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Introduction

A variety $X$ is called, by definition, a $quasi\cdot homogeneous$ space of an algebraic group
$G$ if $G$ acts on $X$ morphically with one dense orbit whose complement is of dimension
zero. In this note we shall classify $4\cdot dimensionalquasi\cdot homogeneous$ affine algebraic
varieties of reductive algebraic groups.

In this note all varieties and algegraic groups are considered over the field $C$ of $com$.
plex numbers. This note is organized as follows; section 1 contains preliminaries and in
sections 2 and 3 we study possibilities of semi-simple part of the reductive group which
acts on a variety quasi-homogeneously. In section 4, we show that 4-dimensional quasi-
homogeneous spaces of reductive group are homogeneous or $S\cdot varieties$ (see section 1 for
definition of S-variety), in section 5 we study homogeneous space and in section 6 we
study S-varieties.

We always reserve the term ”algebraic group“ and ”variety” for those group and for
those variety, respectively, whose underlying varieties are affine, unless the contrary is
expressly stated.

We shall use the following notations.
Let $H$ be a linear algebraic group.
$H^{0}=connected$ component of identity of $H$

Rad $H=the$ radical of $H$

$Rad_{u}H=the$ unipotent radical of $H$

$rkH=rank$ of $H=the$ dimension of a maximal torus of $H$

$H\cdot U=the$ semi-direct product of $H$ and $U$.
Let $H$ act on $X$ morphically.
$Hx=$ { $h\in H|h(x)=x$ for any $x\in X$} $=ineffective$ kernel.

1. Preliminaries

In this section we assume a reductive group $G$ acts on a variety $X$ morphically and

*Niigata University



52 T. Kaga and T. Watabe

quasi-homogeneously. Let OX be the dense orbit.
The following results are known.
PROPOSITION 1. 1 ([5], 2. 3 Th. 4). If $Ox\neq X$, then $X$ is an $S\cdot variety,$

. i.e. for any $x\in O_{X}$ ,

the isotropy subgroup $G_{x}$ contains a maximal unipotent subgroup of $G$.
PROPOSITION 1. 2 ([5], 3. 1 Prop. 2. 1). $rkG\leqq\dim X$ .
PROPOSITION 1. 3 ([8], 3 Th. 2). If $dimX=rkG$, then $G$ is a direct product of a proiec-

tive like group and torus and $X$ is also a product ofprojective spaces and torus.
PROPOSITION 1. 4. Let $R\neq\{e\}$ be a semi-simple group which acts on a variety $Y$ almost

effectively, i.e. $dimRY=0$ . Then there is an observable subgroup $Q$ of $R$ (this meana that
$R/Q$ is quasi- affine, i.e. open subset of an affine variety) such that

a) $1\leqq dimP/Q\leqq dimY$

b) $Q$ contains no normal subgroup of $R$ of dimension $>1$ .
PROOF. From almost effectivity of the action, there is an element $y$ of $Y$ such that

$\dim R_{y}\leq\dim R$. Put $R_{y}=Q^{\prime\prime}$ . Since $\overline{R/Q^{\prime\prime}}$ is a closed subset of $Y,\overline{R/Q^{\prime\prime}}$ is affine and
hence $Q^{\prime\prime}$ is observable, because $R/Q^{\prime\prime}$ is open in $\overline{R/Q^{\prime\prime}.}$ Assume $Q^{\prime\prime}$ contains a normal
subgroup $N$ of $R$ of positive dimension. Let $\sim R=R_{1}\times R_{2}\times\cdots\cdots\times R_{s}$ ($R;$ ; simple) be the
covering group of $R$ and $\pi$ : $ R\rightarrow R\sim$ the natural projection. Then $ R\sim$ acts on $Y$ morphically
and almost effectively. It is clear that $\pi^{-1}(Q^{\prime\prime})$ is observable. Let $\pi^{-1}(Q^{\prime\prime})$ contains a
simple factor of $\sim R$, say $R_{1}$ . $\sim R/R_{1}$ contains a subgroup $Q^{\prime}$ which is isomorphic to $\pi^{-1}(Q^{\prime\prime})$

$/R_{1}$ . Since $R/R_{2}\times\sim\cdots\cdots\times R_{s}=R_{1}$ and $ R_{2}\times$
$\times R_{s}/Q^{\prime}=R/\pi^{-1}(Q^{\prime\prime})\sim$ are quasi-affine, the

following lemma shows that $Q^{\prime}$ is observable.
LEMMA ([31, p. 143) Let $K$ and $L$ be subgroups of G Assume $G/L$ and $L/K$ are quasi-

affine. Then $G/K$ is quasi-affine.
Our proposition follows from the induction on $s$. This completes the proof.
We have the following
$CoROLLARY$ . Let $G=R$ . Rad G. Then $R$ contains a subgroup $H$ with the following pro-

perties

(i) $H$ is observable.
(ii) $1\leqq dimR/H\leqq dimX$

(iii) $H$ contains no normal subgroup of $R$ of dimension $\geqq 1$

(iv) codimR $H\geqq rkR+1$ .
PROOF. The statements (i), (ii) and (iii) follows from proposition immeadiately. To

prove (iv) let $R$ act on $\overline{R/H.}$ Since $\overline{R/H}$ is affine and $H$ contains no positive dimensional
normal subgroup of $R$, the action of $R$ is almost effective. Then we have $rkR\leqq\dim\overline{R/H}$

$=co\dim RH$. The equality holds only if $R/H$ is a projective variety and hence $R=H$

which is a contradiction. Thus we have $co\dim RH\geqq rkR+1$ . This completes the proof.
We recall some fundamental facts on Borel subgroups and maximal unipotent sub-

groups of a simple group.
The following results are fundamental.
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THEOREM ([2]) Let $G$ be a semi-simle group and $\underline{g}$ its Lie algebra. Then (1) $\underline{g}$ has a
generator $\{hi, e;, fi;i=1,2, \ldots\ldots , r\}$ with the following properties.

(i) $\{h_{1}, h_{2}, \ldots\ldots , h_{r}\}$ is a basis of a maximal diagonalizable subalgebra of $\underline{g,}$ i.e. simple
roots.

(ii) $e;(orfi)$ is a root vecter corresponding to a positive (or negative, respectively) sim-
$ple$ roots.

(iii) $[h;, ei]=2e;,$ $[h;, f_{i}]=-2f_{i}$ .
(iv) $[e;, f_{i}]=h;$ .
(2) Let $T$ be the maximal torus generated by $h_{1},$ $h_{2},$

$\ldots\ldots$ , $h_{r}$ . Then the Borel subgroup
$B$ which contains $T$ is generated by $h_{1},$ $h_{2},$

$\ldots\ldots$ , $h_{r}$ and $e_{1},$ $e_{2},$
$\ldots\ldots,$

$e_{r}$ .
(3) Every parabolic subgroup which contains $B$ is generated by $\underline{b}$ and some $fi$ .

Example. $SL_{4}$

roots: $\{Xp-xp\}p,$ $q=1,2,3,4$ . $x_{1}+x_{2}+x_{3}+x_{4}=0$ .
simple roots: $a_{1}=x_{1}-x_{2},$ $a_{2}=x_{2}-x_{3},$ $a_{3}=x_{3}-x_{4}$ .
positive roots: $a_{1},$ $a_{2},$ $a_{3},$ $a_{1}+a_{2},$ $a_{2}+a_{3},$ $a_{1}+a_{2}+a_{3}$ .
Borel subgroup $B$ ; generated by $a_{1},$ $a_{2},$ $a_{3}$ and $e_{a_{1}},$ $e_{a_{2}},$ $e_{a_{S}}$ .

Since $[e_{a_{1}}, e_{a_{2}}]=e_{a_{1}+a_{2}},$ $[e_{a_{1}}, e_{a_{3}}]=0,$ $[e_{a_{2}}, e_{a_{3}}]=e_{a_{2}+a_{3}}$ and $[e_{a_{1}+a_{2}}, e_{as}]=e_{a_{1}+a_{2}+a_{3}}$ , we
have $\dim B=9$ . It follows from $B=T\cdot U(T$ : a maximal torus, $U$ : a maximal unipotemt
subgroup) that $\dim U=6$ . By the same arguments we have the following table.

$G$ $|dim$. of Borel subgroup $|dim$ . of maximal unipotent subgroup

$\ovalbox{\tt\small REJECT} SL_{4}|9|6$
$\ovalbox{\tt\small REJECT} B_{3}|9|6$
$\ovalbox{\tt\small REJECT} sp_{3}|11|8$

$\frac{SL_{3}|5|3}{sp_{2}|6|4}$

$\ovalbox{\tt\small REJECT} G_{2}|8|6$
$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} SL_{2}|2|1$

2. Possibility of semi-simple part of $G$

In this section, $X$ denotes a 4-dimensional variety on which a reductive group $G$ acts
quasi-homogeneously. Let $G=P$ . Rad $G$ be the Levi decomposition of $G$ .

REMARK. The case when rk $P=0$ has been considered in [6]. We restrict ourself to
the case in which rk$P\neq 0$ .

PROPOSITION. 2. 1 $P\neq G_{2},$ $Sp_{3},$ $B_{3}$ .
PROOF. We recall the following result ([2], Th. 30. 4)

THEOREM. Let $G$ be a reductive group. Then
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a) if $H$ is a maximal proper closed subgroup of $G$ then $H^{0}$ is reductive or parabolic.
b) a maximal unipotent subgroup of $G$ is the unipotent radical of a Borel subgroup.

The proof of $P\neq G_{2}$ .
Consider the subgroup $H$ in Corollary to Proposition 1. 4. Let $\tilde{H}$ be the maximal

proper closed subgroup which contains $H^{o}$. Assume $\tilde{H}$ is parabolic. Then it is clear that
$\dim P/H>4$ . Aaeume $\tilde{H}$ is reductive. Then $\tilde{H}=L\cdot U(L:semi\cdot simple, U=RadH)\sim$ . By
the table in section, 1, we have $\dim U\leqq 8$. If rk $L=0$, then $\dim\tilde{H}\leqq 8$ and hence $\dim P/H$

$\geqq 6$ . If rk $L=1$ , and $U=T\cdot V$ ( $T$ : torus $V$ : unipotent), then $\dim T\leqq 1$ and $\dim V\leqq 6$.
Since $L$ is locally isomorphic to $SL_{2},$ $L$ contains l-dimensional unipotent group and hence
$\dim V\leqq 5$. Then we have $\dim\tilde{H}\leqq 3+1+5=9$, and hence $\dim P/H>5$. If rk $L=2$ then
$L\sim A_{2}$ or $A_{1}\times A_{1}$ . Since $A_{2}$ or $A_{1}\times A_{1}$ is a maximal subgroup of $G_{2}$ we have $\tilde{H}=L$ and
hence $\dim P/H\geq 6$. Thus we have shown that there is no subgroup $H$ of $P$ such that
$\dim P/H\leqq 4$. This completes the proof.

The Proof of $P\neq Sp_{3}$ .
Let $H$ and $\tilde{H}$ be the subgroups of $sp_{3}$ as in the proof of $P\neq G_{2}$ . Assume $\tilde{H}is$ para-

bolic. We show that $\dim P/H\geqq 5$. In fact let $a_{1},$ $a_{2}$ and $a_{3}$ be simple $r\infty ts$ of $Sp_{3}$ . Then
$\tilde{H}isgeneratedasLiealgebrabya_{1},$

$a_{2},$ $a_{3},$ $e_{a_{1}},$ $e_{a_{2}},$ $e_{as}andtwoofe_{-a_{1}},$ $e_{-a_{2}}ande_{\leftrightarrow a_{\theta}}$ . It
is easy to see that $\dim\tilde{H}=15$ and hence $\dim P/H\geqq 5$ . Next assume $\tilde{H}$ is reductive. Put
$\tilde{H}=L$ . Rad $\tilde{H}$ and Rad $\tilde{H}=T\cdot U$, where $L$ is the $semi\cdot simple$ part of $\tilde{H}$ and $T$ a torus and
$U$ unipotent subgroup. From the table in section 1, it follows that $\dim U\leqq 8$.

Case 1. rk $L=0$.
In this case we have $\dim\tilde{H}\leqq\dim T+\dim U\leqq 11$ . Therefore we have $\dim P/H\geqq 9$.

Case 2. rk $L=1$ .
In this case we have $\dim L=3,$ $\dim T\leqq 3$ and $\dim U\leqq 7$ and hence $\dim\tilde{H}\leqq 13$. Thus

we have $\dim P/H\geqq 5$ .

Case 3. rk $L=2$ .
In this case $L$ is locally isomorphic to either $A_{1}\times A_{1},$ $A_{2}$ or $C_{2}$ .

Subcase 1. $L\sim A_{1}\times A_{1}$ .
Then we have $\dim T\leqq 1,$ $\dim U\leqq 6$ and hence $\dim\tilde{H}\leqq 13$, which implies $\dim P/H>4$.

Subcase 2. $L\sim A_{2}$ .
We have $\dim T\leqq 1,$ $\dim U\leqq 5$ and hence $\dim$ H$14, which implies that $\dim P/H>4$.

Subcase 3. $L\sim G_{2}$ .
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We have $\dim T\underline{\dagger^{\prime}\Rightarrow}1,$ $\dim U\leqq 4$ and hence $\dim\tilde{H}\leqq 15$ , which implies that $\dim P/H>4$ .

Case 4. rk $L=3$ .
If $L$ is maximal, then $L\sim C_{1}\times C_{2}$ and $\dim\tilde{H}\leqq 13$ . If $L$ is not maximal then $L\sim C_{1}$

$\times G\times C_{1}and\dim U\leqq 5$ , thus we have $\dim P/H>4$ . $SincetheproofofP\neq B_{3}$ is complete-
ly similar, we omit its proof. This completes the proof of Proposition 2. 1.

3. Subgroups of $P$ with codimension $\leqq 4$

In this section we assume a reductive group $G$ acts on a 4-dimensional affine irreduci-
ble variety $X$ quasi-homogeneously and almost effectively. We shall study proper ob-
servable subgroup of $P$ with codim ${}_{P}H\leqq 4$ .

We recall the following theorem of Birkes.
THEOREM. ([1])

(1) Let $G$ be a reductive algebraic group and $\rho$ : $G\rightarrow GL(V)$ a rational representation.

If $G_{x}$ contains a maximal torus of $G$, then $G(x)$ is closed (we call this property for Gthe pro-
perty $B$).

(2) Let an algebraic group $G$ act on an affine variety X If $G$ has the property $B$ , then
$G(x)$ is closed for $x$ such that $G_{x}$ contains a maximal torus of $G$ .

We have the following
PROPOSITION 3. 1 Let $D=Sp_{2}$ and $C$ a proper observable subgroup of $D$ with codim ${}_{D}C$

$\leqq 4$ . Then codim ${}_{D}C=4$ and there occur two possibilities
i) $C\sim A_{1}\times A_{1}$

and
ii) $C\sim C_{2}\times Rad_{u}CandD/CisanopenorbitofanS$-variety.
PROOF. Let $C^{0}=L$ . Rad $C^{0}$ be the $Levi\cdot decomposition$ .

Case 1. Rad $C^{0}=1$ .
In this case we have $C^{0}=L$ . Since rk $C^{0}\leqq 2,$ $L$ is locally isomorphic to $A_{1}$ or $A_{1}\times A_{1}$

and this implies that $L\sim A_{1}\times A_{1}$ , because $\dim D/C\leqq 4$ .

$Ca8e2$ . Rad $C^{0}\neq 1$ .
Subcase 1. $L=1$ .
In this case $O=T\cdot C_{u^{0}}$ . It follows from the table in section 1 that $\dim C_{u^{0}}\leqq 4$ . Since

$\dim C\geqq 6$ , rk $C^{0}=2$ and hence $C_{u^{0}}$ is a maximal unipotent subgroup, which implies that
$C^{0}$ is a Borel subgroup. This contradicts to the fact $C^{0}$ is observable.

Subcase 2. $L\sim SL_{2}$ .
In this case we have $ 2\leqq\dim$ Rad $C^{0}\leqq 6$ and rk Rad $C^{0}\leqq 1$ . Assume rk Rad $O=1$ .

Then $C^{0}$ is of maximal rank. It follows from the theorem of Birkes that $D/C^{0}$ is affiine
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and hence $C^{0}$ is reductive which implies that $\dim C^{0}=4$ . This contradicts to the assump-
$tionthat\dim D/C\leqq 4$ . $NextassumerkRadC^{}=0$ . Since dim C$=\dim L+\dim RadC^{0}\geqq 6$,
we have $\dim$ Rad $C^{0}\geqq 3$ . Since Rad $C^{0}$ is unipotent and dimension of a maximal uni-
potent subgroup of $sp_{2}$ is 4, $\dim$ Rad $C^{0}$ must be 3. Thus $C^{0}$ contains a maximal uni-
potent subgroup of $D$ and hence $D/C$ is an open orbit of an S-variety. This completes the
proof.

In the following $T^{k}$ denotes a k-dimensional torus, $U$ a unipotent group, $G_{n}$ the multi-
plicative group $k^{*}$ , and $G$ the additive group $k$.

PROPOSITION 3. 2. Let $D=SL_{4}$ and $C$ a proper observable subgroup of $D$ with codim $C\leqq 4$ .
Then codim $C=4$ and there occur the following two possibilities.

i) $C^{0}=L\cdot(T\cdot U)$ , where $L-A_{1}\times A_{1}$ and $dimU=4$. $D/C$ is an open orbit of an S.variety.
ii) $C^{0}=L\cdot U,$ $wherL-A_{1}anddimU=3$. $D/CisanopenorbitofanS\cdot variety$.
PROOF. Let $C^{0}=L\cdot R$ ad $C^{0}$ be the Levi-decomposition.

Case 1. Rad $U=1$ .
In this case $C^{0}$ is semi-simple $\dim C\leqq 10$ and hence codim $C\geqq 5$.

Case 2. Rad $C^{0}\neq 1$ .
Subcase 1. $L=1$ .
In this case $C^{0}$ is solvable. Since a Borel subgroup of $L$ is of dimension 9, codim $C^{0}$

$\geqq 6$.

Subcase2. $rkL=1$ .
In this case $L-A_{1}$ and hence rk Rad $C^{0}\leqq 2$. Put Rad $C^{0}=T\cdot U$. Since a maximal

unipotent subgroup of $SL_{4}$ or $SL_{2}$ is of dimension 6 or 1 respectively, $\dim U\leqq 5$. If rk $C^{0}$

$=2$, then $\dim C\leqq 3+2+5=10$ . If rkRad $C^{0}=1$ , then $\dim C\leqq 3+1+5=9$ . Thus we have
codim $C\geqq 5$ .

Subcase 3. rk $L=2$.
In this case $L-A_{1}\times A_{1}orA_{2}$ . $AssumeL\sim A_{1}\times A_{1}$ . $ThenrkRadC^{0}\leqq 1$ . $PutRadC^{0}$

$=T\cdot U$. Then $\dim U\leqq 4$ and hence $\dim C\leqq 6+1+4=11$ . The equality holds if Rad $C^{0}$

$=T\cdot U$ where $\dim U=4$ , which implies $C^{0}$ contains a maximal unipotent subgroup. Thus
$D/C$ is an open orbit of an S-variety.

Next assume $L\sim A_{2}$ . Then rk Rad $C^{0}\leqq 1$ and $\dim U\leqq 3$ , andhence $\dim C^{0}\leqq 8+1+3$

$=12$. It is clear that codim $C\leqq 4$ if and only if $C^{0}=L\cdot U$ or $L\cdot(T\cdot U)$ , where $\dim U=3$ .
Since $L\cdot(T\cdot U)$ is not observable, we have codim $C=4$ and $C^{0}=L\cdot U$ where $U$ is of $\dim 3$.
Thus $D/C$ is an open orbit of an S-variety. This completes the proof.

PROPOSITION 3. 3. Let $D=SL_{3}$ and $C$ proper observable subgroup of $D$ with codim $C\leqq 4$ .
Then we have the following two possibilities;
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i) codim $C=4$ .
a) $C\sim A_{1}\times T^{1}$

b) $C\sim A_{1}\times U,$ $dimU=1$

c) $C\sim T^{1}\times U,$ $\dim U=3$

ii) codim $C=3andC\sim A_{1}\times U,$ $dimU=2$ .
PROOF. Let $C^{0}=L$ . Rad $C^{0}$ be the $Levi\cdot decomposition$ .

Case 1. $L=1$ .
In this case $C^{0}$ is solvable and hence $\dim C\leqq dim$ . of a Borel subgroup $=5$ . Since $C^{0}$

is not a Borel subgroup, we have $\dim C=4$ . Put $C^{0}=T\cdot U$. Then $\dim T=1$ and $\dim U$

$=3$ or $\dim T=2$ and $\dim U=2$ . Since $C^{0}$ is observable, we have $\dim T=1$ and $\dim U=3$ .

Case 2. $L\sim A_{1}$ .
In this case $C^{0}$ has the radical of rank 1 or $0$ .

Subcase 1. rk Rad $C^{0}=1$ .
In this case $C^{0}$ is reductive, since $C^{0}$ contains a maximal torus of $D$ and hence Rad $C^{0}$

is a torus, which implies that $\dim C=4$ .

Subcase 2. rk Rad $C^{0}=0$ .
In this case Rad $C^{0}$ is unipotent. It is easy to see that $\dim$ Rad $C^{0}\leqq 2$, and hence

$\dim C=3,4or5$ . $ThuswehaveC\sim SL_{2}\cdot U$, where dim U$=1,2$ . This completes the proof.
PROPOSITION 3. 4. Let $D=SL_{2}\times SL_{2}$ and $C$ a proper observable subgroup of $D$ with codim

$C\leqq 4$ . Then we have the following three possibilities;

i) codim $C=4$ .
a) $C-SL_{2}\times G_{m}\times G_{m}$ and $D/C$ is affine
b) $C^{0}=P\cdot U,$ $dimU=3andD/CisanopenorbitofanS$-variety.
c) $C\sim SL_{2}\times G_{m}\times G_{a}$

d) $C\sim SL_{2}\cdot C_{u},$ $dimC_{u}=2$ .
ii) codim $C=3$ .

a) $C\sim SL_{2}\times SL_{2}$

b) $C\sim SL_{2}\times G_{m}\times C_{u},$ $dimC_{u}=2$

iii) codim $C=2$ .
a) $C\sim SL_{2}\times SL_{2}\times G_{m}$

b) $C\sim SL_{2}\times SL_{2}\times G_{a}$ .
PROOF. Let $C^{0}=L$ . Rad $C^{0}$ be the Levi-decomposition.

Case 1. Rad $C^{0}=1$ .
Since rk $C^{0}\leqq 3$ and codim $C\leqq 4$, we have $C^{0}\sim SL_{2}\times SL_{2}$ .
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Case 2. Rad $C^{0}\neq 1$ .
Subcase 1. $L=1$ .
In this case $C^{0}=T\cdot C_{u^{0}}$. Since a maximal unipotent subgroup of $D$ is of dimension 3,

we have dm $C_{u}\leqq 3$ . Moreover since $\dim C\geqq 5$, we have $2\leqq rkC^{0}\leqq 3$. Assume rk $C^{0}$

$=3$. It follows from Birkes’ theorem that $D/C$ is affine and hence $C$ is reductive and $C_{u}^{0}$

$=1$ , which contradicts to the fact codim $C\leqq 4$. Assume rk $C^{0}=2$. Then we have $\dim$

$C_{u^{0}}\geqq 3$ and hence $C^{0}=T\cdot C_{u^{0}}$ where $\dim C_{u}=3$ .

Subcase 2. $L\sim SL_{2}$ .
Since $\dim C=3+\dim$ Rad $C^{0}$, we have $ 2\leqq\dim$ Rad $C^{0}\leqq 6$. Clearly rk Rad $C^{o}\leqq 2$ and

$ 0\leqq\dim$ Rad ${}_{u}C^{0}\leqq 2$. Assume rk Rad $C^{0}=2$. Since rk $C=rkD$, Birkes’ theorem implies
that Rad $C^{0}is$ 2-dimensional torus and hence $\dim C\geqq 5$. Assume rk Rad $C^{0}=1$ . Clearly
$\dim$ Rad ${}_{u}C^{0}\neq 0$ . If $\dim$ Rad ${}_{u}C^{0}=1$ or 2, then Rad $C^{0}=T.G$ or $C^{0}$ contains a maximal
unipotent subgroup of $D$ , respectively. Assume rk Rad $C^{0}=0$. Since Rad $C^{0}=Rad{}_{u}C^{0}$,
$\dim C^{0}\geqq 5$ and $\dim$ Rad ${}_{u}C^{0}\leqq 2$, we have $\dim$ Rad ${}_{u}C^{0}=2$ . Thus $C^{0}$ contains a maximal
unipotent subgroup of $D$ and hence $D/C$ is an open orbit of an S-variety.

Subcase 3. $L\sim SL_{2}$ .
Since $\dim C^{0}=6+\dim$ Rad $C^{0}$, we have $ 1\leqq\dim$ Rad $C^{0}\leqq 2$ and $0\leqq rk$ Rad $C^{0}\leqq 1$ .

Clearly $\dim$ Rad ${}_{u}C^{0}\leqq 1$ . Assume rk Rad $C^{0}=1$ . Then rk $C^{0}=3$ and hence $C^{0}$ is reduc-
tive. This implies Rad $D^{0}=G_{m}$ and $\dim C=7$. Assume rk Rad $C^{0}=0$. Then Rad $C^{0}$

$=G$ and $C^{0}$ contains a maximal unipotent subgroup of $D$ . This completes the proof.
PROPOSITION 3. 5. Let $D=SL_{2}\times SL_{3}$ and $C$ a proper observable subgroup of $D$ with codim

$C\leqq 4$. Then we have the following three possibilities;
i) codim $C=4$.

a) $C\sim SL_{2}\times G_{m}\times Rad_{u}C^{0}$

b) $C\sim SL_{2}\times SL_{2}\times G_{m}$

c) $C\sim SL_{2}\times SL_{2}\times Rad_{u}C^{0}$

ii) codim $C=3$.
a) $C\sim SL_{3}$

b) $ASL_{2}\times SL_{2}\times Rad_{u}C^{0}$

iii) codim $C=2$

a) $C\sim SL_{2}\times G_{m}$

b) $C\sim SI_{4}\times G_{a}$ .
PROOF. Let $C^{0}=L$ . Rad $C^{0}$ be the Levi-decomposition.

Case 1. Rad $U=1$ .
In this case it is clear that $C\sim SL_{3}$ .
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Case 2. Rad $C^{0}\neq 1$ .
$Subca8e1$ . $L=1$ .
$PutC^{0}=T\cdot C_{u^{0}}$ . $Cleary\dim C_{u^{0}}\leqq 4$ . $Since\dim C\geqq 7,$ $wehaverkC^{0}\geqq 3andhencerk$

$C^{0}=3$. Since rk $C^{0}=rkD$ and $D/C$ is affine, we have that $C^{0}$ is reductive, which is im.
possible.

Subcase 2. $L\sim SL_{2}$ .
Since $\dim C^{0}=3+\dim$ Rad $C^{0}$ and $\dim C^{0}=7,8,9,10$ , we have $ 4\leqq\dim$ Rad $C^{0}\leqq 7$.

Moreover since rk $C^{0}\leqq 3$ , we have rk Rad $C^{0}\leqq 2$ . Assume rk Rad $C^{0}=2$ . Then we have
Rad $C^{0}=T$ and $\dim C^{0}=5$ , which contradicts to our assumption. Assume rk Rad $C^{0}=1$ .
Put Rad $C^{0}=T\cdot Rad{}_{u}C^{0}$. Cleary $3\leqq\dim Rad_{u}C^{0}\leqq 6$ and $\dim$ Rad $C^{0}=3$ . Assume rk
Rad $C^{0}=0$ . Then we have Rad $C^{0}=Rad{}_{u}C^{0}$ and $\dim$ Rad ${}_{u}C^{0}\geqq 4$, which is impossible.

Subcase 3. $L\sim SL_{3}$ .
It is easy to see that $ 1\leqq\dim$ Rad $C^{0}\leqq 2$ and rk Rad $C^{0}\leqq 1$ . Assume rk Rad $C^{0}=1$ .

Then we have rk $C^{0}=3$ and hence $C^{0}$ is reductive, which implies $C^{O}\sim SL_{3}\cdot G_{m}$ . Assume
rk Rad $C^{0}=0$ . Then we have Rad $C^{0}=Rad{}_{u}C^{0}$ and $ 1\leqq\dim$ Rad ${}_{u}C^{0}\leqq 2$. Since a maxi-
mal unipotent subgroup of $D$ is of dimension 3, we have $\dim Rad_{u}C^{0}=1$ and hence $\dim$

$C^{0}=1$ and hence $\dim C^{0}=9$ . Thus $D/C$ is an open orbit of an S-variety.

Sulcase 4. $L\sim SL_{2}\times SL_{2}$ .
$Clearlywehave1\leqq\dim RadC^{0}\leqq 4andrkRadC^{0}\leqq 1$ . Assume rk Rad Co $=1$ . Then

we have rk $C^{0}=3$ , and hence $C^{0}$ is reductive and Rad $C^{0}=G_{n}$. Assume rk Rad $C^{0}=0$ .
Then we have $1\leqq\dim Rad_{u}C^{0}\leqq 2$ . If $\dim Rad_{u}C^{0}=1$ or 2, then $C^{0}\sim SL_{2}\times SL_{2}\times Rad_{u}C^{0}$

or $C^{o}\sim SL_{2}\times SL_{2}\times Rad_{u}C^{0}$ respectively. This completes the proof.

4. 4-dimensional quasi-homogeneous space $X$ of a reductive group $G$

At first we state some results about S-varieties of a connected linear algebraic group
$G$ which are used in the sequel.

We say that an irreducible affine variety $X$ is an S-variety of $G$ provided there is an
open G-orbit OX such that for any $x$ of OX the isotropy subgroup $G_{x}$ contains a maximal
unipotent subgroup of $G$. Clearly $G$ may be assumed to be reductive. Let $X$ be an S-
variety of $G$.

(1) There are a rational representation $\rho$ : $G\rightarrow GL(V)$ and an equivariant embedd-
ing $\sigma$ : $X\rightarrow V$ such that $\sigma(X)$ is closed in $V$. Identify $\sigma(X)$ to $X$ . Choose an element $v$

of $X$ such that $G(v)$ is open and $G_{v}$ contains a maximal unipotent subgroup $N$ of $G$. Let
$B$ be a Borel subgroup of $G$ containning $N$ . By considering $V$ as a B-space, we have $v=v_{1}$

$+\ldots+vk$ where each $v$; is the highest weight vector of an irreducible invariant subspace
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$Vi$ with the highest weight $\Lambda i$ and $V=V_{1}\oplus\ldots\ldots\oplus Vk$ . Then $X=\overline{G(v)}$ and we denote $X$

$=X(\Lambda_{1},$
$\ldots\ldots$ , $\Lambda_{k)}$ . Moreover it is known ([7], Th. 6) that $ k[X(\Lambda_{1}, \ldots\ldots.\Lambda k)]=\sum$ SM

(summing up over $M\in\{\Lambda_{1}, \ldots\ldots , \Lambda k\}=thesemi\cdot group$ with identity generated by $\Lambda_{1},$
$\ldots$

... , A $k$) where SM is the eigenspace with the eigenvalue $M$ under the representation in
$k[V]$ contragradient to $\rho$ .

(2) We decompose $G=P\times Z$ in the direct product of a simply-connected semi-simple
group $P$ and the connected center $Z$. Under the above notations, let $H=G_{\nu}$ , and let $\pi;$ ;

$Vi-\{O\}\rightarrow PVi$ (the projective space) be the canonical mapping. Consider $\pi=\pi_{1}\times\pi_{2}$

$\times\ldots\ldots\times\pi k$ 1 $\Pi(V\iota-O)\rightarrow\Pi PVi$ . Then $G$ acts naturally on $\Pi PVi$, and if we denote $G_{\pi(v)}$

by $Q,$ $Q$ clearly contains $B$ . Let $\underline{p}$ be the Lie algebra of $P$, and choose a set of generators
$\{ht, ei, fi\}i=1,2,$ $\ldots\ldots$ , 1 $(l=rankP)$ such that (1) $h_{1},$

$\ldots\ldots$ , $ h\iota$ form a basis of the Lie
$algebra\underline{t}$ of the maximal torus of $B$, and (2) each $ e\iota$ (or $fi$) is a root vector corresponding
to a positive (or negative) simple root. Then the Lie algebra $\underline{b}$ of $B$ is generated by $\{hi$ ,
$e;\}i=1,2,$ $\ldots\ldots$ , $l$, and the Lie algebra $\underline{q}$ of $Q$ is generated by $b$ and some of the $f_{\dot{l}}’ s$. Let
$E=\{i|fi\in q\}$ , we write $Q=QE$ .

From now on, let $G$ be a reductive group and $P$ the semi-simple Levi factor of $G$.
PROPOSITION 4. 1. If $rkG=4,$ $G$ and $X$ are 4-dimensional tori, and $G$ acts on $X$ by left

translaton. ([8]).

PROPOSITION 4.2. If $P=SL_{2}\times SL_{2}\times SL_{2}$ , then $G$ is isomorphic to $P$ and $X$ is a non-
homogeneous S-variety of $G$.

PROOF. It follows from proposition (1. 5) that $G$ is isomorphic to $P$. Let $Ox=P/P_{x}$ ,

and $P_{x^{0}}=L$ . Rad $P_{x^{0}}$. Because of $\dim P_{x}=5$, it is shown by proposition (3. 4) that $L$ must
be isomorphic to $SL_{2}$ and Rad $P_{x^{0}}$ to one of the followings, i) $G_{m}\times G_{m}$ , ii) $G_{m}\cdot G_{a}$ , iii)
$Rad_{u}P_{x^{0}}$ and iv) $G_{m}\cdot(P_{x^{0}})_{u}$ .

Case i). Since rk $P_{x}=rkP,$ $L$ must be isomorphic to one of the factors of $G$. But
this fact contradicts to almost effectivity of our action.

Case ii). Let $\varphi i$ \ddagger $L\rightarrow P\rightarrow SL_{2}^{(j)},$ $\psi;$ : $G_{m}\rightarrow P\rightarrow SL_{2}^{(j)}$ , and $\eta j;G_{a}\rightarrow P\rightarrow SL_{2}^{(j)}$

be the compositions of the inclusions and the i-th projections, $i=1,2,3$ . We may assume
that $\varphi_{1}$ is non-trivial. Moreover $\varphi_{2}$ may be also assumed to be non trivial. In fact, if
both $\varphi_{2}$ and $\varphi_{3}$ are trivial, the subgroup $L$ of $p_{x}$ must contain one of the factors of $G$, con-
tradicting to almost effectivity.

Then $\psi_{1}$ must be trivial. Assume that $\psi l$ is non-trivial and consider the homomor-
phism $\Phi$ : $L\cdot G_{m}\rightarrow SL_{2}\times SL_{2}$ defined by $\Phi(l\cdot g)=(\varphi_{1}(g)\varphi_{1}(g), \varphi_{2}(l)\varphi_{2}(1))$ . It is shown that
$Ker\Phi$ is finite. In fact, since $X(Ker\Phi)$ is an ideal of $X(L\cdot G_{m})=t(L)\oplus 4(G_{n})$ of the
form $\underline{l_{1}}\oplus\underline{l_{2}}$, it follows that $Ker\Phi\simeq K\times K_{2}$ where $K_{1}\triangleleft L$ and $K_{2}\triangleleft G_{m}$ . Clearly $K_{1}$ is finite.
On the other hand if $K_{2}$ is not finite, we have $K_{2}=G_{m}$ contradicting to that $\psi_{1}$ is non-tri-
vial. Hence $L\cdot G_{m}$ is locally isomorphic to a subgroup of $SL_{2}\times SL_{2}$ . But, if follows from
rk $L\cdot G_{n}=2$ that $L$ is isomorphic to the factor $SL_{2}^{(1)}$ and so $\varphi_{1}$ is trivial. This is a con-
tradiction.

The similar arguments show that $\psi_{2}$ must be also trivial, and hence $\psi_{3}$ is non-trivial.
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Thus it is shown as above that $\varphi_{3}$ is trivial.
Next we shall show that $\eta_{1}$ must be trivial. Assume that $\eta_{1}$ is non-trivial. Then the

similar arguments to the above show that the homomorphism $L\cdot G_{a}\rightarrow SL_{2}^{(1)}\times SL_{2}^{(2)}$ de-
fined as above has the finite kernel. Hence we may consider $L\cdot G_{a}$ as a subgroup of $SL_{2}^{(1)}$

$\times SL_{2}^{(2)}$ which contain a maximal unipotent subgroup of $SL_{2}^{(1)}\times SL_{2}^{(2)}$ . Under the nota-
tions stated above, let $G=SL_{2}\times SL_{2}$ and $G_{v}=G=L\cdot G_{a}$ . Since $QE$ is a subgroup with maxi-
mal rank containing $H$, we have $QE^{=Q_{1}}\times Q_{2}$ . But it follows from $L\subset QE$ that at least
one of the $Q;s$ must be isomorphic to $SL_{2}$ , that is, $L$ is one of the factors $SL_{2}^{(i)}$ of $Gcon$ .
tainning such $Q;$ . This contradicts to almost effectivity of our action. Thus $\eta_{1}$ is trivial.

Similarly $\eta_{2}$ is shown to be also trivial. $Hence\eta_{3}$ must be non-trivial.
Now consider the restricted action on $SL_{2}^{(3)}$ . Then it is easy to see that the isotropy

subgroup is Rad $P_{x^{0}}=T\cdot G_{a}$ and the orbit space $SL_{2}^{(3)}/T\cdot G_{a}$ is a projective variety.
This contradicts to affinness.

Case iii). In this case $P_{x}$ contains a maximal unipotent subgroup of $P$ and we have
$QE=Q_{1}\times Q_{2}\times Q_{3}$ where $Qi\subset SL_{2}^{(j)}$ , since $QE$ is a subgroup with maximal rank. Hence it
follows from $P_{X}\triangleleft QE$ that $P_{x^{0}}$ must be decomposed into a direct sum. On the other hand
$L\subset P_{x^{0}}\subset QE$ . Hence we see that $P_{x^{0}}$ must be a factor of $P$. This is impossible.

Case iv). $InthiscaseP/P_{x}$ is an open orbit of S-variety X. $BecauseofQE\triangleright P_{x}$ , it is
impossible that $P=Q_{E}$ . Hence $Q_{E}$ is a Borel subgroup of $P$. So, it follows from ([7],

(36)) that $ X-Ox\neq\phi$ , and hence $X$ is not homogeneous. This completes the proof.
PROPOSITION 4. 3. The case $P=SL_{2}\times SL_{3}$ cannot occur.
PROOF. It follows from proposition (1. 2) that $G$ is isomorphic to $P$. Let $Ox=P/P_{x}$

and $P_{x^{0}}=L$ . Rad $P_{x^{0}}$. Because of $\dim Px=7$ , it is shown in proposition (3. 5) that there
are only three cases as follows; i) $L-SL_{2}$ and Rad $P_{x^{0}}=G_{m}$ . Rad $P_{x^{0}}$ where $\dim Rad_{u}P_{x^{0}}$

$=3$ , ii) $L\sim SL_{2}\times SL_{2}$ and Rad $P_{x^{0}}=G_{m}$ , and iii) $L-SL_{2}\times SL_{2}$ and Rad $P_{x^{0}}=Rad_{u}P_{x^{0}}$ where
$\dim Rad_{u}P_{x^{0}}=1$ .

Clearly the case ii) is impossible.
Case i). Since $P_{x}$ contains a maximal unipotent subgroup of $P,$ $X$ is an S-variety.

Clearly QE is of the form $P_{1}\times P_{2}$ where $P_{1}\subset SL_{2}$ and $P_{2}\subset SL_{3}$ . Since $P_{x}$ is a nomal sub-
group of $QE$ , it follows that $P_{x^{0}}\sim Q_{1}\times Q_{2}$ where $Q;\subset P;$ . $Q_{1}\neq SL_{2}$ , otherwise $P_{x}$ contains a
factor $SL_{2}$ of $P$, contradicting to almost effectivity. On the other hand $Q_{2}\sim SL_{2}\times G_{m}$ ,

otherwise it follows from $P_{x^{0}}\sim SL_{2}\times G_{m}\times U(U=Rad{}_{u}P_{x^{0}})$ that $Q_{1}$ is locally isomorphic to
3-dimensional unipotent subgroup $U$ (this is impossible).

$LetN=Ker(SL_{2}\times G_{m}\rightarrow P_{x}\rightarrow P\rightarrow SL_{3})$ . $SinceNisnormalinSL_{2}\times G_{m}$ , the image
$\pi(N)$ of $N$ by the projection $\pi$ : $SL_{2}\times G_{m}\rightarrow SL_{2}$ is normal in $SL_{2}$ and hence $\pi(N^{0})$ is either

{1} or $SL_{2}$ .
Assume $\pi(N^{0})=SL_{2}$ . Then we have $3\leqq\dim N\leqq 4$ , because of $\dim N=\dim\pi(N)+\dim$

$G_{m}\cap N=\dim N\cap SL_{2}+\dim\pi^{\prime}(N)$ , where $\pi^{\prime}$ : $SL_{2}\times G_{n}\rightarrow G_{m}$ the projection. If $\dim N=3$,

we have $N^{0}\cong\pi(N^{0})\cong SL_{2}$ . And if $\dim N=4$ , as it follows from $\dim N\cap SL_{2}=3$ that
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$N\cap SL_{2}$ and hence $N\subset SL_{2}$ , we have $N^{0}=SL_{2}\times\{1\}$ . In both cases $SL_{2}\rightarrow SL_{3}$ is trivial,
this is impossible.

Thus we saw that $\pi(N^{0})=\{1\}$ and hence $N^{0}\cap G_{m}=N^{0}$ . From this and $N^{0}\cap SL_{2}=\{1\}$

it follows that $N^{0}\cong G_{m}$ and hence $G_{m}\rightarrow SL_{3}$ must be trivial. On the other hand, because
of $U\triangleleft P_{x^{0}}$ we have $U=U_{1}\times U_{2}$ where $U_{1}$ is an l-dimensional subgroup of $Q_{1}$ and $U_{2}$ is a
2-dimensional one of $U_{2}$ . From these we have $Q_{1}=G_{m}\times U_{1}$ and $Q_{2}=SL_{2}\times U_{2}$ . Therefore
we have an isomorphism $P/P_{x}\cong SL_{2}/G_{m}\cdot U_{1}\times SL_{3}/(SL_{2}\times U_{2})$ , but the first term $SL_{2}/G_{m}$. $U_{1}$ is projective. This case is impossible.

Case iii). Let $P_{x}\sim SL_{2}^{(1)}\times SL_{2}^{(2)}\times N,$
$\varphi_{1}$ : $SL_{2}^{(1)}\rightarrow P\rightarrow SL_{2},$

$\varphi_{2}$ : $SL_{2}^{(1)}\rightarrow P\rightarrow SL_{3}$ ,
$\psi_{1}$ : $SL_{2}^{(2)}\rightarrow P\rightarrow SL_{2},$ $\psi_{2}$ ; $SL_{2}^{(2)}\rightarrow P\rightarrow SL_{3},$

$\eta_{1}$ ; $N\rightarrow P\rightarrow SL_{2}$ , and $\eta_{2}$ ; $ N\rightarrow P\rightarrow$

$SL_{3}$ . If $\varphi_{2}$ is non-trivial, it is clear that a factor $SL_{2}^{(1)}$ of $P_{x}$ must be isomorphic to some
factor of $P$ and hence the ineffective kernel of $P$ must contain $SL_{2}$ . This is a contradiction.

Thus $\varphi_{2}$ is not trivial and similarly $\psi_{2}$ is also shown to be non-trivial. On the other
hand, since the kernel of the homomorphism $SL_{2}^{(1)}\times SL_{(2)}^{2}\rightarrow SL_{3}$ is normal in $SL_{2}^{(1)}$

$\times SL_{2}^{(2)}$ , it is either a finite group or some factor. But none of these cases is possible.
This completes the proof.

PROPOSITION 4. 4. The case $P=Sp_{2}\times SL_{2}$ can be reduced to the case $P=Sp_{2}$.
PROOF. Consider the restricted action on $sp_{2}$ , it follows from proposition (3. 1) that

any proper observable subgroup of $sp_{2}$ satisfying $co\dim sp_{2}C\leqq 4$ is of codimension 4.
Hence $sp_{2}$ acts on $X$ quasi-transitively.

PROPOSITION 4. 5. If $P=SL_{4},$ $X$ is an S-variety of $SL_{4}$ which is not homogeneous.
PROOF. It follows from proposition (3. 2) that $P_{x}$ is isomorphic to either $SL_{2}\times SL_{2}$

$\times G_{m}\times U$ or $SL_{3}\times U$ . If $P_{x}\sim SL_{2}\times SL_{2}\times G_{m}\times U$, then we have rk $P_{x}=rkP$. Hence from
theorem in [1] it folloows that $P_{x}$ is reductive. This is a contradiction. Thereforo $P_{x}$ is
isomorphic to $SL\times U_{3}$ where $\dim U=3$. Since a parabolic group containning $P_{x}$ is of
dimension 12, it follows from ([7], 36)) that X–Ox consists of one point.

PROPOSITION 4. 6. In the case $P=SL_{2}\times SL_{2}$ , there occurs the following cases; 1) $G=SL_{2}$

$\times SL_{2}$ and $X$ is homogeneous, and 2) $G=SL_{2}\times SL_{2}\times G_{m}$ and $X$ is eilher a homogeneous variety
or a non-homogeneous S-variety.

PROOF. Let $G=P\cdot RadG$, then we have $\dim$ Rad $G\leqq 1$ because rk G$4 and Rad $G$ is
a torus by our assumption that $G$ is a reductive group.

In the case Rad $G=\{1\}$ , it is clear that the subgroup of codimension 4 of $SL_{2}\times SL_{2}$ is
a maximal torus. Hence $X$ is homogeneous.

In the case Rad $G\neq\{1\}$ , clearly Rad $G=G_{m}$ and $\dim G_{x}=3$. Consider the projection
$\pi$ : $G\rightarrow G_{m}$ . It induces the morphism $G/G_{x}\rightarrow G_{m}/\pi(G_{x})$ with fibre $P/P_{x}$ of dimension
$\geqq 2$ . Hence by considering the restricted P-action, we have $mP(X)\geqq 3$. If $mP(X)=4$, it
is clear that $P$ acts transitively on $X$ . If $mP(X)=3$, it follows from $\dim P_{x}=3$ that $P_{x}$ is
locally isomorphic to either $SL_{2}$ or $G_{m}\times N$ where $N$ is a 2-dimensional unipotent gpoup.
The similar arguments to above show that if $P_{x}\sim G_{m}\times N,$ $X$ is an $S\cdot variety$ and $X$-OX
is not empty, and if $P_{x}\sim SL_{2},$ $X$ is not an S-variety and $X=Ox$ . This completes the proof.
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PROPOSITION 4. 7. In the case $P=SL_{3}$ , there occur the following; 1) $G=SL_{3}$ and $X$ is a
hemogeneous variety, and 2) $G=SL_{3}\times G_{m}$ and $X$ is a non-homogeneous S-variety.

POPOSITION 4. 8. In the case $P=SL_{2}$ , there occur the followings; 1) $G=SL_{2}\times G_{m}$ and $X$

is a homogeneous variety, and 2) $G=SL_{2}\times G_{m}\times G_{m}$ and $X$ is either a homogeneous S-variety.

Propositions (4. 7) and (4. 8) are proved in the same way as proposition (4. 6).

PROPOSITION 4. 9. If $P=Sp_{2},$ $X$ is a non homogeneous S-variety.
PROOF. It is shown as in (4. 4) that $G=Sp_{2}$ . Since we have $G_{x}\sim SL_{2}\times U$ where $U$ is a

3-dimensional unipotent group, it follows that the parabolic subgroup of $Sp_{2}$ containning
$G$ is of 7-dimensional and hence $ X-Ox\neq\phi$ . Q.E.D.

Summing up the results in this section. Let $G=P$ Rad $G$, there are nine cases at $fo1$ .
lows:

1) $G=P=SL_{4}$ $X$ an S-variety $ X-Ox\neq\phi$

2) $G=P=SL_{2}\times SL_{2}\times SL_{2}$ $X$ an S-variety $ X-Ox\neq\phi$

3) $G=P=SL_{3}$ $X$ homogeneous
4) $G=SL_{3}\times G_{m}$ $X$ an S-variety $ X-Ox\neq\phi$

5) $G=P=Sp_{2}$ $X$ an S-variety $ X-Ox\neq\phi$

6) $G=SL_{2}\times SL_{2}$ $X$ homogeneous
7) $G=SL_{2}\times SL_{2}\times G_{m}$ $X$ homogeneous
8) $G=SL_{2}\times G_{m}\times G_{m}$ Xhomogeneous or an S-variety
9) $G=SL_{2}\times G_{m}$ $X$ homogeneous

5. 4-dimensional homogeneous spaces

In this section we consider homogeneous affine spaces. In the preceding section it is
shown that there are only five cases as follows; $G=SL_{3},$ $SL_{2}\times SL_{2},$ $SL_{2}\times SL_{2}\times G_{n},$ $SL_{2}$

$\times G_{m}\times G_{m},$ $SL_{2}\times G_{m}$ .

Case 1. $G=SL_{3}$ .
Since $SL_{3}$ has only one 4-dimensional reductive subgroup $N(SL_{2}, SL_{3})$ , we have $G_{x^{0}}$

$=N(SL_{2}, SL^{3})$ . The following proposition shows that $G_{x}=N(SL_{2}, SL_{3})$ .
PROPOSITION 5. 1. $N(SL_{2}, SL_{3})$ is a maximal subgroup of $SL_{3}$ .
Indeed, it is shown directly that, if $g$ is any element of $SL_{3}$ satisfying $gN(SL_{2}, SL_{3})g^{-1}$

$\subseteq$ $(SL_{2}, SL_{3})$ , then $g$ belongs to $N(SL_{2}, SL_{3})$ .

Case 2. $G=SL_{2}\times SL_{2}$ .
In this case $G_{x^{0}}=G_{m}\times G_{m}$ . Because of $N(G_{m}, SL_{2})/G_{m}=Z_{2}$ and $G_{x}\subseteqq N(G_{m}\times G_{m}, G)$,

$G_{x}/G_{x^{0}}$ is a subgroup of $N(G_{m}\times G_{m}, G)/(G_{m}\times G_{m})=Z_{2}\times Z_{2}$ and hence it is one of the
followings; $1\times 1,$ $Z_{2}\times 1,1\times Z_{2},$ $Z_{2}$ (diagonal), $Z_{2}\times Z_{2}$ . Thus we see that $X$ is one of the
followings; $SL_{2}\times SL_{2}/G_{m}\times G_{m},$ $SL_{2}/N\times SL_{2}/G_{m},$ $SL_{2}/G_{n}\times SL_{2}/N,$ $(SL_{2}/G_{m}\times SL_{2}/G_{m})/Z_{2}$ ,
$SL_{2}/N\times SL_{2}/N$, where $N=N(G_{m}, SL_{2})$ .
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Case 3. $G=SL_{2}\times SL_{2}\times G_{m}$ .
In this case $G_{x}$ is a 3-dimensional reductive group. Let $G_{x^{0}}=L$ . Rad $G_{x^{0}}$, then $L$ can

not be {1}. Otherwise $G_{x^{0}}=G_{m}\times G_{m}\times G_{m}$ , contradicting almost effectivity. Hence it is
shown that $L$ is isomorphic to $SL_{2}$, so that $G_{x^{0}}$ is isomorphic to $SL_{2}$. This implies that one
of two morphisms $G_{x^{0}}\rightarrow G\rightarrow SL_{2}^{(;)}(i=1,2)$ must be an isomorphism, say such $i=1$ .
Then we have the commutative diagram

$SL_{2}^{(2)}\times G_{m}\rightarrow G\rightarrow SL_{2}^{(1)}$

U U $U$

$G_{x}\cap(SL_{2}^{(2)}\times G_{m})\rightarrow G_{x}\rightarrow SL_{2}^{(1)}$

and hence there is an isomorphism between $(SL_{2}^{(2)}\times G_{m})/(G_{x}\cap(SL_{2}^{(2)}\times G_{m}))$ and $G/G_{x}$ .
Therefore our case can be reduced to the case $G=SL_{2}\times G_{m}$ .

Case 4. $G=SL_{2}\times G_{m}\times G_{m}$ .
Since $\dim G_{x}=1,$ $G_{x^{0}}$ is a torus. If $\dim(SL_{2}\times G_{m}^{(;)})\cap G_{x}=0$ for $i=1,2$ , then $SL_{2}$

$\times G_{m}^{(j)}$ acts transitively on $X$. Thus this case can be reduced to the case $G=SL_{2}\times G_{m}$ .
Hence we may assume that $\dim(SL_{2}\times G_{m}^{(;)})\cap G_{x}=1$ for $i=1$ and 2.

PROPOSITIO 5. 2. Let $K$ and $H$ be algebraic subgroups of $G$ and let $H\subset K$ Then the
natural mophism $G/H\rightarrow G/K$ is a fiber space associated to $G\rightarrow G/K$ .

Indeed, since $G/H=G\times KK/H$, this follows from the following results of J. P. Serre.
i) Let $H$ be an algebraic subgroup of an algebraic group $G$ and let $L=G/H$ be the

homogeneous space. Then $(H, G, L)$ is a principal fibre space ([9]. Prop. 3).

ii) Let $P$ be a principal fiber space of $H$. If $G\rightarrow G/H$ is locally trivial, then $P\times G$

$G/H\rightarrow P/H$ is a locally trivial fiber space ([9] Prop. 8).

Applying this proposition to $G=G^{\prime}\times G_{m}^{(2)}$ (let $G^{\prime\prime}=SL_{2}\times G_{m}^{(1)}$), $K=pr_{1}(H)\times G_{m}^{(2)}$

( $pr_{1}$ : $G\rightarrow G^{\prime}$ the projection) and $H=G_{x}$ , we have the fibering

$(pr_{1}(H)\times G_{m}^{(2)})/H\rightarrow(G^{\prime}\times G_{m}^{(2)})/H\rightarrow(G^{\prime}\times G_{m}^{(2)})/(pr_{1}(H)\times G_{m}^{(2)})$

where

$(G^{\prime}\times G_{m}^{(2)})/H=(G^{\prime}\times G_{ln}^{(2)})\times(pr_{1}(H)\times G_{m}^{(2)})/HP^{r_{1}(H)\times G_{m}^{(2)}}$

i) There is an isomorphism $\varphi;(pr_{1}(H)\times G_{m}^{(2)})/H_{\rightarrow}^{\sim}G_{m}^{(2)}/(H\cap G_{m}^{(2)})$ .
PROOF. Define $\varphi([(x, g)])=[g_{2}g_{x}]$ where $g_{x}$ is an element of $G_{m}^{(2)}$ such that $(x, g_{x})$

belongs to $H$. If $(x, g_{x}^{\prime})$ is another element belonging to $H$, then $g_{x}^{-1}g_{x^{\prime}}\in H\cap G_{m}^{(2)}$ , be-
cause of $(x, g_{x})^{\leftrightarrow 1}(x, g_{x^{\prime}})=(x^{-1}, g_{x}^{-1})(x, g_{x^{\prime}})=(1, g_{x}^{-1}g_{x^{\prime}})\in H$. Therefore $[g_{2}g_{x}]=[g_{2}g_{x}^{\prime}]$ ,
that is, our definition of $\varphi$ is independent of the choice of $g_{x}$ , since $(g_{2}g_{x})^{-1}(g_{2}g_{x^{\prime}})=g_{x}^{-1}$

$g_{x^{\prime}}$ . On the other hand, if $[(x, g_{2})]=[(x^{\prime}, g_{2^{\prime}})]$ , that is, $(x, g_{2^{\prime}})^{-1}(x^{\prime}, g_{2}^{\prime})=(x^{-1}x^{\prime}, g_{2}^{-1}g_{2^{\prime}})$

$\in H$, then $(g_{2}g_{x})^{-1}(g_{2}^{\prime}g_{x^{\prime}})=g_{x^{-1}}g_{x^{\prime}}g_{2}^{-1}g_{2^{\prime}}\in H\cap G_{m}^{(2)}$ and hence $[g_{2}g_{x}]=[g_{2}^{\prime}g_{x^{\prime}}]$ . There $\cdot$

fore it was shown for our to be well defined.
From the definition $\varphi$ is clearly surjective. On the other hand if $[g_{2}g_{h}]=1$ , i.e. $g_{2}g_{x}$
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$\in H$, then $g_{2}\in H\cap G_{m}^{(2)}$ since $(x, g_{2})=(x, 1)(1, g_{2})\in H$, and hence $[(x, g_{2})]=1$ . Thus $\varphi$ is
an isomorphism.

ii) There is a $pr_{1}(H)$-action on $G^{\prime}\times(G_{m}^{(2)}/H\cap G_{m}^{(2)})$ .
PROOF. Define $x(g^{\prime},\overline{t})=g^{\prime}x^{-1},$ $\overline{g_{x}t}$) for $x\in pr_{1}(H)$ and $(g^{\prime}, \overline{t})\in G^{\prime}\times(G_{m}^{(2)}/H\cap G_{m}^{(2)})$ .

If $(x, g_{x})$ and $(x, g_{x^{J}})$ are two elements of $H$, then we have $(g_{x}t)^{-1}(g_{x^{\prime}}t)=g_{x}^{-1}g_{x^{\prime}}\in H\cap$

$G_{m}^{(2)}$ and hence the above definition is independent of the choice of $g_{x}$ .
iii) There is an isomorphism between $(G^{\prime}\times G_{m}^{(2)})/H$ and $ G^{\prime}\times$ $G_{m}^{(2)}/(H\cap G_{\hslash}^{(2)})$ .

$pr(H)$

PROOF. Clearly

$(G^{\prime}\times G_{m}^{(2)})/H\cong(G^{\prime}\times G_{m}^{(2)})\times(pr_{1}(H)\times G_{m}^{(2)})/Hpr_{1}(H)\times G_{m}^{(2)}$

We can define a morphism

$\psi$ : $(G^{\prime}\times G_{m}^{(2)})\times(pr_{1}(H)\times G_{m}^{(2)})/H\rightarrow G^{\prime}\times(G_{m}^{(2)}/H\cap G_{m}^{(2)})$

by $\psi\{((g, t), (x, s))\}=(g,\overline{tsg_{x}})$ . In fact, it is shown in the same way as in i) that $\psi$ is
independent of the choice of $g_{x}$ . On the other hand, if $(\overline{x,s})=(\overline{x^{\prime},s^{\prime}})$ , i.e. $(x^{-1}x^{\prime}, s^{-1}s^{\prime})\in$

$H$, then it follows that $gx^{-1}x’=s^{-1}s^{\prime}$ and hence $(tsg_{X})^{-1}(ts^{\prime}g_{x^{\prime}})=g_{x}^{-1}g_{xx}^{\prime}g_{x}^{\prime}\in H\cap G_{m}^{(2_{2})}$ .

Thus $\psi$ is well defined.
Next we shall see that this $\psi$ is equivariant. Indeed, for $(x, u)\in pr_{1}(H)\times G_{m}$, we have

$\psi\{(x, u)((g.l), (\overline{y,s)})\}=\psi((gx^{-1}, tu^{-1}),$ $(\overline{xy,}us))=(gx^{-1}, \overline{tu^{-1}usg_{xy}})=(gx^{-1}, \overline{tsg_{x}g}_{y})=x(g$,
$\overline{tsg_{y}})$ .

Therefore $\psi$ induces the morphism

$\overline{\psi}$ ;
$(G^{\prime}\times G_{m}^{(2)})\times(pr_{1}(H)\times G_{m}^{(2)})/Hpr_{1}(B)\times G_{m}^{(2)}\rightarrow G^{\prime}\times G_{m}^{(2)}/H\cap G_{m}^{(2)}$

,

which is clearly an isomorphism.
iv) Consequently $(G^{\prime}\times G_{m}^{(2)})/H=G/H$ is a line bundle with zero section deleted

over G’ $/pr_{1}(H)$ . Thus we can also reduce our case to the case G$=SL\times G_{m}$ .

Case 5. $G=SL_{2}\times G_{m}$

Clearly $G_{x}$ is a finite group. It is shown that

$(pr(G_{x})\times G_{m})/G_{x}\rightarrow(SL_{2}\times G_{m})/G_{x}\rightarrow(SL_{2}\times G_{m})/(pr(G_{x})\times G_{m})$

is the fiber space associated to $G\rightarrow G/(pr(G_{x})\times G_{m})$ . Thus, since we have $(pr(G_{x})\times G_{m})$

$/G_{x}\cong G_{m}/G_{x}$ and $(SL_{2}\times G_{m})/(pr(G_{x})\times G_{m})\cong SL_{2}/pr(G_{x})$ , it follows that $X=G/G_{x}$ is a line
bundle with the zero section deleted over a 3-dimensional affine variety $SL_{2}/pr(G_{x})$ .

But it is well known (for example, see [41) that every finite subgroup of $SL_{2}$ is con-
jugate to one of the followings; i) cyclic group $T_{m}$ of order $m,$ $m=1,2,$ $\ldots\ldots$ , ii) the binary
dihedral group $D_{m},$ $m=1,2,$ $\ldots\ldots$ , iii) the binary tetrahedral group $ T\sim$ iv) the binary octa-
hedral group $0\sim$, and v) the binary icosahedral group L Here we employ the same nota-
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tions as in [51. The affine varieties $S_{3},$ $S_{4}$ and $S_{5}$ are, by definition, the homogeneous
spaces $ SL_{2}/TSL_{2}/O\sim,\sim$ and $ SL_{2}/I\sim$ respectively. Let $X_{n}$ be the line bundle over the affine
variety $P^{1}\times P^{1}-\Delta=SL_{2}/G_{m}$ (see [6]) corresponding to $n\in Pic(P^{1}\times P^{1}-\Delta)=Z$ and $X_{n^{*}}$

$=X_{n}$-the zero section. Then it was shown in [51, section 6, that $X_{n^{*}}$ is isomorphic to
$SL_{2}/T_{n}$ and $ SL_{2}/D_{m}\sim$ is isomorphic to $W_{m}$ which is, by definition, a quotient space of $X_{2m^{*}}$

by a suitable involution.
Consequently the homogeneous space $X=(SL_{2}\times G_{m})/G_{x}$ is a line bundle with the zero

section deleted over a 3-dimensional affine variety which is isomorphic to one of the
varieties, $X_{n^{*}}(n\neq 0),$ $W_{n},$ $S_{3},$ $S_{4}$ and $S_{5}$ .

6. 4-dimensional quasi-homogeneous S-varieties

$Q=\{$

In this section we shall determine the 4-dimensional quasi-homogeneous S-varieties.
In section 4, it was shown that there may occur only five cases as follows; $G=SL_{4},$ $SL_{2}$

$\times SL_{2}\times SL_{2},$ $SL_{3},$ $SL_{3}\times G_{m},$ $Sp_{2},$ $SL_{2}\times G_{m}\times G_{m}$ .
PROPOSITION 6. 1. The cases $G=SI_{4}\times G_{m}$ and $G=SL_{2}\times G_{m}\times G_{m}$ can not occur.
PROOF. Case $G=SL_{3}\times G_{m}$ .
Clearly $H=G_{x}$ is 5-dimensional and $\dim(H\cap SL_{3})\geqq 4$ . It is clear that the subgroups

$SI_{4}$ of dimension larger than 3 are ones of the following types;

$P=\{\left\{\begin{array}{lll}a & b & c\\d & e & f\\0 & 0 & g\end{array}\right\}\}$

,
$\left\{\begin{array}{lll}a & b & c\\d & e & f\\0 & 0 & h\end{array}\right\};h_{d}=1\},$ $N=\{$ $\left\{\begin{array}{lll}a & b & 0\\c & d & 0\\0 & 0 & e\end{array}\right\}\}$

.
$6\cdot dimensional$ $5\cdot dimensional$ 4-dimensional

Sinoe $X$ is an S-variety, $H$ contains a maximal unipotent subgroup $U\times 1$ of $G$ (here $U$ is a
maximal unipotent subgroup of $SL_{3}$). Hence $H\cap SL_{3}$ must contain $Q$ . But $H\cap SL_{3}=Q$ ,

otherwise $H\cap SL_{3}=P$ and hence $\dim H\geqq 6$ , contradicting to $\dim H=5$ . Now since $P$ is
a parabolic subgroup of $SL_{3}$ and $P^{\prime}=P\times G_{m}\supseteqq H$, it follows follows from [7] that, under
the notations in [7], $\delta(G)=\dim G-\dim P^{\prime}=2$ and hence $rkQC=\dim X-\delta(G)=2$ . From
this it is impossible that $X$ is quasi-homogeneous.

Case $G=SL_{2}\times G_{m}\times G_{m}$ .
Let $H=G_{x}$ . As above $H$ must contain a maximal unipotent subgroup $U\times 1\times 1$ of

$G$(here $U$ is such one of $SL_{2}$). Hence $H^{0}=U\times 1\times 1$ because of $\dim H=1$ . Similarly, since
$P^{\prime}=U\times G_{m}\times G_{m},$ $\delta(C)=2$ and rk ${}_{Q}C=2$. Thus $X$ is not quasi-homogeneous.

Now we introduce the affine variety $V_{n_{1}},$
$\ldots$ . , $n_{S}(A)$ ([5]).

Let $n_{1},$ $n_{2},$ $\ldots\ldots\ldots$ , $n_{S},$ $m_{1},$ $m_{2},$ $\ldots\ldots$ , $m_{s}$ be positive integers, and $X_{1},$ $\ldots\ldots X_{n_{1}},$ $Y_{1},$
$\ldots$

... $Y_{n_{2}}$ , –.. , $Z_{1},$
$\ldots\ldots$ , $Z_{n_{S}}$ be the coordinates of $A^{n_{1}},$ $A^{n_{2}},$

$\ldots\ldots$ , $An_{S}$ respectively. $Con$ .
sider the morphism

$v_{n_{1}\ldots\ldots n_{s}}^{m1ms}$ : $An_{1}\times\ldots\ldots\times A^{n_{s}}\rightarrow ANN=s\prod_{i-1}\left(\begin{array}{l}n;+mi-1\\mi\end{array}\right)$

defined by
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$v_{n_{1}\ldots\ldots n_{S}}^{m1ms}(X_{1}, \ldots\ldots, X_{n_{1}}, Y_{1}, \ldots\ldots , Y_{n_{2}} , ...... , Z_{1}, \ldots\ldots , Z_{n_{S}})$

$=(\ldots\ldots,X_{1}^{i_{1}}\cdots\cdots X_{n_{1}}^{i_{n_{1}}}Y_{1}^{j_{1}}\cdots\cdots Y_{n_{2}}^{j_{n_{2}}} \cdot Z_{1}^{k_{1}}\cdots\cdots Z_{n_{S}}^{k_{n_{S}}}, \ldots\ldots)$

where $ip\geqq 0,$ $j_{q}\geqq 0,$ $k_{r}\geqq 0,$ $i_{1}+\ldots\ldots+i_{n_{1}}=m_{1},$ $j_{1}+\ldots\ldots+\dot{\uparrow}n_{2}=m_{2}$ , ...... , $k_{1}+\ldots\ldots+k_{n_{S}}=m_{S}$ .
For $n_{1},$ $\ldots,.$ . , $n_{s}$ positive integers and an $r\times s$–matrix $A=(atj)$ of positive integers, we
define the variety $V_{n_{1}},$

$\ldots\ldots$ , $\#\iota(A)$ to be the closure of the image of the morphism

$v_{n_{1}\ldots..n_{s}}^{a_{11}.\cdots\cdots a_{1S}}\times\ldots\ldots\times v_{n_{1}\ldots\ldots n_{*}}^{ar_{1|}ars}$ : $An_{1\times\ldots\ldots\times A^{n_{s}}}\rightarrow A_{1}^{N}\times\ldots\ldots\times A^{N_{r}}$ ,

here $Nj=\prod_{i-1}^{s}\left(\begin{array}{l}n;+a_{ji}-1\\aji\end{array}\right)$ .
Note that $k[V_{n_{1}}$ , ...... , $n_{s}(A)]s$ isomorphic to the subalgebra of $k[X_{1},$ $\ldots\ldots$ , $X_{n_{1}}$ , ...... $Y_{1}$ ,
...... , $Y_{n_{2}}$ , ...... , $Z_{1},$

$\ldots\ldots$ , $Z_{n_{S}}$] generated by the monomials $X_{1}^{i_{1}}\ldots X_{n_{1}}^{\dot{i}}n_{2}Y_{1^{1}}^{j}\ldots Y_{n_{1}}^{j_{n_{2}}}$
$\cdots Z_{1}^{k_{1}}$

$Z_{n_{s}}^{k_{n}}s$ , where $i_{1}+\ldots\ldots+i_{n_{1}}=ap_{1},$ $j_{1}+\ldots\ldots+x_{n_{2}}=ap_{2},$ $\ldots\ldots$ , $k_{1}+\ldots\ldots+k_{n_{s}}=aps(p=1,2,$
$\ldots$

..., $r$).

PROPOSITION 6. 2. If $G$ is either $SL_{4}$ or $sp_{2}$ , the 4-dimensional quasi-homogeneous S-
variety of $G$ is isomorphic to $V_{4}(B)$ where $B=t(n_{1}, \ldots\ldots , n_{S})$ ni; positive integers.

PROOF. Case $G=SL_{4}$ .
Consider the standard representation $\varphi$ : $G\rightarrow GL(4, C)$ . Let $\sigma_{1},$ $\sigma_{2}$ , and $\sigma_{3}$ be the

basic weights, and let $e_{1},$ $e_{1\Lambda}e_{2}$ and $e_{1\Lambda}e_{2\Lambda}e_{3}$ be the coresponding leading weight vectors.
By easy calculation we have

$(SL_{4})_{e_{1}}=\{\left\{\begin{array}{lll}10 & 0 & 0\\**** & & \\**** & & \\**** & & \end{array}\right\}\}(SL_{4})_{e_{1}\Lambda e_{2}}=((a_{11}a_{21}**a_{12}a_{22}**00**00**]a_{12}a_{21}=1an_{l}da_{11}=a_{22}=0oErithera_{11}a_{22}=1anda_{12}=a_{21}=0,\}$

Clearly $\dim(SL_{4})_{e_{1}}=11$ . Let $v=e_{1}\oplus e_{1\Lambda}e_{2}$ , it follows that $\dim(SL_{4})_{v}=7$ and hence $X(\sigma_{1}$

$+\sigma_{2})=\overline{SL_{4}(v)}$ is 8-dimensional. Similar arguments shows that $X(l\sigma_{1}+m\sigma_{2}+n\sigma_{3})$ is not 4-
dimensional for any triple $(l, m, n)$ of integers of which at least two are positive. There-
fore, since $rkQG=1$ , it follows that if $X$ is of type $X(\Lambda_{1}$ , ...... , $\Lambda_{s})$ where $\Lambda;=l;\sigma_{1}+mt\sigma_{2}+$

$ni\sigma_{3},$
$l\iota,$ $m;$ , ni; positive integers $(i=1,2, \ldots\ldots , s)$ , then $\Lambda$ ; must be of type $li\sigma_{1}$ (all $t$), $mi\sigma_{2}$

(all i) or $nj\sigma_{3}$ (all $\iota$). On the other hand, since for any pair $(\sigma;, \sigma j)$ there exists an auto-
mophism of Dynkin diagram such that $\sigma;=\sigma_{t^{j}}$ , it follows from lemma 8 in [5] that $X(n_{1}\sigma i$,
......, $n_{S}\sigma i$) $isisomorphictoX(n_{1}\sigma j, \ldots\ldots , n_{S}\sigma j)$ . So we consider only of the type X $(n_{1}\sigma_{1}$ ,
......, $n_{S}\sigma_{1}$).

Consider the standard respresentation $\varphi$ with the basic weight $\sigma_{1}$ . Then the $G\cdot action$

on $A^{4}$ is contragradient to the action,

$X_{j}\rightarrow a_{1j}X_{1}\times a_{21}X_{2}\times a_{3j}X_{3}\times a_{4j}X_{4}$ , $j=1,2,3,4$ .



68 T. Kaga and T. Watabe

where $X_{1},$ $X_{2},$ $X_{3}$ and $X_{4}$ are the coordinates of $A^{4}$ .
LEMMA. $TheA^{4}withtheaboveSL_{4^{-}}actionistheS- varietyX(\sigma_{1})ofSL_{4}$ . ([51, lemma8).

In fact, since $G$ acts transitively on $A^{4}-0,$ $X(\sigma_{1})$ is $\overline{A^{4}-0.}$

By the lemma, it follows that $k[A^{4}]=k\lceil.X(\sigma_{1})]=k[X_{1},$ $X_{2},$ $X_{3},$ $X_{4}\rfloor=\sum_{n^{-0}}^{\infty}S_{n_{\Phi 1}}$ where
$S_{n_{\sigma 1}}$ is the algebra generated by the monomials $X_{1}^{i_{1}}X_{2^{j_{2}}}X_{3^{j_{S}}}X_{4}^{i_{4}},$ $i_{1}+i_{2}+i_{3}+i_{4}=n([7])$ .
Therefore it follows from theorem 6 in [ $ 7\rfloor$ that $k^{\lceil}X$ ( $n_{1}\sigma_{1},$ $\ldots\ldots$ , $n_{s}\sigma_{1}$)] is generated by

monomials $X_{1^{j_{1}}}X_{2}^{i_{2}}X_{3}^{i_{S}}X_{4}^{i_{4}},$ $i_{1}+i_{2}+i_{3}+i_{4}\in\{n_{1}, n_{2}, \ldots\ldots , n_{s}\}=the$ semigroup generated by
$n_{1},$ $\ldots\ldots$ , $n_{S}$ . Hence it follows from the definition of $V_{4}(B)$ ([7]) that $k[V_{4}(\otimes]$ is isomor-
phic to $k[X(n_{1}\sigma_{1}, \ldots\ldots , n_{S}\sigma_{1})]$ , for $B=t(n_{1}, n_{2}, \ldots\ldots , n_{s})$ . Thus we see $X(n_{1}\sigma_{1}, \ldots\ldots , n_{s}\sigma_{1})$

$=V_{4}(B)$ .

Case $G=Sp_{2}$ .
Consider the standard representation $\psi$ : $Sp_{2}\rightarrow GL(4, C)$ . Let $\tau_{1}$ and $\tau_{2}$ be the basic

weights and let $e_{1}$ and $e_{1A}e_{2}$ be the corresponding leading weight vectors. By the similar
calculation to Case $G=SL_{4},$ $(sp_{2})_{e_{1}}$ and $(Sp_{2})_{e_{1}Ae_{2}}$ are shown to be of the same forms in the
above case. Hence $(sp_{2})_{e_{1}}$ is of codimension 4. By similar arguments to case $G=SL_{4}$ we
may assume that $X$ is $X(n_{1}\tau_{1}, n_{2}\tau_{1}, \ldots\ldots, n_{S}\tau_{1})$ .

We may consider the representation space of $\psi$ as the vector space $V$ spanned by the
indeterminates $x_{1},$ $x_{2}$ , X3 and X4. Since $n\tau_{1}$ is the basic weight of the n-th tensor product
of $\psi$, the representation corresponding to $n\tau_{1}$ is the vector space $V_{n}$ spanned by the mono-
mials of degree $n$ in $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}$ . Then $V=V_{n_{1}}\oplus\ldots\ldots\oplus V_{ns}$ . Regarding $x_{1}$ as the lead-
ing weight vector of $\tau_{1}$ and let $v=x_{1}^{n_{1}}+\ldots\ldots+x_{1}^{n_{S}}$ , we have

$(Sp_{2})_{v}=\{\left(\begin{array}{ll}f & 000\\**** & \\**** & \\**** & \end{array}\right)$ ; $fd=1wheredisG.C.D.(n_{1}, n_{2}, \ldots\ldots, n_{s})\}$

On the other hand, if we cansider $V$ as the representation space of the standard re-
presentation $\varphi$ with the basic weight $\sigma_{1}$ and the leading weight vector $x_{1}$ , it is easy to see
that $(SL_{4})_{v}$ for $v=x_{1^{n_{1}}}+\ldots\ldots+x_{1^{n_{S}}}$ .

Thus, we have an inclusion: $sp_{2}/(Sp_{2})_{v}\rightarrow SL_{4}/(SL_{4})_{v}$ and $\dim Sp_{2}/(Sp_{2})_{v}=\dim SL_{4}$

$/(SL_{4})_{v}$ . If we denote by $Y$ the S-variety $X(n_{1}\sigma_{1}$ , ...... , $n_{s}\sigma_{1})$ of $SL_{4}$ , this implies that $X$

is isomorphic to $Y$. Consequently $X$ is also isomorphic to $V_{4}(B)$ . Q.E.D.
PROPOSITION 6. 3. If $G=SL_{2}\times SL_{2}\times SL_{2}$ , the 4-dimensional quasi-homogeneous S-

varieties of $G$ are isomorphic to $V_{2’ 2’ 2}(A)$ , where
$A=t\left\{\begin{array}{llll}l_{1} & l_{2} & \cdots & l_{s}\\m_{1} & m_{2} & \cdots & m_{S}\\n_{1} & n_{2} & \cdots & n_{S}\end{array}\right\}$

’
$h,$ $mi$, ni positive

integers and ranh $A=1$ .
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PROOF. Let $\pi;$ : $G=SL_{2}\times SL_{2}\times SL_{2}\rightarrow SL_{2}$ be the i-th projection, $i=1,2,3$, andp: $ SL_{2}\rightarrow$

$GL(2, C)$ the standard representation. We consider the representation $\varphi$ : $G:\rightarrow GL(6, C)$

defined by the direct sum of the representations $\rho\circ\pi i$ with the basic weight $\sigma i$ .
Consider any 4-dimensional $S\cdot varietyX(\Lambda_{1}$ , ...... , $\Lambda_{S}),$ $\Lambda i=l;\sigma_{1}+m;\sigma_{2}+n;\sigma_{3}(i=1,2,$

$\ldots$

... , s) of $G$ . It is quasi-homogeneous, because we have $\delta(G)=3$ and hence $rkQ(C)=1$ .
Moreover $rkQ(C)=1$ implies that the polyhedral cone $K=Q+G$ spanned by the $\Lambda;,s$ is one
dimensional and hence rank $A=1$ .

By considering $\varphi$, we have a G-action on $A^{6}=A^{2}\oplus A^{2}\oplus A^{2}$, contragredient to the ac-
tion

$(X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2})\rightarrow(X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2})\left\{\begin{array}{llll} & (aij) & 0 & 0\\0 & (b_{ij}) & & 0\\0 & (0Cij) & & \end{array}\right\}$

for $(a;!)\times(bij)\times(Cij)\in SL_{2}\times SL_{2}\times SL_{2}$ , where $X_{1},$ $X_{2},$ $Y_{1},$ $Y_{2},$ $Z_{1}$ and $Z_{2}$ are the coordinates
$ofA^{6}$ .

LEMMA. The $A^{6}$ with the above G-action is the S-variety $X(\sigma_{1}, \sigma_{2}, \sigma_{3})$ of $G,$ ( $[5]$ , lemma
11).

It is easy to prove Lemma.
By the lemma we have that $k[A^{6}]=k[X\sigma_{1}, \sigma_{2}, \sigma_{3}]=k[X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}]=_{\iota},\sum_{m.n\geqq 0}$

$Sl_{\sigma 1+m\sigma 2+}n_{\sigma 3}$ where $S\iota_{\sigma 1+m\sigma 2+n\sigma 3}$ is the algebra generated by the monomials $X_{1^{j_{1}}}X_{2}^{i_{2}}Y_{1}^{j_{1}}$

$Y_{2^{j_{2}}}Z_{1}^{k_{1}}Z_{2}^{k_{2}}$ where $ip,$ $j_{q},$ $k_{r}\geqq 0,$ $i_{1}+i_{2}=l,$ $j_{1}+j_{2}=m$, and $k_{1}+k_{2}=n$ . Therefore by theorem
6 in [7[, we see that $k[X(\Lambda_{1}, \ldots\ldots , \Lambda_{s})]$ is the algebra generated by the monomials $X_{1}^{i_{1}}$

$X_{2}^{i_{2}}Y_{1}^{j_{1}}Y_{2}i_{2}Z_{1}^{k_{1}}Z_{2}^{k_{2}}$ where $(i_{1}+i_{2}, j_{1}+j_{2}, k_{1}+k_{2})\in\{(l_{1}, m_{1}, n_{1}), \ldots\ldots, (l_{s}, m_{s}, n_{s})\}$ (the semi-
group generated by these triples). Hence it follows from the definition of $V_{2,2,2}(A)$ that
$k[X]$ is isomorphic to $k[V_{2,2,2}(A)]$ . This implies ehat $X$ is isomorphic to $V_{2,2,2}(A)$ .

Q.E.D.
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