A note on compact connected transformation groups on spheres with codimension two principal orbit

By
Fuichi Uchida and Tsuyoshi Watabe

(Received October 31, 1978)

Introduction

In his paper [2] Bredon has classified compact connected transformation groups on spheres with codimension two principal orbit and only one type of singular orbit. In this paper we shall consider compact connected differentiable transformation groups on spheres with codimension two principal orbit and only one isolated singular orbit.

We shall prove the following two results;
Theorem A. Let $\varphi: G \times S^{n} \longrightarrow S^{n}(n \geqq 3)$ be a differentiable action of a compact connected Lie group G on sphere S^{n} with codimension two principal orbit and only one isolated singular orbit. Then φ has the same orbit structure as one the following actions, unless $n=11,23$.
I) Consider the group $U(2) . \quad$ Let $\bar{\psi}_{1}$ be the homomorphism $U(2) \longrightarrow S O(3)$ with the center of $U(2)$ as kernel and ψ_{1} the action of $U(2)$ on R^{3} obtained from the standard action of $S O(3)$ on R^{3} by $\bar{\psi}_{1}$. Let ψ_{2} be the canonical action of $U(2)$ on $R^{4}=C^{2}$. Thus we obtain an action φ_{1} of $U(2)$ on $S^{6} \subset R^{3} \times R^{4}$ defined by $\psi_{1} \times \psi_{2}$.
II) Consider the group $S p(2) \times S p(1)$. Let ψ_{1} be the action of $S p(2) \times S p(1)$ on H^{2} defined by

$$
\psi_{1}\left\{\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], e\right),\binom{x}{y}\right\}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{x}{y}\left[\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right]^{-1}
$$

and ψ_{2} the action of $S p(2) \times S p(1)$ on R^{5} defined by the natural homomorphism $S p(2) \times S p(1) \xrightarrow{\text { proj. }}$ $S p(2) \xrightarrow{\text { cov. }} S O(5) . \quad$ Thus we obtain an action $\varphi_{2}: S p(2) \times S p(1) \times S^{12} \longrightarrow S^{12}$. Note that the action obtained by restriction of $S p(2) \times S p(1)$ to $S p(2) \times T^{1}$ or $S p(2)$ has the same orbit structure as φ_{2}. We denote these actions by the same notation φ_{2}.
III) Consider the group Spin (9). Let $4: \operatorname{Spin}(9) \longrightarrow S O(16)$ be the spin representation and $\pi:$ Spin $(9) \longrightarrow S O(9)$ the canonical double covering. Then we obtain an action $\varphi_{3}:$ Spin (9) $\times S^{24} \longrightarrow S^{24}$.

Theorem B. The action of a compact connected Lie group Gon S^{n} with the same orbit structure as φ_{1} or φ_{2} is continuously equivalent to φ_{1} or φ_{2}, respectively.

In this paper, we shall consider only differentiable actions and use the following
notations;
Z; the ring of integers
Q; the field of rational numbers
R; the field of real numbers
C; the field of complex numbers
H; the field of quaternions
$A_{n}, B_{n}, C_{n}, D_{n}$; the classical groups of rank n
$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$; the exceptional groups
$G \sim G^{\prime}$; two groups G and G^{\prime} are locally isomorphic
G°; the identity component of the group G
$K \circ L$; the essentially direct product of K and L.

1. Preliminary results

Let $\varphi: G \times S^{n} \longrightarrow S^{n}$ be an action of a compact connected Lie group G on S^{n} with codimension two principal orbit G / H and with two types (L) and (K) of singular isotropy subgroups. Let G / L be non-isolated singular orbit and G / K the only one isolated singular orbit. It is well known that the orbit space is 2 -dimensional disk and dim G / K is strictly smaller than $\operatorname{dim} G / L$ ([1], chap. IV section 8). It is easy to see that S^{n} is equivariantly diffeomorphic to a G-manifold $M_{1} \cup M_{2}$, where M_{1} is a G equivariant l-disk bundle over $G / L, M_{2}$ is a G-equivariant k-disk bundle over G / K and $f: b M_{1} \longrightarrow b M_{2}$ is an equivariant diffeomorphism ($b M_{i}$ is the boundary of M_{i}). Note that $b M_{1}$ (respectively $b M_{2}$) is a sphere bundle over G / L (resp. over G / K). Since $2<l<k$, we see that the simply connectedness of S^{n} implies that G / K and G / L are both simply connected. In particular K and L are both connected.

We identify $b M_{1}$ and $b M_{2}$ by f and put $M_{0}=b M_{1}=b M_{2}$. From Mayer-Vietoris exact sequence, it follows that $H^{i}\left(M_{0} ; Z\right)$ is isomorphic to $H^{i}(G / L ; Z) \oplus H^{i}(G / K ; Z)$ for $0<i<$ $n-1$. In particular, the projections $p_{K} ; M_{0} \longrightarrow G / K$ and $p_{L}: M_{0} \longrightarrow G / L$ induce isomorphisms $p^{*} K$ and $p^{*}{ }_{L}$. Hence we have $M_{0} \sim{ }_{Z} G / K \times S^{k-1}$ and $M_{0} \sim \underset{Z}{\sim} G / L \times S^{l-1}$, where $X \underset{Z}{\sim}$ means that spaces X and Y have the same graded cohomology modules.

We have the following
Propositon 1. The Poincare polynomials of G / K and G / L are given by $P(G / K)=\left(1+t^{l-1}\right) \sum_{i=0}^{N} t^{(k+l-2)}$
$\left.P(G / L)=\left(1+t^{k-1}\right) \sum_{i=0}^{N} t^{i(k+l-2}\right)$, where $n-1=(N+1)(k+l-2)$.
Proof. We have already noted that
(1) $H^{i}(G / K ; Q) \oplus H^{i}(G / L ; Q) \cong H^{i}\left(M_{0} ; Q\right)$ for $0<i<n-1$
and
(2) $G / K \times S^{k-1} \underset{Q}{\sim} M_{0} \sim G / L \times S^{l-1}$.

Thus we have
(3) $P\left(M_{0}\right)=P(G / L)+P(G / K)+t^{n-1}-1$

$$
=P(G / K)\left(1+t^{k-1}\right)=P(G / L)\left(1+t^{l-1}\right)
$$

It follows from (1) and (3) that $P(G / K) t^{k-1}=P(G / L)+t^{n-1}-1$ and $P(G / L) t^{l-1}=P(G / K)+$ $t^{n-1}-1$ and hence we have
(4) $P(G / K)\left(1-t^{k+l-2}\right)=\left(1+t^{l-1}\right)\left(1-t^{n-1}\right)$
and
(5) $P(G / L)\left(1-t^{k+l-2}\right)=\left(1+t^{k-1}\right)\left(1-t^{n-1}\right)$.

Multiply both hand sides of (4) by $\sum_{i=0}^{N^{\prime}} t^{i(k+l-2)}$. Then we have $n-1 \equiv 0$ or $l-1(\bmod k+l$ $-2)$ and $n+l-2 \equiv 0$ or $l-1(\bmod k+l-2)$, because every terms of the left hand side is of positive degree $\bmod t^{\left(N^{\prime}+1\right)(k+l-2)}$. Assume $n-1 \equiv l-1$ and $n+l-2 \equiv 0(\bmod k+l-2)$. Then $2(l-1) \equiv 0(\bmod k+l-2)$, which is impossible, because $2<l<k \leqq n$. Hence we have $n-1 \equiv 0(\bmod k+l-2)$. Thus we have shown that there is an integer N such that $n-1=$ $(N+1)(k+l-2)$ and $P(G / K)=\left(1+t^{l-1)} \sum_{i=0}^{N} t^{i(k+l-2)}\right.$ and $P(G / L)=\left(1+t^{k-1}\right) \sum_{i=0}^{N} t^{i(k+l-2)}$. This completes the proof of the proposition.

The following propositions are useful for determination of the pair (G, K) of compact Lie groups with given Poincare polynomial $P(G / K)$.

Proposition 2. Let $U=U_{1} \times \cdots \times U_{t}$ be the product of compact simple Lie groups and V a semi-simple closed connected subgroup of U such that rank $V=\operatorname{rank} U-1$. Then we have
(1) $V=V_{1} \times \cdots \times V_{t}$, where V_{i} is a subgroup of U_{i}
or
(2) $V=\left(V_{1} \times \cdots \times V_{t}\right) \circ V_{0}$, where $V_{i} \subset U_{i}$, rank $V_{0}=1$, rank $V_{i}+\operatorname{rank} p_{i}\left(V_{0}\right)=\operatorname{rank} U_{i}$ for every i and the number of i such that $p_{i}\left(V_{0}\right) \neq 1$ is just two and p_{i} is the projection $U \longrightarrow$ U_{i}.

Proof. We may assume that there is a simple normal factor V_{0} of V such that the number n of i such that $p_{i}\left(V_{0}\right) \neq 1$ is greater than 1 . In fact, if there is no such V_{0}, then the case (1) must occur. Put $V=V^{\prime} \circ V_{0}$. Since V is semi-simple, we see that $p_{i}(V)=$ $p_{i}\left(V^{\prime}\right) \circ p_{i}\left(V_{0}\right)$ for any i. Putting $V_{i}=p_{i}\left(V^{\prime}\right)$, we have
(i) rank $V_{i}+\operatorname{rank} p_{i}\left(V_{0}\right) \leqq \operatorname{rank} U_{i}$ for every i
and hence
(ii) $\operatorname{rank}\left(V_{1} \times \cdots \times V_{t}\right)+n \operatorname{rank} V_{0} \leqq \operatorname{rank} U$.

Since

(iii) $\operatorname{rank} V^{\prime} \leqq \operatorname{rank}\left(V_{1} \times \cdots \times V_{t}\right)$
and
(iv) $\quad \operatorname{rank} U=\operatorname{rank} V+1=\operatorname{rank} V^{\prime}+\operatorname{rank} V_{0}+1$,
we have ($n-1$) rank $V_{0} \leqq 1$ and hence $n=2$ and rank $V_{0} \leqq 1$. Thus we have rank $V^{\prime}=$ $\operatorname{rank}\left(V_{1} \times \cdots \times V_{t}\right)$ and $V^{\prime}=V_{1}^{\prime} \times V_{t^{\prime}}$, where $V_{i}^{\prime}=V_{i}$, because $V_{i}=p_{i}\left(V^{\prime}\right)$. This completes
the proof of the proposition.
By the same method, we can prove the following
Proposition 3. Let $U=U_{1} \times \cdots \times U_{t}$ be as in Proposition 2 and $V=V^{\prime} \circ T^{1}$ be a closed connected subgroup of U, where V^{\prime} is semi-simple and T^{1} is a one-dimensional torus. Assume rank $U=r a n k V+1$. Then we have
(1) $V=V_{1} \times \cdots \times V_{t}$, where $V_{i} \subset U_{i}$ for every i
(2) $V=\left(V_{1} \times \cdots \times V_{t}\right) \circ T^{1}$, where V_{i} is semi-simple, the number of i such that $p_{i}\left(T^{1}\right) \neq 1$ is just 2 and rank $V_{i}+\operatorname{rank} p_{i}\left(T^{1}\right)=\operatorname{rank} U_{i}$ for every i,
or
(3) $V=\left(V_{1} \times \cdots \times V_{t}\right) \circ S$, where $V_{i} \subset U_{i}$, S is locally isomophic to $S p(1)$, the number of i such that $p_{i}(S) \neq 1$ is just 2 and rank $V_{i}+\operatorname{rank} p_{i}(S)=r a n k ~ U_{i}$ for every i.
Consider the action of K on S^{k-1} induced by the slice representation. Since G / K is the isolated singular orbit, this action has codimension one principal orbit K / H and two singular orbits K / L and K / L^{\prime}, where L and L^{\prime} are conjugate each other in G. Let W be the identity component of the ineffective kernel of the action of K on S^{k-1}.

From results in [5] ((5.2), (7.4) (11.9)), it follows that there are following cases;

Case 1. l is even.

Subcase 1. $K / L=K / L^{\prime}=S^{k-l}, K / H \approx K / L \times K / L^{\prime}$ and $H=L_{\cap} L^{\prime}$.
Subcase 2. K / W is a simple proup of rank $2, L / W \sim A_{1} \times T^{1}$ and $H / W \sim T^{1} \times T^{1}$, where \sim means "locally isomorphic"
Subcase 3. $K / W \sim C_{3}, L / W \sim C_{1} \times C_{2}$ and $H / W \sim C_{1} \times C_{1} \times C_{1}$.
Subcase 4. $K / W \sim F_{4}, L / W \sim B_{4}$ and $H / W \sim D_{4}$.

Case II. l is odd.

Subcase 1. $K / L=K / L^{\prime}=S^{k-l}, K / H \approx K / L \times K / L^{\prime}$ and $H=L_{\cap} L^{\prime}$.
Subcase 2. $l=3 . \quad P(K / H)=\left(1+t^{3}\right)(1+t), P(K / L)=1+t^{3}, P\left(K / L^{\prime}\right)=1+t$ and K / L^{\prime} is non-orientable.
Subcase 3. $l=3, P(K / H)=1+t^{3}, P\left(K / L^{\prime}\right)=P\left(K / L^{\prime}\right)=1$ and $K / L, K / L^{\prime}$ are non-orientable.
Subcase 4. $l=3, P(K / H)=\left(1+t^{3}\right)^{2}$ and $P\left(K / L^{\prime}\right)=P\left(K / L^{\prime}\right)=1+t^{3}$ and $K / L, K / L^{\prime}$ are non-orientable.
Since K and L are connected, K / L and K / L^{\prime} are orintable. Hence subcaces 2, 3 and 4 of case II cannot occur.

2. The case n even

In this section and in next section we assume that G acts almost effectively on S^{n}. Note that the ineffective kernel of the action is precisely (center G) $\cap H$, where H is a principal isotropy subgroup.

For the case n even we shall prove the following

Proposition 4. $\quad G / L=S^{k-1}, G / K=S^{l-1}$ and $n+1=k+l$.
Proof. It is clear that $X\left(S^{n}\right)=X(G / L)+X(G / K)$, where $X(\quad)$ is the Euler characteristic. Since $L \subsetneq K$, we see that $X(G / K)=2$ and $X(G / L)=0$. Hence we have $G / K \sim{ }_{z} S^{n-k}$ and $G / L \sim \widetilde{z}^{n-l}$ from Proposition 1. Since G / L and G / K are simply connected, G / L and G / K are standard spheres (see [3]). This completes the proof of Proposition.

It is clear that l is odd and k is even. Hence the action of K on S^{k-1} induced by the slice representation has the following orbit structure;
(i) K / L and K / L^{\prime} are ($k-l$)-spheres
(ii) $K / H=K / L \times K / L^{\prime}$
and
(iii) $H=L \cap L^{\prime}$.

Put $l=2 r+1$. Then we have $k=4 r$ and $n=6 r$.
Let V be the identity component of the ineffective kernel of the action of G on G / L by the left translation. Note that V is a normal subgroup of G and is contained in L. Since L^{\prime} is conjugate to L, V is contained in L^{\prime} and hence contained in $H=L_{\cap} L^{\prime}$. Thus V acts on G / H trivially by the left translation, which means that $V=1$, since the action of G on G / H by the left translation is almost effective. Thus we have obtained the following

Proposition 5. The natural action of G on G / L by the left translation is almost effective.

Remark. If the action of G on S^{n} is assumed to be effective, then the action of G on G / L by the left translation is also effective.

Since $G / L=S^{4 r-1}, G$ is one of the following; $D_{2 r}, A_{2 r-1} \times T^{1}, C_{r}, C_{r} \times T^{1}, C_{r} \times C_{1}, B_{4}(r=$ $4)$ and $B_{3}(r=2)$. Moreover, since G acts transitively on $S^{2 r}, G$ must be one of 1 he followings;

Case 1. $G=A_{1} \quad r=1$
Case 2. $\quad G=A_{1} \times A_{1} \quad r=1$
Case 3. $G=A_{1} \times T^{1} \quad r=1$
Case 4. $G=C_{2} \times C_{1}, C_{2} \times T^{1}, C_{2} \quad r=2$
Case 5. $G=B_{4} \quad r=4$.
We shall consider the above five cases separately.
Case 1. In this case, we have $\operatorname{dim} L=0$ and $\operatorname{dim} H=0$, which contradicts (ii).
Case 2. In this case, we have $K=T^{1} \times A_{1}$. Since $K / L=S^{1}$ and T^{1} is the only Lie group which acts on S^{1} transitively and effectively, L must be a normal subgroup of G, which contradicts to the almost effectivity of the action of G on G / L. Thus this case does not occur.

Case 3. In this case we have $G / L=S^{3}, G / K=S^{2}$ and $K / L=L / H=S^{1}$. It is clear that $K=T^{1} \times T^{1}, L=T^{1}$ and $H^{0}=1$. Suppose the action of G on S^{6} be effective and $G=U(2)$.

Then $K=U(1) \times U(1)$ and $L=U(1) \times 1$. It is easy to see that $L_{\cap} L^{\prime}=1$ for any subgroups L^{\prime} of K such that L^{\prime} is conjugate to L and $\operatorname{dim} L_{\cap} L^{\prime}=\operatorname{dim} H=0$, which implies that $H=1$.

Now we shall examine more precisely the action φ_{1} in Theorem in Introduction. The action ψ_{1} on R^{3} is transitive on S^{2} with isotropy subgroup a maximal torus $U(1) \times U(1)$ of $U(2)$. The action φ_{2} is transitive on S^{3} with isotropy subgroup $U(1)=U(1) \times 1$. Since $G_{(x, y)}=G_{x} \cap G_{y}$, we see that this is either finite or equal S^{1} when $x \neq 0$. However G is transitive on $\{0\} \times S^{3} \subset S^{6}$ with isotropy subgroup $U(1) \times U(1)$. Since some conjugate of $U(1)$ can be seen to have trivial intersection with $U(1) \times U(1)$ we see that the principal isotropy subgroup is trivial (This is due to the arguments in [1]). Thus we have shown that in case 2 the action has the same orbit structure as φ_{1}.

Case 4. In this case we have $G / L=S^{7}, G / K=S^{4}$ and $K / L=L / H=S^{3}$. Suppose $G=$ $S p(2) \times S p(1)$. Then we have $K=S p(1) \times S p(1) \times S p(1), L=S p(1) \circ S p(1)$ and $H=S p(1)$. Assume G act on S^{12} effectively. It follows from the remark below Proposition 5 that G must be $S p(2) \times S p(1) / Z_{2}$, where Z_{2} is the subgroup generated by ($-I d$., -1).

Now we shall examine the action φ_{2} in Theorem in Introduction more precisely. It is easily seen that there are points $x \in H^{2}$ and $y \in R^{5}$ such that $G_{x}=\left\{\left[\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \quad b\right] ; a\right.$, $b \in S p(1)\} \approx S p(1) \times S p(1)$ and $G_{y}=\left\{\left[\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), c\right] ; a, b, c \in S p(1)\right\}=S p(1) \times S p(1) \times S p(1)$. For the element $g=\sqrt{1}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right) \times 1 \in G$, we have $G_{\left(g_{x, y}\right)}=G_{g x} \cap G_{y}=S p(1)$. We show that φ_{2} has codimension two principal orbit $G / S p(1)$, non-isolated singular orbit G / G_{x} and only one isolated singular orbit G / G_{y}. In fact, it is clear that $G / S p(1)$ is a principal orbit. Since this action has no fixed point, we see that G / G_{y} is the only isolated singular orbit.

Consider the case $G=S p(2) \times T^{1}$ or $S p(2)$. It is not difficult to see that for this case the action has the same orbit structure as the action obtained from the restriction of $S p(2) \times S p(1)$ to the $S p(2) \times T^{1}$ or $S p(2)$.

Thus we have shown that the case 3 the action has the same orbit structure as φ_{2} of Theorem in Introduction.

Case 5. In this case we have $G=\operatorname{Spin}(9), L=\operatorname{Spin}(7), K=\operatorname{Spin}(8)$ and $H=G_{2}$ (G_{2} denotes the exceptional simple Lie group of rank 2). It is clear that $\operatorname{Spin}(9)$ must act on S^{24} effectively.

Now we shall examine the action φ_{3} of Theorem in Introduction more precisely. Note that there are points $x \in R^{16}$ and $y \in R^{9}$ such that $G_{x}=\operatorname{Spin}(7) \subset \operatorname{Spin}(8)=G_{y}$. Assume the representation $\operatorname{Spin}(7) \longrightarrow \operatorname{Spin}(8) \longrightarrow S O(8)$ has a one dimensional trivial summand. Then $\operatorname{Spin}(9) / G_{x}=V_{9,2}$, which contradicts to the fact $G / L=S^{15}$. Hence we have seen that the representation $\operatorname{Spin}(7)=L \longrightarrow \operatorname{Spin}(9) \longrightarrow S O(9)$ is $\Delta_{7} \oplus \theta^{1}$, where Δ_{7} is the spin representation of $\operatorname{Spin}(7)$ and θ^{1} is one dimensional trivial representation. By a result in [6] (see section 1), we have the following equation

$$
\left(\Delta_{9}+\pi\right) / \operatorname{Spin}(7)=\left(A d_{\sin (9)} / \operatorname{Spin}(7)-A d_{\sin (7)}\right) \oplus \nu,
$$

where ν is the slice representation at (x, y). From this equation, it follows that $\nu=\Delta_{7} \oplus \theta^{1}$.

Thus there is a point $z \in R^{16} \oplus R^{9}$ such that $\operatorname{Spin}(9)_{z}=G_{2}$. It is easy to see that φ_{3} has codimension two principal orbit $\operatorname{Spin}(9) / G_{2}$ and two types $\operatorname{Spin}(9) / \operatorname{Spin}(7)$ and $\operatorname{Spin}(9) / \operatorname{Spin}(8)$ of singular orbits. Clearly φ_{3} is effective. Thus we have shown that the case 4 the action has the same orbit structure as φ_{3}.

3. The case n odd

In this section, we shall show that there is no compact connected differentiable transformation group of odd dimensional sphere with codimension two principal orbit and only one isolated singular orbit, unless $n=11,23$.

We shall use the notations as in section 1. First we shall consider the case in which l is greater than 3 . Let \bar{G}, \bar{K} and \bar{L} be semi-simple parts of G, K and L respectively, $G=$ $\bar{G} \times T a, K=\bar{K} \circ T^{b}$ and $L=\bar{L} \circ T c$. We may assume that \bar{G} is simply connected.

We have the following
Lemma 6. The restricted \bar{G} action has codimension 2 principal orbit and only one isolated singular orbit.

Proof. We consider the following commutative diagram;

where the vertical sequences are exact and p denotes the projection $G \longrightarrow T^{a}$. It follows from this diagram that $a=c$ and $(\bar{G} \cap L)^{0}=\bar{L}$. Since $\bar{G} / \bar{L} \longrightarrow G / L$ is a finite covering, we have $\bar{G} / \bar{L}=G / L$ and $\bar{G} \cap L=\bar{L}$, because G / L is simply connected. Since $L / H=S^{l-2}$ and $l \geqq 4$, we have also $\bar{L} / H_{\cap} \bar{L}=L / H$ and hence $G=\bar{G} L=\bar{G} H$. By the same arguments as above, we have $\bar{G} \cap K=\bar{K}$ and $\bar{G} / \bar{K}=G / K$. This completes the proof of Lemma.

It follows immeadiately from the Borel's formula that $\operatorname{rank} G=\operatorname{rank} K+1$. Let $\bar{G}=$ $G_{1} \times G_{2} \times \cdots \times G_{t}$ be the decomposition into the product of simply connected simple Lie groups. It follows from Proposition 2 that
(i) $\bar{K}=K_{1} \times \cdots \times K_{t}$, where $K_{i} \subset G_{i}$
or
(ii) $\bar{K}=\left(K_{1} \times \cdots \times K_{t}\right) \circ K_{0}$, where $K_{i} \subset G_{i}, K_{0} \sim A_{1}$, the number of i such that $p_{i}\left(K_{0}\right) \neq 1$ is 2 and $\operatorname{rank} K_{i}+\operatorname{rank} p_{i}\left(K_{0}\right)=\operatorname{rank} G_{i}$.

We shall consider the cases I and II in section 1 separately.
Case I (l; even). In this case, we have $\operatorname{rank} \bar{K}=\operatorname{rank} \bar{L}$. Hence we have

$$
\bar{L}=L_{1} \times \cdots \times L_{t} \text { where } L_{i} \subset K_{i} \text { and rank } L_{i}=\operatorname{rank} K_{i}
$$

or

$$
\bar{L}=\left(L_{1} \times \cdots \times L_{t}\right) \circ L_{0} \text { where } L_{i} \subset K_{i} \text { and rank } L_{i}=\operatorname{rank} K_{i} \text { and } L_{0}=K_{0}
$$

correspondingly to the decomposition of \bar{K}.
Note that all K_{i}, except one K_{j} acts trivially on S^{n}. In fact this is clear for subcases (ii), (iii) and (iv) and proved as follows for the subcase (i). Since L and L^{\prime} are conjugate in G, there is an element $g=g_{1} \times \cdots \times g_{t} \in \bar{G}$ such that $\bar{L}^{\prime}=g \bar{L} g^{-1}$. If $K_{i} \subset \bar{L}$, then $g_{i} K_{i} g_{i}{ }^{-1}$ $\subset g \bar{L} g^{-1}=\overline{L^{\prime}} \subset \bar{K}$. Since $p_{j}\left(g_{i} K_{i} g_{i}^{-1}\right)=1$ for $j \neq i$, we have $g_{i} K_{i} g_{i}^{-1} \subset K_{i}$ and hence $K_{i} \subset$ $\bar{L} \bar{L}^{\prime}=H$. Thus we may assume that $K_{i}=L_{i} \subset H$ for every $i(2 \leqq i \leqq t)$. This implies that the restricted action of G_{i} on S^{n} has a unique orbit type G_{i} / K_{i} for $2 \leqq i \leqq t$. We shall show that this is impossible. It is well known that $S^{n}=G_{i} / K_{i} \times F\left(K_{i}, S^{n}\right)$, where $\Gamma_{K_{i}}=N$ $\left(K_{i}, G_{i}\right) / K_{i} . \quad$ Assume rank $K_{i}=\operatorname{rank} G_{i} . \quad$ Since $\Gamma_{K_{i}}$ is a finite group and $\pi_{1}\left(S^{n}\right)=1$, we have $S^{n}=G_{i} / K_{i} \times F$, where F is a connected component of $F\left(K_{i}, S^{n}\right)$. This is a contradiction, because $\operatorname{dim} G_{i} / K_{i}<n$ and $\operatorname{dim} F<n$. Next assume rank $K_{i}=$ rank $G_{i}-1$. Then $\Gamma_{K_{i}}$ is finite or of rank 1. If this is finite, then the same argument as above concludes a contradiction. If $\Gamma_{K_{i}}$ is of rank 1, then we see that $S^{n}=G_{i} / K_{i} \times F$, where W is the identity component of $\Gamma_{K_{i}}$ and F is a connected component of $F\left(K_{i}, S n\right)$. Since W is a rational homology sphere of dimension 1 or 3, we have an isomorphism $H^{r}\left(G_{i} / K_{i} \times F ; Q\right) \cong H r(W \times$ $\left.S_{n} ; Q\right)$ and hence $H^{r}\left(G_{i} / K_{i} \times F ; Q\right)=0$ for $2 \leqq r<n$ or $H^{r}\left(G_{i} / K_{i} \times F ; Q\right)=0$ for $4 \leqq r<n$ according to $\operatorname{dim} W=1$ or 3 respectively. This implies that $\operatorname{dim} G_{i} / K_{i} \leqq 3$ and $\operatorname{dim} F \leqq 3$ and hence $n \leqq 6$ - $\operatorname{dim} W \leqq 5$, which is impossible, because it follows from the facts that $n-1=(N+1)(k+l-2)$ and $2<l<k \leqq n$ that $n \geqq 6$.

Thus we have proved that \bar{G} is simple. It follows from the Poincare polynomial of $\bar{G} / \bar{L}=G / L$ that \bar{L} is also simple.

Subcase 1. Since \bar{L} is simple, \bar{K} is also simple and possible pairs of (\bar{K}, \bar{L}) are $\left(B_{r}, D_{r}\right)$ or $\left(G_{2}, A_{2}\right)(l=8)$, where G_{2} is the exceptional group of rank 2 . On the other hand we have $\bar{L} / H_{\cap} \bar{L}=L / H=S^{l-2}$, which is impossible for $\bar{L}=D_{r}$ or A_{2}.

Subcase 2. Since \bar{K} and \bar{L} are semi-simple we have $H^{2}(\bar{K} / \bar{L} ; Q)=0$, which contradicts to the fact that $L / W \sim A_{1} \times T^{1}$.

Subcase 3. This case cannot occur, because \bar{L} is simple.
Subcase 4. This case cannot occur, because there is no simple group of rank 5 which contains F_{4} as proper subgroup.

Thus we have shown that the case I does not occur.
Next we shall consider the case II. We divide this case into two subcases; subcase 1 in which l is greatar that 3 and subcase 2 in which l is 3 .

Subcase 1. $l \geqq 5$.
We note the following facts.
(1) $k=2 l-2$. This follows from that $K / H=K / L \times K / L^{\prime}$.
(2) Let t, s and u be the number of simple factors of \bar{G}, \bar{K} and \bar{L} respectively. Then we have $t=u$ and $s=t$ or $t+1$. In fact, since $\pi_{1}(G / L) \otimes Q=\pi_{2}(G / L) \otimes Q=\pi_{3}(G / L) \otimes Q=$ $\pi_{4}(G / L) \otimes Q=0$, we have $t=u$. It is not difficult to see that $s=t(l \geqq 7)$ and $s=t+1(l=5)$.
(3) All simple factors but one simple factor or $S p(r) \circ S p(1)$ act on \bar{K} / \bar{L} trivially. This follows immeadiately from that \bar{K} is semi-simple and $\bar{K} / \bar{L}=S^{l-2}$.

From (3) and the same arguments as in case I, it may be assumed that t is at most 2. Thus the subcase 1 is divided into the following five cases.
a) \bar{G} is simple.
a. 1) Case i. \bar{K} and \bar{L} are simple.
a. 2) \bar{L} is simple and $\bar{K}=K_{1} \circ K_{1}{ }^{\prime}\left(K_{1}, K_{1}{ }^{\prime}\right.$; simple $)$

Case ii. $\bar{L}=K_{1}{ }^{\prime}, K_{1}=S p(1)$
Case iii. $K_{1}=K_{1}{ }^{\prime}, \bar{L}=\operatorname{Sp}(1)$
b) $\bar{G}=G_{1} \times G_{2}\left(G_{i} ;\right.$ simple $)$
b. 1) Case iv. $\bar{K}=K_{1} \times K_{2}\left(K_{i} \subset G_{i}\right), K_{i}$ acts on \bar{K} / \bar{L} non-trivially.
b. 2) Case v. $\bar{K}=\left(K_{1} \times K_{2}\right) \circ K_{0}\left(K_{i} \subset G_{i}\right), K_{i}$ acts on \bar{K} / \bar{L} non-trivially.

Case i. It follows from $\bar{K} / \bar{L}=S^{\prime-2}$ that possible pair of (\bar{K}, \bar{L}) is $\left(A_{r}, A_{r-1}\right)$, $\left(D_{r+1}, B_{r}\right),\left(C_{r}, C_{r-1}\right),\left(B_{4}, B_{3}\right)$ or $\left(B_{3}, G_{2}\right)$. Since $\bar{L} / \overline{L_{\cap}} H=S^{l-2}$, all pairs except $\left(D_{4}, B_{3}\right)$ are inadequate. Consider the case $(\bar{K}, \bar{L})=\left(D_{4}, B_{3}\right)$. Since D_{4} cannot be subgroup of A_{5} and C_{5}, \bar{G} must be B_{5} or D_{5} and $\bar{K} \longrightarrow \bar{G}$ is the standard inclusion up to automorphism of \bar{K}. Compairing the Poincare polynomials of G / K and B_{5} / D_{4} or D_{5} / D_{4}, we conclude a contradiction. This implies the case i does not occur.

Case ii. In this case we see that $\bar{K}=S p(1) \circ \bar{L}$ and $l=5, k=8$. Since $\bar{K} / \bar{L}=$ $S^{3}=\bar{L} / \bar{L} \cap H$, we have $\bar{L}=S p(1)$ and rank $\bar{G}=3$. It follows from $p(\bar{G} / \bar{K})=\left(1+t^{4}\right)\left(1+t^{11}+\cdots\right)$ that $\bar{G}=B_{3}$ or C_{3}. In this case we see $n=23$ and $(\bar{G}, \bar{K}, \bar{L})=\left(B_{3}, C_{1} \times C_{1}, B_{1}\right)$ or $\left(C_{3}, C_{1} \times C_{1}\right.$, C_{1}).

Case iii. By the same arguments as in case ii, we have $\bar{K}=C_{1}{ }^{\circ} C_{1}, \bar{L} \sim C_{1}$ and $\operatorname{rank} \bar{G}=3$. Consulting the Poincare polynomial of G / K, we have $\bar{G}=B_{3}$ or C_{3} and hence $n=23$.

Case iv. In this case we have $\bar{G}=G_{1} \times G_{2}$ (G_{i}; simple), $\bar{K}=C_{r} \times C_{1}, \bar{L} \sim C_{r-1} \times$ C_{1}, where $C_{r} \subset G_{1}, C_{1}$ (=factor of $\left.\bar{K}\right) \subset G_{2}$ and the factor C_{1} of \bar{L} is monomorphically mapped in both C_{r} and C_{1}. Since $S^{l-2}=K / L=\bar{C}_{r} / \bar{C}_{r-1}=S^{4 r-1}$, we have $l=4 r+1, k=8 r$ and $p(\bar{G} / \bar{K})=\left(1+t^{4 r}\right)\left(1+t^{12 r-1}+\cdots\right)$. Assume $G_{2}=C_{1}$. Then rank $G_{1}=r+1$ and $H^{i}\left(G_{1} ; Q\right)=$ $H^{i}\left(C_{r} ; Q\right)$ for $i \leqq 4 r-2$. It follows that G_{1} is one of $B_{r+1}, C_{r+1}, D_{r+1}, G_{2}(r=1)$ and $A_{2}(r=1)$. By dimensional arguments we can show a contracdiction. Next assume $G_{1}=C_{r}$ and rank $G_{2}=2$. It is not difficult to see that this case does not occur. Thus we have proved that the case (iv) does not occur.

Case \mathbf{v}. In this case $\bar{G}=G_{1} \times G_{2}, \bar{K} \sim\left(C_{1} \times C_{1}\right) \circ C_{1}, \bar{L} \sim\left(1 \times C_{1}\right) \circ C_{1}$, rank $G_{i}=2$ ($i=1,2$) and the second factor C_{1} of \bar{L} is monomorphically mapped in both the first and second factor of \bar{K}. It is clear that $G_{i}=C_{2}$ or G_{2} and $l=5$ and $k=8$. Consider the princi-
pal fibre bundle:

$$
C_{1} \longrightarrow \bar{G} / \bar{K} \longrightarrow X=G_{1} /\left(C_{1} \circ C_{1}\right) \times G_{2} /\left(C_{1} \circ C_{1}\right),
$$

where $G_{i} /\left(C_{1} \circ C_{1}\right)$ is $C_{2} /\left(C_{1} \circ C_{1}\right) \widetilde{Q}^{S^{4}}$ or $G_{2} /\left(C_{1} \circ C_{1}\right)$. It follows from the spectral-sequence of the fibre bundle and the Poincare polynomial of \bar{G} / \bar{K} that $H^{4}(X ; Q)=H^{8}(X ; Q)=2 Q$ and hence $X \sim S^{4} \times G_{2} / S O(4)$, in other words $\bar{G}=C_{2} \times G_{2}$ and hence dim $\bar{G} / \bar{K}=15$, which implies also $G / K \underset{\mathbb{Q}}{\boldsymbol{Q}} S^{4} \times S^{11}$.

Thus we have shown that possibilities of ($\bar{G}, \bar{K}, \bar{L})$ in case II are $\left(C_{2} \times G_{2},\left(C_{1} \times C_{1}\right) \cdot C_{1}\right.$, $\left.\left(1 \times C_{1}\right) \circ C_{1}\right),\left(B_{3}, C_{1} \times C_{1}, C_{1}\right)$ or $\left(C_{3}, C_{1} \times C_{1}, C_{1}\right)$. Note that in these cases $n=23$.

Subcase 2. $l=3$ and $k=4$.
In this case $P(G / K)=\left(1+t^{2}\right)\left(1+t^{5}+\cdots\right)$ and $P(G / L)=\left(1+t^{3}\right)\left(1+t^{5}+\cdots\right)$.
Let $G=\bar{G} \times T a$, where \bar{G} is semi-simple. We may assume $\pi_{1}(\bar{G})=1$. Put $\bar{K}=K_{\cap} \bar{G}$, $\bar{L}=L_{\cap} \bar{G}, \overline{L^{\prime}}=L^{\prime} \cap \bar{G}$ and $\bar{H}=H_{\cap} \bar{G}$. By the same argument as in page 9 , we see that \bar{L} and \bar{L}^{\prime} are semi-simple, connected and $\bar{G} / \bar{L}=G / L, \bar{G} / \overline{L^{\prime}}=G / L^{\prime}$.

From the commutative diagram;

it follows that $\bar{G} / \bar{K}=G / K$ and $\bar{K} / \bar{L}=K / L$. In particular \bar{K} is connected. Since $\bar{K} / \bar{L}=$ $\bar{K} / \overline{L^{\prime}}=S^{1}$, we have $\bar{K}=\bar{L} \circ T^{1}=\bar{L}^{\prime} \circ T^{1}$ and hence $\bar{L}=\overline{L^{\prime}}=\bar{H}$. Let $\bar{G}=G_{1} \times G_{2} \times \cdots G_{t}$ be the decomposition into the product of simple groups. It follows from Prop. 3 that \bar{K} is given by
(1) $\bar{K}=K_{1} \times \cdots \times K_{t}, K_{i} \subset G_{i}$
(2) $\bar{K}=\left(K_{1} \times \cdots \times K_{t}\right) \circ T, K_{i} \subset G_{i}, K_{i}$; semi-simple
or
(3) $\bar{K}=\left(K_{1} \times \cdots \times K_{t}\right) \cdot S, K_{i} \subset G_{i}, S \sim C_{1}$.

Since $\bar{K}=\bar{H} \circ T^{1}, \bar{H}=\bar{L}$ is semi-simple and $\bar{K} / \bar{H}=S^{1}$, we may assume $1 \times K_{2} \times \cdots \times K_{t} \subset$ \bar{H}. By the same argument as in page 10 , we can clonclude that \bar{G} is simple. It follows easily from the spectral sequence of the fibration $\bar{K} \longrightarrow \bar{G} \longrightarrow \bar{G} / \bar{K}$ that $\bar{K}=T^{1}$ and hence $\bar{L}=1$, which implies $G / L=\bar{G}$. Since rank $\bar{G}=2, \bar{G}$ must be A_{2} because $P(G / L)=P(\bar{G})=$ $\left(1+t^{3}\right)\left(1+t^{5}+\cdots\right)$. It is clear $n=11$. Thus we have shown that the possibility of (\bar{G}, \bar{K}, $\bar{L})$ in subcase 2 is ($S U(3), T^{1}, 1$).

Thus we have proved the statement in Introduction of this section. Summing up the arguments in sections 2 and 3 we have proved the Theorem A.

4. Classification of actions

In this section we shall complete the proof of the Theorem B in Introduction; in other words, we shall prove that an effective action of a compact connected Lie group G on sphere with codimension two principal orbit and two types of singular orbit is continuously eqivalent to one of the actions φ_{1} and φ_{2}, unless dimension of the sphere is 11,23 or the orbit structure is the same as φ_{3}.

Let $\varphi: G \times S^{n} \longrightarrow S^{n}$ be an effective action of a compact connected Lie group on S^{n} with codimension two principal orbit G / H and two types G / L and G / K of singular orbit, G / L is non-isolated and G / K is isolated. We have shown that possibilities of pair (G, H, L, K) are one of the followings

Case 1. $(U(2), L, U(1) \times 1, U(1) \times U(1))$
Case 2. ($S p(2), 1, S p(1) \times 1, S p(1) \times S p(1))$
Case 3. $\left(S p(2) \times S / Z_{2}, S, S p(1) \times S \times S p(1)\right)$, where S or $S p(1) \times S$ denotes subgroup

$$
\left\{\left(\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right], a\right)\right\} \text { or }\left\{\left(\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right], b\right)\right\} \text { of } G \text { resp. }
$$

and
Case 4. (Spin (9), $\left.G_{2}, \operatorname{Spin}(7), \operatorname{Spin}(8)\right)$
unless $n=11$, 23, where $S=T^{1}$ or $S p$ (1).
We shall show that if $\varphi: G \times S^{n} \longrightarrow S^{n}$ has the same orbit structure as case 1 , case 2 and case 3 , then φ is continuously equivalent to the action φ_{1} or φ_{2} in Introduction.

First we consider the cases 1 and 2 . We shall omit the case 2, since the proof for this case is completely analogus to the case 1 . Put $G=U(2)$ and $M=S^{6}$. We identify the orbit space M^{*} with the unit disk in the complex plane. Let M^{*} and M^{*} be the subset of M^{*} consisting respectively of points with non-negative and non-positive imaginary part and let $M^{*} \cap^{\prime} M^{*}=A^{*}$. We can construct cross section $\varphi_{+}: M_{+} \longrightarrow M$ and φ_{-}: $M^{*} _\longrightarrow M$ such that

$$
G_{\varphi_{+}(x)}= \begin{cases}H & |x|<1 \\ L & |x|=1\end{cases}
$$

and

$$
G_{\varphi-(x)}= \begin{cases}H & |x|<1 \\ L & |x|=1, \operatorname{Re} x \neq 0 \\ K & |x|=1 \operatorname{Re} x=0\end{cases}
$$

In fact let V be the slice of G / K such that the action of K on V has codimension 1 principal orbit. By a result in [1] (Lemma 6. 1, Chap II), we see that the orbit map $V \longrightarrow V / K$ has a cross section and hence there is a cross section on M^{*} - which is assumed to have the above property. The same arguments show the existence of a cross section on M^{*}. Note that $\varphi_{+}(-1)$ and $\varphi_{-}(-1)$ belong to the same orbit. For $x \in A^{*},|x|<1$, there is a unique element $f(x) \in N(H) / H=G$ such that $f(x) \varphi_{-}(x)=\varphi_{+}(x)$. Thus we have
a function $f:(-1,1) \longrightarrow G$, which is easily seen to be continuous. Now there is a homotopy $h_{t}: U(2) \longrightarrow U(2)$ such that $h_{0}=i d$. and h_{1} (a neighborhood of $\left.N_{L}\right)=N$, where N_{L} is the normalizer of L in G). In fact let U be closed tubular neighborhood of N_{L} in G. Then there is a homotopy $\bar{h}_{t}: U \longrightarrow(2)$ such that $\bar{h}_{0}=$ the inclusion and $\bar{h}_{1}(U)=N_{L}$. Since the pair $(U(2), U)$ has the absolute homotopy extension property, there is a homotopy h_{t} of required property. Since $f(x) \longrightarrow N_{L}$ as $x \longrightarrow \pm 1$ and f is continuous, f maps $(-1,-1$ $+\varepsilon$) and ($1-\varepsilon, 1$) into a nbhd. of N_{L}, where ε is a small positive real number. Thus f is homotopic through homotopy g_{t} with $g_{t}(\pm 1) \in N_{L}$ to the restriction of a function f^{\prime} on $[-1,1]$ to G such that $f^{\prime}(\pm 1) \in N_{L}$. We call f^{\prime} the comparison function of cross section $\left(\varphi_{-}, \varphi_{+}\right)$. We have the following

Lemma 7. Any two maps $f_{0}, f_{1}:[-1,1] \longrightarrow G$ with $f_{i}(\pm 1) \in N_{L}(i=0,1)$ are homotopic through homotopy f_{t} with $f_{t}(\pm 1) \subset N_{L}$.

Proof. f_{i} induces a map $\bar{f}_{i}:[-1,1] \longrightarrow G \longrightarrow G / N_{L}=S^{2}$ and it is easy to see that f_{0} is homotopic to f_{1} if and only if \bar{f}_{0} is homotopic to \bar{f}_{1} rel. $\{*\}$. This completes the proof of the Lemma.

Lemma 8. Let $f_{0}, f_{1}:[-1,1] \longrightarrow G$ be maps with $f_{i}(\pm) \in N_{L}$. If f_{0} and f_{1} are homotopic through homotopy f_{t} with $f_{t}(\pm 1) \in N_{L}$, then $f_{0} \circ f_{1}^{-1}:[-1,1] \longrightarrow G ; x \longrightarrow f_{0}(x) f_{1}(x)^{-1}$ is homotophic to the constant map through homotopy g_{t} with $g_{t}(\pm 1) \in N_{L}$.

Proof. By assumption we have a map $F:[-1,1] \times I \longrightarrow G$ such that $F(t, i)=f_{i}(t)$ for $i=0,1$ and $F(\pm 1, t) \in N_{L}$. Define map $H:[-1,1] \times I \longrightarrow G$ by $H(x, t)=F(x, t) F(x$, 1^{-1}. This map H gives a homotopy between $f_{0} f_{1}^{-1}$ and the constant map 1. This completes the proof of the Lemma.

Let $\left(\varphi_{+}{ }^{0}, \varphi_{-}{ }^{0}\right)$ and $\left(\varphi_{+}{ }^{1}, \varphi_{-}{ }^{1}\right)$ be two cross sections with the comparison functions f_{0} and f_{1} respectively. Assume f_{0} is homotopic to f_{1} through homotopy f_{t} with $f_{t}(\pm 1) \in$ N_{L}. We can show that there is a map $\psi: M^{*} \longrightarrow G$ such that $\psi\left(M^{*}+\cap B^{*}\right) \subset N_{L}$, where B^{*} is the orbit space of union of all singular orbits. In fact, since $f_{0} f_{1}{ }^{-1} \simeq 1$ rel. $\{ \pm 1\}$, there is a map $H:[-1,1] \times I \longrightarrow G$ with $H(x, 0)=f_{0}(x) f_{1}(x)^{-1}, H(x, 1)=1$ and $H(\pm 1, t) \in$ N_{L}. Let $\theta: M^{*} \longrightarrow[-1,1] \times I$ be a homeomorphism such that

$$
\begin{aligned}
& \theta\left(\left[x \in M_{+} ;|x|=1,-1 \leqq \operatorname{Re} x \leqq-1 / 2\right]\right)=\{-1\} \times I \\
& \theta\left(\left[x \in M^{*_{+}} ;|x|=1,1 / 2 \leqq \operatorname{Re} x \leqq 1\right]\right)=\{1\} \times I \\
& \theta\left(\left[x \subset M_{+} ; \operatorname{Im} x=0\right]\right)=[-1,1] \times\{0\}
\end{aligned}
$$

and

$$
\theta\left(\left[x \in M^{*}+|x|=1,-1 / 2 \leqq \operatorname{Re} x \leqq 1 / 2\right]\right)=[-1,1] \times\{1\} .
$$

Then $\psi=H \circ \theta$ is the required map. Clearly the map $\bar{\varphi}{ }_{1}: M^{*}{ }_{+} \longrightarrow M$ defined by $\left.\bar{\varphi}^{1}+(x)=\psi(x) \varphi^{1}+x\right)$ is a cross section and the comparison function of $\left(\varphi_{-}^{1}, \bar{\varphi}^{1}\right)$ is f_{0}. In fact we have $\bar{\varphi}^{1}+(x)=\psi(x) \varphi^{1}+(x)=\psi(x) f_{1}(x) \varphi^{1}-(x)=f_{0}(x) \varphi^{1}-(x)$ on A^{*}.

Let $C_{0}=\operatorname{Im} \varphi^{0}{ }_{+} \cup \operatorname{Im} \bar{\varphi}_{-}^{0}$ and $C_{1}=\operatorname{Im} \varphi^{1}-\cup \operatorname{Im} \bar{\varphi}^{1}{ }_{+} . \quad$ Then we have $G C_{0}=G C_{1}=M$.

Define a map $\psi: C_{0} \longrightarrow C_{1}$ by $\left.\psi\left(\varphi^{0}-x\right)\right)=\varphi^{1}-(x)$ and $\psi\left(\varphi^{0}+(x)\right)=\bar{\varphi}^{1}+(x)$. We have $\psi\left(f_{0}(x) \varphi^{0}{ }_{-}\right.$ $(x))=\psi\left(\varphi^{0}+(x)\right)=\bar{\varphi}^{1}+(x)=f_{0}(x) \varphi_{1-}(x)=f_{0}(x) \psi\left(\varphi^{0}-(x)\right)$.

It follows from the following Lemma and Lemma 7 that any action of $U(2)$ on S^{6} with the property of Theorem in Introduction is continuously equivalent to the action φ_{1}.

Lemma 9. Let G be a compact connected Lie group and let X_{1} and X_{2} be Hausdorff spaces on which G acts as a topological transformation group. Let $C_{i} \subset X_{i}(i=1,2)$ be closed subsets such that $G C_{i}=X_{i}$ and let $\psi: C_{1} \longrightarrow C_{2}$ be a map such that for every $g \in G$ and $x \subset C_{1}$ such that $g x \in C_{1}$ we have $\psi(g x)=g(\psi(x))$. Then ψ can be extended uniquely to an equivariant map from X_{1} to X_{2}.

See [2]. Thus we have proved the Theorem B for the case $G=U(2)$.
Next we shall consider the case 3. We may assume that $G=\operatorname{Sp}(2) \times S$. Then we see that $K=S p(1) \times S p(1) \times S, L=\left\{\left[\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \quad b\right] \subset S p(2) \times S\right\}$ and $H=\left\{\left[\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a\right] \in S p(2) \times S\right\}$ $\approx S$. It is easy to see that $N_{H^{0}}=H$ when $S=S p(1)$. By the same arguments as case 1 and 2 , we can show that there are cross sections φ_{+}and φ_{-}from M_{+}and M_{-}to M respectively.

We have a continuous function $f:(-1,1) \longrightarrow G$ such that $f(x) \varphi_{+}(x)=\varphi_{-}(x)$ and hence $f(x) \in N_{H} / H$, which is assumed to be in $N_{H} \circ / H=\{1\}$. Then we can take the constant map 1: $[-1,1] \longrightarrow G$ as the comparison function of cross sections (φ_{+}, φ_{-}), which shows that two actions of G are continuously equivalent each other. When $S=T^{1}$, we see that $N_{H^{\circ}} / H=T^{2}$. Since $N_{H} \subset N_{L}$, it is not difficult to see that Theorem B holds in this case. Thus we have completed the proof of the Theorem B.

References

[1] Bredon, G. E.: Introduction to Compact transformation groups, Academic Press 1972
[2] Bredon, G. E.: Transformation groups on spheres with two types of orbits, Topology vol. 3 (1965) 103-113
[3] Bredon, G. E.: On homogeneous cohomology spheres, Ann. of Math. 73 (1961) 556-565
[4] Steenrod, N. E.: The Topology of Fibre Bundles, Princeton Univ. Press 1951
[5] Wang, H. C.: Compact transformation groups of S^{n} with an ($n-1$)-dimensional orbit, Amer. J. Math. 82 (1960) 698-748
[6] Hsiang, W. C. and Hsiang, W. Y.: Differentiable actions of compact connected classical groups, II. Ann. of Math. 92 (1970) 189-223

