On a type I factor direct summand of a W^{*}-tensor product

By
Tadasi Huruya*

(Received October 31, 1979)

As pointed out by A. Wulfsohn in Zbl. 372 \#46061, the argument of the theorem of [3] is incomplete. We give a correct proof (Theorem 5) as a consequence of a characterization of a type I factor direct summand of a W^{*}-tensor product of two W^{*}-algebras. The author wishes to take this opportunity to deeply thank Professor A. Wulfsohn for his useful suggestions.

1. Tensor products of abelian W^{*}-algebras

For a locally compact Hausdorff space X with a Radon measure m let $L^{\infty}(X, m)$ be the algebra of all essentially bounded measurable functions on X, and let $L^{2}(X, m)$ be the Hilbert space of all measurable square integrable functions on X. Each function $f \in L^{\infty}$ (X, m) gives rise to a multiplication operator $\pi(f) \in B\left(L^{2}(X, m)\right.$), defined by $(\pi(f) g)(s)$ $=f(s) g(s)\left(g \in L^{2}(X, m), s \in X\right)$. We may identify $f \in L^{\infty}(X, m)$ with $\pi(f)$, and $L^{\infty}(X$, m) with $\pi\left(L^{\infty}(X, m)\right)$ [1, I, §7, Théorème 2].

Let X and Y be compact Hausdorff spaces with Radon measures m and n respectively. Then we have canonically $L^{2}(X \times Y, m \otimes n)=L^{2}(X, m) \otimes L^{2}(Y, n)$, the Hilbert space tensor product. In this situation, we have the following two lemmas.

Lemma 1. Let $L^{\infty}(X, m) \bar{\otimes} L^{\infty}(Y, n)$ be the W^{*}-tensor product of $L^{\infty}(X, m)$ and $L^{\infty}(Y$, n). Then $L^{\infty}(X \times Y, m \otimes n)=L^{\infty}(X, m) \bar{\otimes} L^{\infty}(Y, n)$.

Proof. For each $f \in B\left(L^{2}(X, m)\right) *$, the predual of $B\left(L^{2}(X, m)\right)$, let $R_{f}: B\left(L^{2}(X, m)\right)$ $\bar{\otimes} B\left(L^{2}(Y, n)\right) \longrightarrow B\left(L^{2}(Y, n)\right)$ be a unique σ-weakly continuous linear map satisfying $R_{f}(a \otimes b)=<f, a>b\left(a \in B\left(L^{2}(X, m)\right), b \in B\left(L^{2}(Y, n)\right)\right)$. Let $g \in L^{\infty}(X \times Y, m \otimes n)$ with $g \geq 0$. For a vector state $f: a \longrightarrow(a \xi \mid \xi)\left(a \in B\left(L^{2}(X, m)\right), \xi \in L^{2}(X, m)\right)$, we have $R_{f}(g)$ $\in L^{\infty}(Y, n)$. Then for a normal state $f, R_{f}(g) \in L^{\infty}(Y, n)$, and for $f \in B\left(L^{2}(X, m)\right)_{*}, R_{f}(g)$ $\in L^{\infty}(Y, n)$. Hence $R_{f}(g) \in L^{\infty}(Y, n)$ for any $g \in L^{\infty}(X \times Y, m \otimes n)$ and $f \in B\left(L^{2}(X, m)\right)_{*}$. Similarly, for each $f \in B\left(L^{2}(Y, n)\right)_{*}$ let $L_{f}: B\left(L^{2}(X, m)\right) \bar{\otimes} B\left(L^{2}(Y, n)\right) \longrightarrow B\left(L^{2}(X, m)\right)$ be a unique σ-weakly continuous linear map satisfying $L_{f}(a \otimes b)=<f, b>a\left(a \in B\left(L^{2}(X, m)\right.\right.$, $\left.b \in B\left(L^{2}(Y, n)\right)\right)$. Let $g \in L^{\infty}(X \times Y, m \otimes n)$. For each $f \in B\left(L^{2}(Y, n)\right)_{*}$ we have $L_{f}(g) \in$

[^0]$L^{\infty}(X, m)$. Since $L^{\infty}(X \times Y, m \otimes n) \supseteq L^{\infty}(X, m) \bar{\otimes} L^{\infty}(Y, n)$, by [5, Theorem 2.1] $L^{\infty}(X \times Y$, $m \otimes n)=L^{\infty}(X, m) \otimes L^{\infty}(Y, n)$.

Lemma 2. If p is a minimal projection in $L^{\infty}(X, m) \bar{\otimes} L^{\infty}(Y, n)$, then there are minimal projections p_{1} and p_{2} in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$ respectively such that $p=p_{1} \otimes p_{2}$.

Proof. Let $N_{1}=\{s \in X, m(\{s\}) \neq 0\}, N_{2}=\{t \in Y, n(\{t\}) \neq 0\}$. Then N_{1} and N_{2} are at most countable. Let m_{1} be the atomic part of m, defined by $m_{1}(E)=m\left(E \cap N_{1}\right)$ for each measurable set $E \subseteq X$, and put $m_{2}=m-m_{1}$. Then $L^{\infty}(X, m)=L^{\infty}\left(X, m_{1}\right) \oplus L^{\infty}\left(X, m_{2}\right)$. Similarly, let n_{1} be the atomic part of n, defined by $n_{1}(F)=n\left(F \cap N_{2}\right)$ for each measurable set $F \subseteq Y$, and put $n_{2}=n-n_{1}$. Then $L^{\infty}(Y, n)=L^{\infty}\left(Y, n_{1}\right) \oplus L^{\infty}\left(Y, n_{2}\right)$. Since m_{2} satisfies $m_{2}(\{s\})=0$ for each $s \in X, m_{2} \otimes n$ also satisfies $m_{2} \otimes n(\{s \times t\})=0$ for each $s \times t \in X \times Y$. Hence for each $\varepsilon>0$ and $s \times t \in X \times Y$ there is a neighborhood $U(s \times t)$ of $s \times t$ such that m_{2} $\otimes n(U(s \times t))<\varepsilon$. Then there is a finite open covering $\left\{U_{i}\right\}_{i=1}^{n}$ of $X \times Y$ with $m_{2} \otimes n\left(U_{i}\right)$ $<\varepsilon(i=1, \ldots, n)$. If q is a miminal projection in $L^{\infty}\left(X, m_{2}\right) \otimes L^{\infty}(Y, n)$, by Lemma 1 we have $q \in L^{\infty}\left(X \times Y, m_{2} \otimes n\right)$. Hence there is a measurable subset E of $X \times Y$ such that $\pi\left(\chi_{E}\right)=q$, where $\pi\left(\chi_{E}\right)$ is the multiplication operator of the characteristic function χ_{E} of E. Then there is a subset U in the above covering such that $\pi(\chi E \cap U) \neq 0$. Since q is a minimal projection, $\pi(\chi E)=q \leq \pi\left(\chi_{E \cap U}\right)$. Hence $m_{2} \otimes n(E) \leq m_{2} \otimes n(E \cap U) \leq m_{2} \otimes n(U)<\varepsilon$. Since ε is arbitrary, $m_{2} \otimes n(E)=0$, and so $\pi(\chi E)=q=0$. This is a contradiction. Thus there is no minimal projection in $L^{\infty}\left(X, m_{2}\right) \bar{\otimes} L^{\infty}(Y, n)$. Similarly, there is no minimal projection in $L^{\infty}\left(X, m_{1}\right) \bar{\otimes} L^{\infty}\left(Y, n_{2}\right)$. Consequently, we have $p \in L^{\infty}\left(X, m_{1}\right) \bar{\otimes} L^{\infty}\left(Y, n_{1}\right)$.

The algebra $L^{\infty}\left(X, m_{1}\right) \bar{\otimes} L^{\infty}\left(Y, n_{1}\right)$ is $*$-isomorphic to the algebra $L^{\infty}\left(N_{1} \times N_{2}\right)$ of all bounded functions on $N_{1} \times N_{2}$. Since each minimal projection in $L^{\infty}\left(N_{1} \times N_{2}\right)$ is the characteristic function of a point of $N_{1} \times N_{2}, p$ can be written in the form: $p=p_{1} \otimes p_{2}$, where p_{1} and p_{2} are minimal projections in $L^{\infty}(X, m)$ and $L^{\infty}(Y, n)$. This completes the proof.

Lemma 3. Let A and B be abelian W^{*}-algebras. Let p be a minimal projection in the W^{*}-tensor product $A \bar{\otimes} B$. Then there are minimal projections p_{1} and p_{2} in A and B respectively such that $p=p_{1} \otimes p_{2}$.

Proof. There is a locally compact Hausdorff space X with a Radon measure m such that $\cup X_{i}=X, X_{i} \cap X_{j}=\phi$ for $i \neq i$, each X_{i} is compact and open, and $L^{\infty}(X, m)$ is $*$-isomorphic to A; there is a locally compact Hausdorff space Y with a Radon measure n such that $\cup Y_{k}=Y, Y_{k} \cap Y_{j}=\phi$ for $k \neq j$, each Y_{k} is compact and open, and $L^{\infty}(Y, n)$ is $*$-isomorphic to $B[1, \mathrm{I}, \S 7,2-3]$. Let m_{i} be the restriction of m to X_{i} and let n_{k} be the restriction of n to Y_{k}. Since $L^{\infty}(X, m)=\Sigma_{i} \oplus L^{\infty}\left(X_{i}, m_{i}\right)$ and $L^{\infty}(Y, n)=\Sigma_{k} \oplus L^{\infty}\left(Y_{k}, n_{k}\right)$, we have $L^{\infty}(X, m) \bar{\otimes} L^{\infty}(Y, n)=\Sigma_{i, k} \oplus L^{\infty}\left(X_{i}, m_{i}\right) \bar{\otimes} L^{\infty}\left(Y_{k}, n_{k}\right)$. Since p is a minimal projection, there is a W^{*}-subalgebra $L^{\infty}\left(X_{i}, m_{i}\right) \bar{\otimes} L^{\infty}\left(Y_{k}, n_{k}\right)$ which contains p. By Lemma 2 there are minimal projections p_{1} and p_{2} in $L^{\infty}\left(X_{i}, m_{i}\right)$ and $L^{\infty}\left(Y_{k}, n_{k}\right)$ such that $p=p_{1} \otimes p_{2}$.

2. The main results

Theorem 4. Let M and N be W^{*}-algebras. If z is a central projection in $M \bar{\otimes} N$ such that $(M \mathbb{\otimes} N)_{z}$ is a type I factor. Then there are central projections p and q in M and N respectively such that $(M \bar{\otimes} N)_{z}=M_{p} \bar{\otimes} N_{q}$.

Proof. By [4, Proposition 2.2.10] M and N can be written as follows: $M=M_{d} \oplus$ $M_{c}, N=N_{d} \oplus N_{c}$, where M_{d}, N_{d} are of type I and M_{c}, N_{c} are continuous. By [4, Theorem 2.6.6] $M_{d} \bar{\otimes} N_{d}$ is the type I direct summand of $M \bar{\otimes} N$. Hence $\boldsymbol{z} \in M_{d} \bar{\otimes} N_{d}$, and $(M \bar{\otimes} N)_{z}=\left(M_{d} \bar{\otimes} N_{d}\right)_{z}$; so we may assume that M and N are of type I.

By [4, Theorems 2. 3. 2 and 2.3.3] M can be written as follows: $M=\Sigma_{i} \oplus A_{i} \bar{\otimes} L\left(H_{i}\right)$, where A_{i} is an abelian W^{*}-algebra and H_{i} is an i-dimensional Hilbert space. Similarly, we have $N=\Sigma_{j} \oplus B_{j} \bar{\otimes} L\left(K_{j}\right)$, where B_{j} is an abelian W^{*}-algebra and K_{j} is a j-dimensional Hilbert space. Then there is a canonical ${ }^{*}$-isomorphism of $M \bar{\otimes} N$ onto $\Sigma_{i, j} \oplus\left(A_{i}\right.$ $\left.\bar{\otimes} L\left(H_{i}\right)\right) \bar{\otimes}\left(B_{j} \bar{\otimes} L\left(K_{j}\right)\right) . \quad$ Since each $\left(A_{i} \bar{\otimes} L\left(H_{i}\right)\right) \bar{\otimes}\left(B_{j} \bar{\otimes} L\left(K_{j}\right)\right)$ is -isomorphic to $\left(A_{i} \bar{\otimes}\right.$ $\left.B_{j}\right) \bar{\otimes} L\left(H_{i} \otimes K_{j}\right)$, there is a $*$-isomorphism of $M \bar{\otimes} N$ onto $\Sigma_{i, j} \oplus\left(A_{i} \bar{\otimes} B_{j}\right) \bar{\otimes} L\left(H_{i} \otimes K_{j}\right)$. Hence there is a canonical $*$-isomorphism Φ of the center of $M \bar{\otimes} N$ onto $\Sigma_{i, j} \oplus A_{i} \bar{\otimes} B_{j}$.

Since $(M \bar{\otimes} N)_{z}$ is a factor, there is a pair (i, j) of cardinal numbers such that $\Phi(z) \in$ $A_{i} \bar{\otimes} B_{j}$ and $\Phi(z)$ is a minimal projection in $A_{i} \bar{\otimes} B_{j}$. By Lemma 3 there are minimal projections $p_{i} \in A_{i}$ and $q_{j} \in B_{j}$ such that $\Phi(z)=p_{i} \otimes q_{j}$. Hence there are central projections p and q in M and N such that $z=p \otimes q$, so that $(M \bar{\otimes} N)_{z}=M_{p} \bar{\otimes} N_{q}$.

Let A and B be C^{*}-algebras and let $A^{* *}$ and $B^{* *}$ be second duals of A and B. The spatial $C *$-tensor product $A \otimes_{\alpha} B$ is canonically embedded in $A^{* *} \bar{\otimes} B^{* *}$ by [6, Théorème 1].

Theorem 5. In the above situation, let π be an irreducible representation of $A \otimes_{\alpha} B$ on a Hilbert space H. Suppose that a state $x \longrightarrow(\pi(x) \xi \mid \xi)(\xi \in H)$ on $A \otimes_{a} B$ has a normal extension g to $A^{* *} \bar{\otimes} B^{* *}$. Then there are representations π_{1} and π_{2} of A and B respectively such that π is equivalent to $\pi_{1} \otimes \pi_{2}$.

Proof. Let (ρ, η) be the representation associated with g . Since $\rho\left(A \otimes_{\alpha} B\right) \eta$ is dense in the representation space of ρ, and $\|\rho(x) \eta\|=\|\pi(x) \xi\|$ for $x \in A \otimes_{\alpha} B$, we may assume that ρ is a normal extension of π to $A^{* *} \bar{\otimes} B^{* *}$ on H and $\eta=\xi$. Hence ρ is irreducible. Then there is a central projection z in $A^{* *} \bar{\otimes} B^{* *}$ such that $\left(A^{* *} \bar{\otimes} B^{* *}\right)_{z}$ is ${ }^{*}$-isomorphic to $\rho\left(A^{* *} \bar{\otimes} B^{* *}\right)$, so that $\left(A^{* *} \bar{\otimes} B^{* *}\right)_{z}$ is a type I factor. By Theorem 4 there are central projections p and q in $A * *$ and $B^{* *}$ such that $\left(A^{* *} \bar{\otimes} B^{* *}\right)_{z}=A *_{p} \bar{\otimes} B^{* *}$. By [4, Theorem 2.6.6] factors $A^{* *}{ }_{p}$ and $B^{* *}{ }_{q}$ are of type I. Let $\widetilde{\pi}$ be the restriction of π to A ([2, p. 9 , Definiton 3]). Then the weak closure of $\widetilde{\pi}(A)$ is $\rho(A * * \otimes I)$, and is $*$-isomorphic to $\mathrm{A}^{* *}{ }_{p}$. Hence $\tilde{\pi}$ is a type I factor representation. By [2, p. 7, Proposition 2] there are representations π_{1} and π_{2} of A and B respectively such that $\pi \simeq \pi_{1} \otimes \pi_{2}$.

Example 6. Let A and B be UHF algebras. Under the embedding $A \otimes_{\alpha} B \subseteq A^{* *} \bar{\otimes} B^{* *}$,
the canonical injection Ψ of $A \otimes_{\alpha} B$ into $\left(A \otimes_{\alpha} B\right)^{* *}$ has no normal extension to $A^{* *} \bar{\otimes} B^{* *}$.
Proof. By [2, p. 20, Proposition 7] the spatial $C *$-tensor product $A \otimes_{\alpha} B$ is a unique $C *$-tensor product of A and B. Then. by [2, p. 32, Theorem 6] and Theorem 5, there is a pure state f on $A \otimes_{\alpha} B$ which has no normal extension to $A * * \bar{\otimes} B^{* *}$.

Suppose that Ψ has a normal extension $\bar{\Psi}$ to $A^{* *} \bar{\otimes} B^{* *}$. Since f may be regarded as an element \bar{f} of the predual of $\left(A \otimes_{\alpha} B\right) * *$, we have

$$
f(x)=\bar{f}(\bar{\Psi}(x))\left(x \in A \otimes_{\alpha} B\right) .
$$

Hence f has a normal extension to $A^{* *} \bar{\otimes} B^{* *}$. This is a contradiction, and completes the proof.

References

[1] J. Dixmier: Les algèbres d'opérateurs dans l'espeace hilbertien, 2^{e} éd., Gauthier-Villars, Paris, 1969.
[2] A. Guichardet: Tensor products of C^{*}-algebras, Part I, Aarhus University Lecture Note Series No. 12, 1969.
[3] T. Huruya: The second dual of a tensor product of C^{*}-algebras II, Sci. Rep. Niigata Univ. Ser. A, 11 (1974), 21-23.
[4] S. Sakai: C^{*}-algebras and W^{*}-algebras, Springer-Verlag, Berlin, 1971.
[5] J. Tomiyama: Tensor products and projections of norm one in von Neumann algebras, Seminar Notes, University of Copenhagen, 1970.
[6] A. Wulfsohn: Produit tensoriel de C*-algèbres, Bull. Sci. Math., 87 (1963), 13-27.

[^0]: * Niigata University

