, m)$ gives rise to a multiplication operator $\pi(f) \in B(L^2(X, m))$, defined by $(\pi(f)g)(s) = f(s)g(s)(g \in L^2(X, m), s \in X)$. We may identify $f \in L^{\infty}(X, m)$ with $\pi(f)$, and $L^{\infty}(X, m)$ with $\pi(L^{\infty}(X, m))$ [1, I, §7, Théorème 2].

Let X and Y be compact Hausdorff spaces with Radon measures m and n respectively. Then we have canonically $L^2(X \times Y, m \otimes n) = L^2(X, m) \otimes L^2(Y, n)$, the Hilbert space tensor product. In this situation, we have the following two lemmas.

LEMMA 1. Let $L^{\infty}(X, m) \otimes L^{\infty}(Y, n)$ be the W*-tensor product of $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$. n). Then $L^{\infty}(X \times Y, m \otimes n) = L^{\infty}(X, m) \otimes L^{\infty}(Y, n)$.

PROOF. For each $f \in B(L^2(X, m))_*$, the predual of $B(L^2(X, m))$, let $R_f : B(L^2(X, m))$ $\overline{\otimes} B(L^2(Y, n)) \longrightarrow B(L^2(Y, n))$ be a unique σ -weakly continuous linear map satisfying $R_f(a \otimes b) = \langle f, a \rangle b(a \in B(L^2(X, m)), b \in B(L^2(Y, n)))$. Let $g \in L^{\infty}(X \times Y, m \otimes n)$ with $g \geq 0$. For a vector state $f : a \longrightarrow (a \xi | \xi) (a \in B(L^2(X, m)), \xi \in L^2(X, m))$, we have $R_f(g) \in L^{\infty}(Y, n)$. Then for a normal state $f, R_f(g) \in L^{\infty}(Y, n)$, and for $f \in B(L^2(X, m))_*, R_f(g) \in L^{\infty}(Y, n)$. Hence $R_f(g) \in L^{\infty}(Y, n)$ for any $g \in L^{\infty}(X \times Y, m \otimes n)$ and $f \in B(L^2(X, m))_*$. Similarly, for each $f \in B(L^2(Y, n))_*$ let $L_f : B(L^2(X, m)) \otimes B(L^2(Y, n)) \longrightarrow B(L^2(X, m))$ be a unique σ -weakly continuous linear map satisfying $L_f(a \otimes b) = \langle f, b \rangle a (a \in B(L^2(X, m)), b \in B(L^2(Y, n)))$. Let $g \in L^{\infty}(X \times Y, m \otimes n)$. For each $f \in B(L^2(Y, n))_*$ we have $L_f(g) \in D(X \otimes D) = \langle f, h \rangle a = \langle f,$

^{*} Niigata University

 $L^{\infty}(X, m)$. Since $L^{\infty}(X \times Y, m \otimes n) \supseteq L^{\infty}(X, m) \overline{\otimes} L^{\infty}(Y, n)$, by [5, Theorem 2. 1] $L^{\infty}(X \times Y, m \otimes n) = L^{\infty}(X, m) \overline{\otimes} L^{\infty}(Y, n)$.

LEMMA 2. If p is a minimal projection in $L^{\infty}(X, m) \otimes L^{\infty}(Y, n)$, then there are minimal projections p_1 and p_2 in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$ respectively such that $p=p_1 \otimes p_2$.

PROOF. Let $N_1 = \{s \in X, m(\{s\}) \neq 0\}, N_2 = \{t \in Y, n(\{t\}) \neq 0\}$. Then N_1 and N_2 are at most countable. Let m_1 be the atomic part of m, defined by $m_1(E) = m(E \cap N_1)$ for each measurable set $E \subseteq X$, and put $m_2 = m - m_1$. Then $L^{\infty}(X, m) = L^{\infty}(X, m_1) \oplus L^{\infty}(X, m_2)$. Similarly, let n_1 be the atomic part of n, defined by $n_1(F) = n(F \cap N_2)$ for each measurable set $F \subseteq Y$, and put $n_2 = n - n_1$. Then $L^{\infty}(Y, n) = L^{\infty}(Y, n_1) \oplus L^{\infty}(Y, n_2)$. Since m_2 satisfies $m_2({s})=0$ for each $s \in X$, $m_2 \otimes n$ also satisfies $m_2 \otimes n({s \times t})=0$ for each $s \times t \in X \times Y$. Hence for each $\varepsilon > 0$ and $s \times t \in X \times Y$ there is a neighborhood $U(s \times t)$ of $s \times t$ such that m_2 $\otimes n(U(s \times t)) \leq \epsilon$. Then there is a finite open covering $\{U_i\}_{i=1}^n$ of $X \times Y$ with $m_2 \otimes n(U_i)$ $< \varepsilon$ $(i=1,\ldots,n)$. If q is a minimal projection in $L^{\infty}(X, m_2) \otimes L^{\infty}(Y, n)$, by Lemma 1 we have $q \in L^{\infty}(X \times Y, m_2 \otimes n)$. Hence there is a measurable subset E of $X \times Y$ such that $\pi(\chi_E) = q$, where $\pi(\chi_E)$ is the multiplication operator of the characteristic function χ_E of E. Then there is a subset U in the above covering such that $\pi(\chi_{E \cap U}) \neq 0$. Since q is a minimal projection, $\pi(\chi_E) = q \leq \pi(\chi_E \cap U)$. Hence $m_2 \otimes n(E) \leq m_2 \otimes n(E \cap U) \leq m_2 \otimes n(U) \leq \varepsilon$. Since ε is arbitrary, $m_2 \otimes n(E) = 0$, and so $\pi(\chi_E) = q = 0$. This is a contradiction. Thus there is no minimal projection in $L^{\infty}(X, m_2) \otimes L^{\infty}(Y, n)$. Similarly, there is no minimal projection in $L^{\infty}(X, m_1) \otimes L^{\infty}(Y, n_2)$. Consequently, we have $p \in L^{\infty}(X, m_1) \otimes L^{\infty}(Y, n_1)$.

The algebra $L^{\infty}(X, m_1) \otimes L^{\infty}(Y, n_1)$ is *-isomorphic to the algebra $L^{\infty}(N_1 \times N_2)$ of all bounded functions on $N_1 \times N_2$. Since each minimal projection in $L^{\infty}(N_1 \times N_2)$ is the characteristic function of a point of $N_1 \times N_2$, p can be written in the form: $p = p_1 \otimes p_2$, where p_1 and p_2 are minimal projections in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$. This completes the proof.

LEMMA 3. Let A and B be abelian W*-algebras. Let p be a minimal projection in the W*-tensor product $A \otimes B$. Then there are minimal projections p_1 and p_2 in A and B respectively such that $p=p_1 \otimes p_2$.

PROOF. There is a locally compact Hausdorff space X with a Radon measure m such that $\bigcup X_i = X, X_i \cap X_j = \phi$ for $i \neq j$, each X_i is compact and open, and $L^{\infty}(X, m)$ is *-isomorphic to A; there is a locally compact Hausdorff space Y with a Radon measure n such that $\bigcup Y_k = Y, Y_k \cap Y_j = \phi$ for $k \neq j$, each Y_k is compact and open, and $L^{\infty}(Y, n)$ is *-isomorphic to B [1, I, §7, 2-3]. Let m_i be the restriction of m to X_i and let n_k be the restriction of n to Y_k . Since $L^{\infty}(X, m) = \sum_i \bigoplus L^{\infty}(X_i, m_i)$ and $L^{\infty}(Y, n) = \sum_k \bigoplus L^{\infty}(Y_k, n_k)$, we have $L^{\infty}(X, m) \otimes L^{\infty}(Y, n) = \sum_{i,k} \bigoplus L^{\infty}(X_i, m_i) \otimes L^{\infty}(Y_k, n_k)$. Since p is a minimal projection, there is a W*-subalgebra $L^{\infty}(X_i, m_i) \otimes L^{\infty}(Y_k, n_k)$ which contains p. By Lemma 2 there are minimal projections p_1 and p_2 in $L^{\infty}(X_i, m_i)$ and $L^{\infty}(Y_k, n_k)$ such that $p = p_1 \otimes p_2$.

2. The main results

THEOREM 4. Let M and N be W*-algebras. If z is a central projection in $M \otimes N$ such that $(M \otimes N)_z$ is a type I factor. Then there are central projections p and q in M and N respectively such that $(M \otimes N)_z = M_p \otimes N_q$.

PROOF. By [4, Proposition 2. 2. 10] M and N can be written as follows: $M = M_d \oplus M_c$, $N = N_d \oplus N_c$, where M_d , N_d are of type I and M_c , N_c are continuous. By [4, Theorem 2. 6. 6] $M_d \otimes N_d$ is the type I direct summand of $M \otimes N$. Hence $z \in M_d \otimes N_d$, and $(M \otimes N)_z = (M_d \otimes N_d)_z$; so we may assume that M and N are of type I.

By [4, Theorems 2. 3. 2 and 2. 3. 3] M can be written as follows: $M = \Sigma_i \oplus A_i \otimes L(H_i)$, where A_i is an abelian W^* -algebra and H_i is an *i*-dimensional Hilbert space. Similarly, we have $N = \Sigma_j \oplus B_j \otimes L(K_j)$, where B_j is an abelian W^* -algebra and K_j is a *j*-dimensional Hilbert space. Then there is a canonical *-isomorphism of $M \otimes N$ onto $\Sigma_{i,j} \oplus (A_i \otimes L(H_i)) \otimes (B_j \otimes L(K_j))$. Since each $(A_i \otimes L(H_i)) \otimes (B_j \otimes L(K_j))$ is *-isomorphic to $(A_i \otimes B_j) \otimes L(H_i \otimes K_j)$, there is a *-isomorphism of $M \otimes N$ onto $\Sigma_{i,j} \oplus (A_i \otimes B_j) \otimes L(H_i \otimes K_j)$. Hence there is a canonical *-isomorphism Φ of the center of $M \otimes N$ onto $\Sigma_{i,j} \oplus A_i \otimes B_j$.

Since $(M \otimes N)_z$ is a factor, there is a pair (i, j) of cardinal numbers such that $\Phi(z) \in A_i \otimes B_j$ and $\Phi(z)$ is a minimal projection in $A_i \otimes B_j$. By Lemma 3 there are minimal projections $p_i \in A_i$ and $q_j \in B_j$ such that $\Phi(z) = p_i \otimes q_j$. Hence there are central projections p and q in M and N such that $z = p \otimes q$, so that $(M \otimes N)_z = M_p \otimes N_q$.

Let A and B be C*-algebras and let A** and B** be second duals of A and B. The spatial C*-tensor product $A \otimes_{\alpha} B$ is canonically embedded in $A^{**} \otimes B^{**}$ by [6, Théorème 1].

THEOREM 5. In the above situation, let π be an irreducible representation of $A \otimes_{\alpha} B$ on a Hilbert space H. Suppose that a state $x \longrightarrow (\pi(x)\xi|\xi)$ ($\xi \in H$) on $A \otimes_{\alpha} B$ has a normal extension g to $A^{**} \otimes B^{**}$. Then there are representations π_1 and π_2 of A and B respectively such that π is equivalent to $\pi_1 \otimes \pi_2$.

PROOF. Let (ρ, η) be the representation associated with g. Since $\rho(A \otimes_{\alpha} B)\eta$ is dense in the representation space of ρ , and $\|\rho(x)\eta\| = \|\pi(x)\xi\|$ for $x \in A \otimes_{\alpha} B$, we may assume that ρ is a normal extension of π to $A^{**} \otimes \overline{B}^{**}$ on H and $\eta = \xi$. Hence ρ is irreducible. Then there is a central projection z in $A^{**} \otimes \overline{B}^{**}$ such that $(A^{**} \otimes \overline{B}^{**})_z$ is *-isomorphic to $\rho(A^{**} \otimes \overline{B}^{**})$, so that $(A^{**} \otimes \overline{B}^{**})_z$ is a type I factor. By Theorem 4 there are central projections p and q in A^{**} and B^{**} such that $(A^{**} \otimes \overline{B}^{**})_z = A^{**}p \otimes \overline{B}^{**}q$. By [4, Theorem 2. 6. 6] factors $A^{**}p$ and $B^{**}q$ are of type I. Let $\overline{\pi}$ be the restriction of π to A ([2, p. 9, Definiton 3]). Then the weak closure of $\overline{\pi}(A)$ is $\rho(A^{**} \otimes I)$, and is *-isomorphic to $A^{**}p$. Hence $\overline{\pi}$ is a type I factor representation. By [2, p. 7, Proposition 2] there are representations π_1 and π_2 of A and B respectively such that $\pi \simeq \pi_1 \otimes \pi_2$.

EXAMPLE 6. Let A and B be UHF algebras. Under the embedding $A \otimes_{\alpha} B \subseteq A^{**} \otimes B^{**}$,

the canonical injection Ψ of $A \otimes_{a} B$ into $(A \otimes_{a} B)^{**}$ has no normal extension to $A^{**} \otimes B^{**}$.

PROOF. By [2, p. 20, Proposition 7] the spatial C^* -tensor product $A \otimes_{\alpha} B$ is a unique C^* -tensor product of A and B. Then, by [2, p. 32, Theorem 6] and Theorem 5, there is a pure state f on $A \otimes_{\alpha} B$ which has no normal extension to $A^{**} \otimes B^{**}$.

Suppose that Ψ has a normal extension $\overline{\Psi}$ to $A^{**} \otimes B^{**}$. Since f may be regarded as an element \overline{f} of the predual of $(A \otimes_{\alpha} B)^{**}$, we have

$$f(\mathbf{x}) = \overline{f}(\overline{\Psi}(\mathbf{x})) \ (\mathbf{x} \in A \otimes_{\alpha} B).$$

Hence f has a normal extension to $A^{**} \overline{\otimes} B^{**}$. This is a contradiction, and completes the proof.

References

- [1] J. DIXMIER: Les algèbres d'opérateurs dans l'espeace hilbertien, 2^e éd., Gauthier-Villars, Paris, 1969.
- [2] A. GUICHARDET: Tensor products of C*-algebras, Part I, Aarhus University Lecture Note Series No. 12, 1969.
- [3] T. HURUYA: The second dual of a tensor product of C*-algebras II, Sci. Rep. Niigata Univ. Ser. A, 11 (1974), 21-23.
- [4] S. SAKAI: C*-algebras and W*-algebras, Springer-Verlag, Berlin, 1971.
- [5] J. TOMIYAMA: Tensor products and projections of norm one in von Neumann algebras, Seminar Notes, University of Copenhagen, 1970.
- [6] A. WULFSOHN: Produit tensoriel de C*-algèbres, Bull. Sci. Math., 87 (1963), 13-27.