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Introduction

A variety X is called, by definition, a quasi-homogeneous space of an algebraic group
Gif Gacts on X morphically with one dense orbit whose complement is of dimension
zero. In this note we shall classify 4-dimensional quasi-homogeneous affine algebraic
varieties of reductive algebraic groups.

In this note all varieties and algegraic groups are considered over the field C of com-
plex numbers. This note is organized as follows; section 1 contains preliminaries and in
sections 2 and 3 we study possibilities of semi-simple part of the reductive group which
acts on a variety quasi-homogeneously. In section 4, we show that 4-dimensional quasi-
homogeneous spaces of reductive group are homogeneous or S-varieties (see section 1 for
definition of S-variety), in section 5 we study homogeneous space and in section 6 we
study S-varieties.

We always reserve the term “algebraic group” and “variety” for those group and for
those variety, respectively, whose underlying varieties are affine, unless the contrary is
expressly stated.

We shall use the following notations.

Let H be a linear algebraic group.

H%=connected component of identity of H

Rad H=the radical of H

RadyH=the unipotent radical of H

rk H=rank of H=the dimension of a maximal torus of H

H « U=the semi-direct product of H and U.

Let H act on X morphically.

Hx={hEH |h(x)=x for any ¥ & X} =ineffective kernel.

1. Preliminaries

In this section we assume a reductive group G acts on a variety X morphically and
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quasi-homogeneously. Let Ox be the dense orbit.

The following results are known. :

ProrosiTiON 1.1 ([5] 2. 3 Th.4). If Ox+# X, then Xis an S-varzety, i.e. for any x =0y,
the isotropy subgroup Gy contains a maximal unipotent subgroup of G.

ProrosiTION 1.2 ([5], 3.1 Prop. 2. 1). 7k G=<dim X.

ProprosiTION 1.3 ([8], 3 Th. 2). If dim X=1rk G, then G is a direct product of a projec-
tive like group and torus and X is also a product of projective spaces and torus.

ProOPOSITION 1.4. Let R+ {e} be a semi-simple group which acts on a variety Y almost
effectively, i.e. dim Ry=0. Then there is an observable subgroup Q of R (this meana that
R/Q is quasi- affine, i.e. open subset of an affine variety) such that

a) 1=dim P/Q=dim Y

b) Q contains no normal subgroup of R of dimension > 1.

PROOF From almost effectivity of the action, there is an element y of Y such that
dim Ry<dim R. Put R,=Q’. Since R/Q" is a closed subset of Y, R/Q" is affine and
hence Q’’ is observable, because R/Q’’ is open in R/Q’. Assume Q’’ contains a normal
subgroup N of R of positive dimension. Let §=R1>< Ryx «oeeee X Rs(Ri; simple) be the
covering group of R and = : R—>R the natural projection. Then Ractson Y morphically
and almost effectively. It is clear that #—1(Q’’) is observable. Let »—1(Q’’) contains a
simple factor of 73, say R;. ’I\é/ R, contains a subgroup @’ which is isomorphic to #—1(Q"’")
/R;. Since ﬁ/Rgx ------ X Rs=R; and Ry X -++--- X Rs/Q’ =~R/7r~1(Q") are quasi-affine, the
following lemma shows that @’ is observable.

LemMmaA ([3]1, p- 143) Let K and L be subgroups of G Assume G/L and L/K are quasi-
affine. Then G/K is quasi-affine.

Our proposition follows from the induction on s. This completes the proof.

We have the following

CorOLLARY. Let G=R « Rad G Then R contains a subgroup H with the followmg pro-
perties

( 1) H is observable.

(i) 1=ZLdim RIH=<dim X

(iii) H contains no normal subgroup of R of dimension =1

(iv) codimr H=7rk R+1.

Proor. The statements (i), (ii) and (iii) follows from proposition immeadiately. To
prove (iv) let R act on R/H. Since R/H is affine and H contains no positive dimensional
normal subgroup of R, the action of R is almost effective. Then we have rk R<dim R/H
=codimg H. The equality holds only if R/H is a projective variety and hence R=H
which is a contradiction. Thus we have codimg H=rk R+1. This completes the proof.

We recall some fundamental facts on Borel subgroups and maximal unipotent sub-
groups of a simple group. ‘ '

The following results are fundamental.
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TueoreM ([2]) Let G be a semi-simle group and g its Lie algebra. Then (1) g has a

generator {hi, e, fi;i=1, 2, ...... , ¥} with the following properties.
(1D {(hyhy-..... » hr} is a basis of a maximal diagonalizable subalgebra of g, i.e. simple
7001s.

(ii) eior fi) is a root vecter corresponding to a positive (or negative, respectively) sim-
ple roots. S ' B ' '

(i) [hi, ei]=2ei, [hi, fil=—2f:.

iv) e, fil=h:.

(2) Let T be the maximal torus generated by hy, ks, ...... » hr. Then the Borel subgroup
B which contains T is generated by hy, ho, ...... ,hrand ey, ey, ...... , €r. '

(3) Every parabolic subgroup which contains B is generated by b and some fi.

Example. SL,

roots: {xp—xp} p, q=1, 2, 3, 4. %+ x2-+x3+x4=0.

simple roots: @, =x;— X2, s =2%3— X3, A3 =X3— X4.

positive roots: a;, @z, a3, a1+ a3, ay+as, a;+az+as.

Bore1 subgroup B; generated by a;, @;, a3 and éa,, €a,, €a;-.
Since [ea;, €s,] =€ar+az, [€ar, €as] =0, [€a,, €as] =€as+a; and [ea1+a2; as] =€ai+az+as, WE
have dim B=9. It follows from B=T + U(T : a maximal torus, U : a maximal unipotemt
subgroup) that dim U=6. By the same arguments we have the following table.

G dim. of Borel subgroup |dim. of maximal unipotent subgroup
SL, 9 6
B; 9 6
Shs 11 8
SL, 5 3
Sp2 6 4
G, 8 6
SL, 2 1

2. Possibility of semi-simple part of G

In this section, X denotes a 4-dimensional variety on which a redictive group Gacts
quasi-homogeneously. Let G=P .- Rad Gbe the Levi decomposition of G.

ReEMARK. The case when rk P=0 has been considered in [6]. We restrict ourself to
the case in which rkP==0. ’

ProprosITION. 2.1 P==Gs, Sps, Bs.

Proor. We recall the following result ([2], Th. 30. 4)

THEOREM. Let G be a reductive group. Then
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a) if H is a maximal proper closed subgroup of G, then H® is reductive or parabolic.
b) a maximal unipotent subgroup of Gis the unipotent radical of a Borel subgroup.

The proof of P+G,.

Consider the subgroup H in Corollary to Proposition 1. 4. Let H be the maximal
proper closed subgroup which contains H°. Assume His parabolic. Then it is clear that
dim P/H>4. Assume H is reductive. Then H=L - U(L: semi-simple, U =Rad H). By
the table in section, 1, we have dim U=<8. If rk L=0, then dim H<8 and hence dim P/H
=6. If rk L=1, and U=T -+ V (T: torus V: unipotent), then dim T'<1 and dim V6.
Since L is locally isomorphic to SL,;, L contains 1-dimensional unipotent group and hence
dim V<5. Then we have dim I7§3+1+ 5=9, and hence dim P/H>5. If rk L=2 then
L~A;or A xA;. Since A; or A; X A; is a maximal subgroup of G; we have H=L and
hencedim P/H>6. Thus we have shown that there is no subgroup H of P such that
dim P/H<4. This completes the proof.

The Proof of P+Sps;.

Let H and H be the subgroups of Sp; as in the proof of P4=G,. Assume His para-
bolic. We show that dim P/H =5. In fact let a;, @; and a3 be simple roots of Sps. Then
His generated as Lie algebra by ¢;, a2, a3, €a,, €a;, €as and two of e_a,, 6—a, and e_q;. It
is easy to see that dim H=15 and hence dim P/H=5. Next assume H is reductive. Put
H=L+Rad Hand Rad H=T- U, where L is the semi-simple part of H and T a torus and
U unipotent subgroup. From the table in section 1, it follows that dim U<8.

Casel. rk L=0.

In this case we have dim H <dim T+dim U<11. Therefore we have dim P/HZ=9.

Case 2. rkL=1.

In this case we have dim L=3, dim T'<3 and dim U<7 and hence dim ﬁgl& Thus
we have dim P/H =5.

Case 3. rkL=2.

In this case L is locally isomorphic to either A; X A,, Az or C,.

Subcase 1. L~A;XA,.
Then we have dim T<1, dim U<6 and hence dim H<13, which implies dim P/H >4.

Subcase 2. L~A,.
We have dim T<1, dim U<5 and hence dim ﬁgm, which implies that dim P/H>4.

Subcase 3. L~G;.
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We have dim T:<1, dim U<4 and hence dim H=15, which implies that dim P/H >4.

Case 4. rk L=3.

If L is maximal, then L~C; X C; and dim ﬁgl& If L is not maximal then L~C,;
X C; x G and dim U=5, thus we have dim P/H >4. Since the proof of P+ B3 is complete-
ly similar, we omit its proof. This completes the proof of Proposition 2. 1.

3. Subgroups of P with codimension < 4

In this section we assume a reductive group Gacts on a 4-dimensional affine irreduci-
ble variety X quasi-homogeneously and almost effectively. We shall study proper ob-
servable subgroup of P with codim pH <4.

We recall the following theorem of Birkes.

TueoreM. ([1])

(1) Let Gbe a reductive algebraic group and p . G—> GL(V) a rational representation.
If Gy contains a maximal torus of G, then G(x) is closed (we call this property for Gthe pro-
perty B).

(2) Let an algebraic group G act on an affine variety X. If G has the property B, then
G(x) is closed for x such that Gx contains a maximal torus of G.

We have the following

ProrosiTiON 3.1 Let D=Sp, and C a proper observable subgroup of D with codim pC
<4. Then codim pC=4 and there occur two possibilities

i)y C~A;xA
and

ii) C~C3yX Rad.C and D/ C is an open orbit of an S-variety.

Proor. Let C9=L - Rad C°® be the Levi-decomposition.

Case 1. Rad C'=1.-

In this case we have C°=L. Since rk C°<2, L is locally isomorphic to A; or A;X 4,
and this implies that L~ A; X A, because dim D/C=<4.

Case 2. Rad C°#1.

Subcase 1. L=1.

In this case O®=T-C,% It follows from the table in section 1 that dim C.°<4. Since
dim C=6, rk C°=2 and hence C.° is a maximal unipotent subgroup, which implies that
(0 is a Borel subgroup. This contradicts to the fact C? is observable.

Subcase 2. L~SL..

In this case we have 2<dim Rad C°<6 and rk Rad C°<1. Assume rk Rad C°=1.
Then C9 is of maximal rank. It follows from the theorem of Birkes that D/C? is affiine
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and hence C° is reductive which implies that dim C°=4. This contradicts to the assump-
tion that dim D/C<4. Next assume rk Rad C®=0. Since dim C=dim L-+dim Rad C°=6,
we have dim Rad C°=3. Since Rad C° is unipotent and dimension of a maximal uni-
potent subgroup of Sp, is 4, dim Rad C° must be 3. Thus C° contains a maximal uni-
potent subgroup of D and hence D/C is an open orbit of an S-variety. This completes the
proof.

In the following T'* denotes a k-dimensional torus, U a unipotent group, G, the multi-
plicative group k*, and G, the additive group %.

ProposiTION 3.2. Let D=SL,and C a proper observable subgroup of D with codim C<4.
Then codim C=4 and there occur the following two possibilities.

i) CO=L«(T-U), where L~A; X A, and dim U=4. D|/C is an open orbit of an S-variety.

ii) CO=L.U, wher L~A; and dim U=3. D|C is an open orbit of an S-variety.

Proor. Let C°=L-R ad C° be the Levi-decomposition.

Case1l. Rad C°=1.

In this case C? is semi-simple dim C<10 and hence codim C=5.
Case 2. Rad C°+#1.

Subcase 1. L=1.

In this case C? is solvable. Since a Borel subgroup of L is of dimension 9, codim C°
=6.

Subcase 2. rkL=1.

In this case L~A; and hence rk Rad C°<2. Put Rad C°=T.U. Since a maximal
unipotent subgroup of SL, or SL; is of dimension 6 or 1 respectively, dim U <5. If rk C°
=2, then dim C<3+42+45=10. If rkRad C°=1, then dim C<3+1+5=9. Thus we have
codim C=5.

Subcase 3. rkL=2,

In this case L~A,; X A, or A;. Assume L~A; X A;. Then rk Rad C°<1. Put Rad C°
=T+ U. Then dim U<4 and hence dim C<6+1+4+4=11. The equality holds if Rad C°
=T+ U where dim U=4, which implies C° contains a maximal unipotent subgroup. Thus
D/C is an open orbit of an S-variety.

Next assume L~A4,. Then rk Rad C°<1 and dim U3, andhence dim C°<8+41+3
=12. It is clear that codim C<4 if and only if C°=L « U or L+(T+ U), where dim U=3.
Since L «(T-U) is not observable, we have codim C=4 and C°=L U where U is of dim 3.
Thus D/C is an open orbit of an S-variety. This completes the proof.

ProposiTiON 3.3. Let D=SL; and C proper observable subgroup of D with codim C<4.
Then we have the following two possibilities;
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1) codim C=A4.
a) C~AxTt
b) C~AxU,dim U=1
c) C~T'xU,dim U=3
ii) codim C=3 andC~A,x U, dim U=2.
Proor. Let C°=L « Rad C° be the Levi-decomposition.

Case l. L=1.

In this case C° is solvable and hence dim C<dim. of a Borel subgroup=>5. Since C°
is not a Borel subgroup, we have dim C=4. Put C°=T.U. Then dim T=1and dim U
=3 or dim T=2 and dim U=2. Since C° is observable, we have dim T=1 and dim U=3.

Case2. L~A,.

In this case C° has the radical of rank 1 or 0.

Subcase 1. rk Rad C°=1.

In this case C° is reductive, since C° contains a maximal torus of D and hence Rad C°
is a torus, which implies that dim C=4.

Subcase 2. rk Rad C°=0.

In this case Rad C?is unipotent. It is easy to see that dim Rad C°<2, and hence
dim C=3,4 or 5. Thus we have C~SL,.U, where dim U=1, 2. This completes the proof.
PropPOSITION 3. 4. Let D=SLy;x SL; and C a proper observable subgroup of D with codim
C=4. Then we have the following three possibilities ;
i) codim C=4. :
a) C~SLyx GyuXx Gy, and D/C is affine
b) C°=T2.U, dim U=3 and D/C is an open orbit of an S-variety.
c) C~SL;X GpuX Ga
d) C~SL;. Cyu, dim Cu=2.
i) codim C=3.
a) C~SLyxSL,
b) C~SLyX GpX Cu, dim Cu=2
iili) codim C=2.
a) C~SL;XSLyx Gy
b) C~SLyxSLyx Ga.
Proor. Let C°=L « Rad C° be the Levi-decomposition.

Case 1. Rad C°=1.
Since rk C°=<3 and codim C<4, we have C°~SL, x SL,.
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Case 2. Rad C°+#1.

Subcase 1. L=1.

In this case C°=T+ C,% Since a maximal unipotent subgroup of Dis of dimension 3,
we have dm C.<3. Moreover since dim C=5, we have 2<rk C®<3. Assume rk C°
=3. It follows from Birkes’ theorem that D/C is affine and hence C is reductive and C9,
=1, which contradicts to the fact codim C<4. Assume rk C°=2. Then we have dim
C«°=3 and hence C°=T - C,° where dim C,=3.

Subcase 2. L~SL,.

Since dim C=3+dim Rad C° we have 2<dim Rad C°<6. Clearly rk Rad C°<2 and
0<dim Rad .C°<2. Assume rk Rad C°=2. Since rk C=rk D, Birkes’ theorem implies
that Rad C%s 2-dimensional torus and hence dim C=5. Assume rk Rad C°=1. Clearly
dim Rad .C°#0. If dim Rad .C°=1 or 2, then Rad C°=T.G; or C? contains a maximal
unipotent subgroup of D, respectively. Assume rk Rad C°=0. Since Rad C°=Rad .C?,
dim C°=5 and dim Rad .C°<2, we have dim Rad .C%=2. Thus C° contains a maximal
unipotent subgroup of D and hence D/C is an open orbit of an S-variety.

Subcase 3. L~SL,.

Since dim C°=6-+dim Rad C° we have 1<dim Rad C°<2 and 0<rk Rad C°<]1.
Clearly dim Rad .C°<1. Assume rk Rad C°=1. Then rk C°=3 and hence C° is reduc-
tive. This implies Rad D°=G,, and dim C=7. Assume rk Rad C°=0. Then Rad C°
= Gy and C° contains a maximal unipotent subgroup of D. This completes the proof.

ProposITION 3.5. Let D=SL,x SL3 and C a proper observable subgroup of D with codim
C=<A. Then we have the following three possibilities ;

i) codim C=4.
a) C~SL;x G, % Rad, C°
b) C~SL;xSLyX Gy,
c¢) C~SL;xSL;x Rad.C°
ii) codim C=3.
a) C~SLg
b) C~SLy;xSL; X Rad.C°
iili) codim C=2
a) C~SLy;X Gy
b) C~SL;x Ga.
Proor. Let C°=L - Rad C° be the Levi-decomposition.

Case 1. Rad C°=1.
In this case it is clear that C~SL;.
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Case 2. Rad C°+#1.

Subcase 1. L=1.

Put C°=T-C,0. Cleary dim C.%<4. Since dim C=7, we have rk C°=3 and hence rk
C%=3. Since rk C%°=rk D and D/C is affine, we have that C% is reductive, which is im-
possible.

Subcase 2. L~SL,.

Since dim C°=3+dim Rad C° and dim C°=7, 8, 9, 10, we have 4=<dim Rad C°<7.
Moreover since rk C°<3, we have rk Rad C°<2. Assume rk Rad C°=2. Then we have
Rad C°=T and dim C°=5, which contradicts to our assumption. Assume rk Rad C°=1.
Put Rad C°=T.Rad ,C% Cleary 3<dim Rad.C°<6 and dim Rad C°=3. Assume rk
Rad C°=0. Then we have Rad C°=Rad »C° and dim Rad ».C%=4, which is impossible.

Subcase 3. L~SLs.

It is easy to see that 1 <dim Rad C°< 2 and rk Rad C°<1. Assume rk Rad C°=1.
Then we have rk C°=3 and hence C° is reductive, which implies C°~SL3+G,,. Assume
rk Rad C°=0. Then we have Rad C°=Rad .C° and 1=<dim Rad .C°<2. Since a maxi-
mal unipotent subgroup of D is of dimension 3, we have dim Rad.C%=1 and hence dim
C%=1 and hence dim C°=9. Thus D/C is an open orbit of an S-variety.

Sulcase 4. L~SL;XSL,.

Clearly we have 1 <dim RadC°<4 and rk Rad C°<1. Assume rk Rad C°=1. Then
we have rk C°=3, and hence C? is reductive and RadC°=G,,. Assume rk Rad C’=0.
Then we have 1 <dim Rad.C°<2. If dim Rad.C?=1 or 2, then C°~SL,x SL,x Rad,C°
or C°~SL;x SLy; x Rad.C° respectively. This completes the proof.

4. 4-dimensional quasi-homogeneous space X of a reductive group G

At first we state some results about S-varieties of a connected linear algebraic group
G which are used in the sequel.

We say that an irreducible affine variety X is an S-variety of G provided there is an
open G-orbit Ox such that for any x of Ox the isotropy subgroup Gx contains a maximal
unipotent subgroup of G. Clearly G may be assumed to be reductive. Let X be an S-
variety of G. _

(1) There are a rational representation p : G— GL(V) and an equivariant embedd-
ing ¢ : X—— V such that ¢(X) is closed in V. Identify ¢(X) to X. Choose an element »
of X such that G(v) is open and G» contains a maximal unipotent subgroup N of G. Let
B be a Borel subgroup of Gcontainning N. By considering V as a B-space, we have v=y,
+ ... +4vr where each v; is the highest weight vector of an irreducible invariant subspace
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Vi with the highest weight 4; and V=V; ®...... @ Vr. Then X=G(v) and we denote X
=X(4,, ...... , 4r). Moreover it is known ([7], Th. 6) that k[ X(4,, ...... , 401 =3 Sm
(summing up over M & {4,, ...... , Ar} = the semi-group with identity generated by 4,, ...
... , Ar) where Sa is the eigenspace with the eigenvalue M under the representation in

k[ V] contragradient to p.
(2) We decompose G=Px Z in the direct product of a simply-connected semi-simple

group P and the connected center Z. Under the above notations, let H = Gy, and let =; :
Vi—{0}——>PV; (the projective space) be the canonical mapping. Consider = =m; X,
Xereea X7k : [I(Vi—0)—IIPVi. Then G acts naturally on [IPV;, and if we denote G,
by @, Q clearly contains B. Let p be the Lie algebra of P, and choose a set of generators
{hi, e, fi}i=1,2, ...... , { ({=rank P) such that (1) 4, ...... , b1 form a basis of the Lie
algebra ¢ of the maximal torus of B, and (2) each e (or fi) is a root vector corresponding
to a positive (or negative) simple root. Then the Lie algebra b of B is generated by {4;,
e} i=1,2, ...... » }, and the Lie algebra g of Q is generated by b and some of the fi’s. Let
E={i|fi&q}, we write Q=Qk.

From now on, let Gbe a reductive group and P the semi-simple Levi factor of G.

ProprosiTION 4.1. If rk G=4, G and X are 4-dimensional tori, and G acts on X by left
transiaton. ([8]). '

PrROPOSITION 4.2. If P=SL,xSL,xSL,, then G is isomorphic to P and X is a non-
homogeneous S-variety of G.

Proor. It follows from proposition (1. 5) that G is isomorphic to P. Let Ox=P/Px,
and P,°=L « Rad P.°. Because of dim Px=?5, it is shown by proposition (3. 4) that L must
be isomorphic to SL, and Rad P.° to one of the followings, i) G X G, ii) G, * Ga, iii)
Rad«P.® and iv) G, * (P:%u.

Case i). Since rk Px=rk P, L must be isomorphic to one of the factors of G. But
this fact contradicts to almost effectivity of our action. ' '

Case ii). Let ¢i : L—>P—— SL,®, ¢i : G,,,—>P——>SL,¥, and %; : Gg——> P——>SL,®
be the compositions of the inclusions and the i-th projections, i=1, 2, 3. We may assume
that ¢, is non-trivial. Moreover ¢; may be also assumed to be non trivial. In fact, if
both ¢, and ¢3 are trivial, the subgroup L of P must contain one of the factors of G, con-
tradicting to almost effectivity.

Then ¢; must be trivial. Assume that ¢, is non-trivial and consider the homomor-
phism @ : L. G,,—>SL, X SL, defined by @ (l+2)=(¢1(2) ¢1(2), v2(D¢2()). It is shown that
Ker @ is finite. In fact, since £ (Ker @) is an ideal of £ (L« G,,)=£(L)® £ (G,,) of the
form ;@ I, it follows that Ker @®~K x K, where K,<|L and K;<]G,,. Clearly K, is finite.
On chOtI—I—CI' hand if K; is not finite, we have K;= G,, contradicting to that ¢, is non-tri-
vial. Hence L« G,, is locally isomorphic to a subgroup of SL, X SL,. But, if follows from
rk L. G,=2 that L is isomorphic to the factor SL,(*> and so ¢, is trivial. This is a con-
tradiction.

The similar arguments show that ¢, must be also trivial, and hence ¢; is non-trivial.
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Thus it is shown as above that ¢3 is trivial.

Next we shall show that %; must be trivial. Assume that 7, is non-trivial. Then the
similar arguments to the above show that the homomorphism Le G:—>SLy® X SL,(® de-
fined as above has the finite kernel. Hence we may consider L+ G; as a subgroup of SL,(D
X SLy® which contain a maximal unipotent subgroup of SL;® x SL,®. TUnder the nota-
tions stated above, let G=SL;x SL; and Gy= G=L-+ G,. Since Qk is a subgroup with maxi-
mal rank containing H, we have Qe=Q;x Q.. But it follows from L C Qr that at least
one of the Q:’s must be isomorphic to SL,, that is, L is one of the factors SL,(¥ of G con-
tainning such @;. This contradicts to almost effectivity of our action. Thus %, is trivial.

Similarly %, is shown to be also trivial. Hencezn; must be non-trivial.

Now consider the restricted action on SL,®. Then it is easy to see that the isotropy
subgroup is Rad P,°=T+ G, and the orbit space SL,®/T « G, is a projective variety.
This contradicts to affinness.

Case iii). In this case P contains a maximal unipotent subgroup of P and we have
QRQE=Q; X Q%X Q3 where Q:C SL,», since Qk is a subgroup with maximal rank. Hence it
follows from Px<]Qfr that P,° must be decomposed into a direct sum. On the other hand
LC P.°C Qe. Hence we see that P:° must be a factor of P. This is impossible.

Case iv). In this case P/Px is an open orbit of S-variety X. Because of Qe[>Px, it is
impossible that P=Qgr. Hence Qg is a Borel subgroup of P. So, it follows from ([7],
(36)) that X—Ox+¢, and hence X is not homogeneous. This completes the proof.

ProrosiTiON 4.3. The case P=SLyx SL; cannot occur.

Proor. It follows from proposition (1. 2) that G is isomorphic to P. Let Ox=P/Px
and P%=L - Rad P,%. Because of dim Px=7, it is shown in propositioh (3. 5) that there
are only three cases as follows; i) L~SL, and Rad P:°= G,, - Rad P.° where dim Rady,P.°
=3, ii) L~SL; X SL, and Rad P.°= G,,, and iii) L~SL,x SL, and Rad P:°=Rad.P:° where
dim Rad.P:°=1.

Clearly the case ii) is impossible. » _

" Case i). Since P, contains a maximal unipotent subgroup of P, X is an S-variety.
Clearly Qk is of the form P, x P, where P, C SL; and P, C SL;. Since Px is a nomal sub-
group of Qk, it follows that P.°~@Q, X @, where Q: CPi. Q,+#SL,, otherwise P. contains a
factor SL, of P, contradicting to almost effectivity. On the other hand @, SL; X G,,,
otherwise it follows from POA~SLy, % G,, x U(U=Rad .P:° that Q, is locally isomorphic to
3-dimensional unipotent subgroup U (this is impossible).

Let N=Ker (SLy; X G,,—>Px——>P——>SL3). Since N is normal in SL; X G,,, the image
n(N) of N by the projection = : SLy X G,,—>SL, is normal in SL; and hence = (N?) is either
{1} or SL,. : .

~ Assume n(N%=SL,. Then we have 3=<dim N=<4, because of dim N=dim = (N)+dim
GnNN=dim NN SLy,+dim =’'(N), where =’ : SL, X G,—> G,, the projection. If dim N=3,
we have NO=~=rn(N° =~SL,. And if dim N=4, as it follows from dim NNSL,=3 that
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NNSL, and hence NC SL,, we have N°=SL,x{1}. In both cases SL,— SL; is trivial,
this is impossible.

Thus we saw that #(N°)={1} and hence N°N G,,=N° From this and NN\ SL,= {1}
it follows that N°=~ G,,, and hence G,,—>SL; must be trivial. On the other hand, because
of U P,® we have U=U, x U; where U, is an 1-dimensional subgroup of @, and U, is a
2-dimensional one of U,. From these we have Q,=G,,x U; and Q,=SL,x U,. Therefore
we have an isomorphism P/Px==SL,;/G,, + U, X SL3/(SLyx Uy), but the first term SL,/G,,

« U, is projective. This case is impossible. . '

Case iii). Let Px~SL, x SLy;® x N, ¢, : SLy"¥V—— P—SL,, ¢; : SL,V— P—SI;,
¢y : SLy®—P—>SL,, ¢ : SLy®—>P—>SLs, 9, : N—P—>SL,, and 7, : N—>P—>
SLs. If ¢, is non-trivial, it is clear that a factor SL,(V of P, must be isomorphic to some
factor of P and hence the ineffective kernel of P must contain SL,. This is a contradiction.

Thus ¢, is not trivial and similarly ¢, is also shown to be non-trivial. On the other
hand, since the kernel of the homomorphism SLy;(* X SL32—>SL; is normal in SL,(V
X SLy®, it is either a finite group or some factor. But none of these cases is possible.

This completes the proof.
ProPoSITION 4.4. The case P=Spsx SLy can be reduced to the case P=Sp,.

Proor. Consider the restricted action on Sp;, it follows from proposition (3. 1) that
any proper observable subgroup of Sp, satisfying codimsp,C<4 is of codimension 4.
Hence Sp, acts on X quasi-transitively.

ProrosiTION 4.5. If P=SL4, X is an S-variety of SLy which is not homogeneous.

Proor. It follows from proposition (3. 2) that Py is isomorphic to either SL,x SL,
X GuxUor SLyxU. If Pr~SLyxSLy% G,,x U, then we have rk Pr=rk P. Hence from
theorem in [1] it folloows that Px is reductive. This is a contradiction. Thereforo P; is
isomorphic to SLx Uz where dim U=3. Since a parabolic group containning P; is of
dimension 12, it follows from ([7], 36)) that X—Ox consists of one point.

PrOPOSITION 4.6. In the case P=SL;X SL,, there occurs the following cases; 1) G=SL,
X SLy and X is homogeneous, and 2) G=SLy X SLy X G,, and X is either a homogeneous variety
or a non-homogeneous S-variety.

ProoF. Let G=P-Rad G, then we have dim Rad G=<1 because rk G=4 and Rad Gis
a torus by our assumption that G is a reductive group.

In the case Rad G= {1}, it is clear that the subgroup of codimension 4 of SL,x SL, is
a maximal torus. Hence X is homogeneous.

In the case Rad G#{1}, clearly Rad G=G,, and dim G:=3. Consider the projection
n : G—> G,,. It induces the morphism G/ Gx—> G,,/n (Gx) with fibre P/P. of dimension
=2. Hence by considering the restricted P-action, we have mp(X)=3. If mp(X)=4, it
is clear that P acts transitively on X. If mp(X)=3, it follows from dim P.=3 that P; is
locally isomorphic to either SL, or G,,x N where N is a 2-dimensional unipotent gpoup.
The similar arguments to above show that if Px~G,,x N, X is an S-variety and X—Ox
is not empty, and if Px~SL,, X is not an S-variety and X=0Ox. This completes the proof.
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ProrosITION 4.7. In the case P=SLs, there occur the following; 1) G=SL3; and X is a
hemogeneous variety, and 2) G=SL3 X G,, and X is a non-homogeneous S-variety.

PorosiTION 4.8. In the case P=SL,, there occur the followings; 1) G=SLy X G,, and X
1S @ homogeneous variety, and 2) G=SLy X G X G, and X is either a homogeneous S-variety.

Propositions (4. 7) and (4. 8) are proved in the same way as proposition (4. 6).

ProrosiTION 4.9. If P=Sp,, X is a non homogeneous S-variety.

Proor. It is shown as in (4. 4) that G=Sp,. Since we have Gy~SL,x U where U is a
3-dimensional unipotent group, it follows that the parabolic subgroup of Sp, containning
Gy is of 7-dimensional and hence X—Ox+ ¢. Q.E.D.

Summing up the results in this section. Let G=P Rad G, there are nine cases at fol-
lows:

1) G=P=SL, X an S-variety X—0Ox+¢

2) G=P=SL,xSLyxSL, X an S-variety X—0x+#¢

3) G=P=SL3 X homogeneous

4) G=SL3x G, X an S-variety X—0Ox+¢
5 G=P=Sp, X an S-variety X—Ox+¢

6) G=SLyxSL, X homogeneous

7 G=SLyxSLyx Gy, X homogeneous

8) G=SLyX GuXx G,, X homogeneous or an S-variety
9 G=SLyx G, X homogeneous

5. 4-dimensional homogeneous spaces

In this section we consider homogeneous affine spaces. In the preceding section it is
shown that there are only five cases as follows; G=SLj, SLy X SL;, SLyx SLy; X G,,, SL»
X GpX Gy SLy X Gy

Casel. G=SL;.

Since SL; has only one 4-dimensional reductive subgroup N(SL;, SL3), we have G°
=N(SL,, SL3). The following proposition shows that Gx=N(SLz, SLs).

ProposITION 5.1. N(SL,, SLs) is a maximal subgroup of SLs.

Indeed, it is shown directly that, if g is any element of SL3 satisfying gN(SL;, SL3)g™!
S N(SL,, SL3), then g belongs to N(SL,, SL3).

Case 2. G=SL;xSL,.

In this case G:°= G,, X G- Because of N(Gy,, SLy)/ Gn=22 and Gz SN(Gm X Gm, G),
G:/ G:0 is a subgroup of N(GmX Gpm, G)/(GmX Gp)= Zs*x Z; and hence it is one of the
followings; 1x1, Z,x1, 1xZ,, Z, (diagonal), Z,xZ,. Thus we see that X is one.of the
followings; SLy X SLy/ Gy Gm, SLy/ N X SLy/ Gy SLz/ GpXSLa/N, (SLy/ Gy X SLy/ Gm)/ Z2,
SLy;/Nx SLy/N, where N=N(G,,, SL5).
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Case 3. G=SL,XSLy;XG,,.

In this case Gy is a 3-dimensional reductive group. Let G.°=L-Rad G.® then L can
not be {1}. Otherwise G:°= G,, X G, X G, contradicting almost effectivity. Hence it is
shown that L is isomorphic to SL,, so that G,° is isomorphic to SL,. This implies that one
of two morphisms G,'—> G——>SL;{¥ (=1, 2) must be an isomorphism, say such i=1.
Then we have the commutative diagram

SL,® x Gpy—> G —> SL,»
U U U
GxN(SLy® X Gp)—> Gx—>SL; ™
and hence there is an isomorphism between (SLy® X G,,)/(G«N(SL,® x G,,)) and G/ G«.
Therefore our case can be reduced to the case G=SIL; X G,,.

Case 4. G=SL;XG,,XG,,.

Since dim G:=1, G, is a torus. If dim (SLy;X G,»,?)" Gx=0 for i=1, 2, then SL,
X G acts transitively on X. Thus this case can be reduced to the case G=SLy X Gp-
Hence we may assume that dim (SLy X G,,¢?) Gx=1 for i=1 and 2.

ProrosITIO 5.2. Let K and H be algebraic subgroups of G and let HC K. Then the
natural mophism G/H—> G/K is a fiber space associated to G—> G/ K.

Indeed, since G/H= Gx xK/H, this follows from the following results of J. P. Serre.

i) Let H be an algebraic subgroup of an algebraic group G and let L= G/H be the
homogeneous space. Then (H, G, L) is a principal fibre space ([9]. Prop. 3).

ii) Let P be a principal fiber space of H. If G—> G/H is locally trivial, then Pxg¢
G/H—P/H is a locally trivial fiber space ([9] Prop. 8).

Applying this proposition to G=G’Xx G,,® (let G'’=SLy; X G, V), K=pr,(H)X Gn®
(pr : G—> G’ the projection) and H= G, we have the fibering

(P11 (H) X Gpn@)/ H—(G' X Gp®) H—>(G' X G,n®) [(pry(H ) X G @)
where

(G X G, @Y H=(G’ X G,,®) prl(H)xX G (pri(H) x G,,®)/H.

i) There is an isomorphism ¢: (pri(H) X G, ®)/ H=Gn® [(HN G,n?).

Proor. Define ¢ ([(x, 2)1)=[g22+] Where g, is an element of G,® such that (x, gy)
belongs to H. If (x, g;") is another element belonging to H, then g, 1g:'EHNG,,®, be-
cause of (%, g2)~Ux, g')=(x"1, g:" )%, g«")=(, g:~1g:') EH. Therefore [g2g:]1=[2 21,
that is, our definition of ¢ is independent of the choice of g, since (g gx)~1 (g2 g5")=gx"1
gx'. On the other hand, if [(x, g&2)1=[(x', &')], that is, (x, &')~1(x’, & )=("12', g~ 1g")
€ H, then (g2 2x)" W gy’ 2 )=g:"'gx' &2~ &' EHN G»® and hence [gg:]=[g'gx’]. There-
fore it was shown for our to be well defined.

From the definition ¢ is clearly surjective. On the other hand if [ggr] =1, i.e. g2 gx
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&H, then g&EHNG,@ since (%, g)=(, 1)(1, g2) €H, and hence [(x, gz)]=1. Thus ¢ is
an isomorphism.

ii) There is a pr; (H)-action on G’ X(G,? /| HN Gu'®).

Proor. Define x(g’, f)=g'x"1, gzt) for x Epry(H) and (g, £) EG’ X (Gp@[HN G®).
If (x, gx) and (x, g«’) are two elements of H, then we have (g:)~1(g:/ H)=g+"1g:’ €HN
G»® and hence the above definition is independent of the choice of gx.

iii) There is an isomorphism between (G’ X G,,?)/H andG’ x ) G @ [(HN Gp@®).
pr
Proor. Clearly
(G’ X Gp®) | Ho(G' X Gp®) % (pri(H) % Gu®)/H.
pri(H) X G,®

We can define a morphism
¢ 1 (G’ X Gu®) x (pry (H) X Gp®)| H—>G" X (Gn? [ HN G'?)

by ¢{((g, t), (x,5))}=(g, Isgz). In fact, it is shown in the same way as in i) that ¢ is
independent of the choice of gx. On the other hand, if (x, s)=(x7, ), i.e. (=1, s~1s")E

H, then it follows that g =s~1s’ and hence (¢sgx) "1 (ts' gz ) =g+~ gzz'8x € HN Gp%Y.
x~1x’

Thus ¢ is well defined.

Next we shall see that this ¢ is equivariant. Indeed, for (x, )& pr,(H) x G, we have
o { (%, W((g 0, (3 9) }=¢((gx™, tu=), (xy, us)) = (gx~", tu=Tusgsy)=(gx~, t5gx &) = % (&
tsgy). |

Therefore ¢ induces the morphism

(G XGp®) x P1(H) X Gu®) | H—>G' X G ® [ HN G,
pri(H) X Gu®

which is clearly an isomorphism.

iv) Consequently (G’ X G,®)/H=G/H is a line bundle with zero section deleted
over G’ /pr;(H). Thus we can also reduce our case to the case G=SL X G,,.

Case 5. G=SL;XxXG,,
Clearly G is a finite group. It is shown that
(Pr(Gx) X Gm)| Gx—>(SLe X Gp)[ Gx—>(SLy X Gon) [(PL (G x) X Gy)

is the fiber space associated to G—>G/(pr(Gx) X G»). Thus, since we have (pr(Gz) X G,m)
| G222 G,/ Gx and (SLy X G,/ (pr(Gx) X Gy) =2 SLy /pr(Gz), it follows that X=G/ G« is a line
bundle with the zero section deleted over a 3-dimensional affine variety SL,/pr(Gx).

But it is well known (for example, see [4]) that every finite subgroup of SL; is con-
jugate to one of the followings; i) cyclic group 7}, of order m, m=1, 2, ...... , ii) the binary
dihedral group Dy, m=1,2, ...... , iii) the binary tetrahedral group T, iv) the binary octa-
hedral group 0, and v) the binary icosahedral group7'. Here we employ the same nota-
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tions as in [5]. The affine varieties S;, S; and Ss are, by definition, the homogeneous
spaces SLz/i SLz/b and SLz/f respectively. Let X,, be the line bundle over the affine
variety Pl1x P1—A4=SL,/G,, (see [6]) corresponding to » & Pic (P'1x P1—4)=Z and X,*
=X, —the zero section. Then it was shown in [5], section 6, that X,* is isomorphic to
SL,/T» and SLzlﬁm is isomorphic to W,, which is, by definition, a quotient space of Xj,,*
by a suitable involution.

Consequently the homogeneous space X=(SL, X G,,)/ G« is a line bundle with the zero
section deleted over a 3-dimensional affine variety which is isomorphic to one of the
varieties, X»*(n#0), Wax, Sz, Sy and Ss.

6. 4-dimensional quasi-homogeneous S-varieties

In this section we shall determine the 4-dimensional quasi-homogeneous S-varieties.
In section 4, it was shown that there may occur only five cases as follows; G=SL,, SL,
X SLy X SLy, SL3, SL3 X Gy Spas SLy X G X Gy -

ProPOSITION 6.1. The cases G=SL3z X G, and G=SL, X G,, X G,, can not occur.

Proor. Case G=SL3;XG,,.

Clearly H=Gx is 5-dimensional and dim (HNSL3)=4. It is clear that the subgroups
SL; of dimension larger than 3 are ones of the following types;

a b c¢ a b c a b O
P= [d e f] Q= [a’ e f:l;hdZ]- N= [c d 0]
0 0 g1, 0 0 & , 0 0 e
6-dimensional 5-dimensional 4-dimensional

Since X is an S-variety, H contains a maximal unipotent subgroup U x1 of G (here U is a
maximal unipotent subgroup of SL;). Hence HMNSL; must contain Q. But HNSL;=Q,
otherwise HNSL;=P and hence dim H =6, contradicting to dim H=5. Now since P is
a parabolic subgroup of SL; and P'=PXx G,, =2 H, it follows follows from [7] that, under
the notations in [7], 3(G)=dim G—dim P’'=2 and hence rkg C=dim X—3(G)=2. From
this it is impossible that X is quasi-homogeneous.

Case G=SL; X G,;, X Gy, .

Let H=Gx. As above H must contain a maximal unipotent subgroup Ux1x1 of
G(here U is such one of SL;). Hence H°=U x1x1 because of dim H=1. Similarly, since
P'=UXGuX G, 3(C)=2 and rk ¢C=2. Thus X is not quasi-homogeneous.

Now we introduce the affine variety Va,,...., ns (A) ([5]).
Let ny, nay ooeen... y Msy My, Mgy enne. , ms be positive integers, and X, ...... Xns Y1,
) TP s Zy g aeeens , Zns be the coordinates of Am, An:, ...... , Ans respectively. Con-
sider the morphism
g s e rme s Amx...... x Ans—> AN, N=SI'I ni+mz:—1)
Ly eeeeen , =1 mi

defined by
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where ipgo, ].q_Z_O, kr%o, 2.1 +..een +in1 =my, j1 e + 1'n2 S (Y , k1 “+...... +k”s =Ms.

For n,, ...... , ns positive integers and an r X s—matrix A= (aij) of positive integers, we
define the variety Vu,,...... , ns (A) to be the closure of the image of the morphism
vzll, ...... yais X ...... xvzrl PIEEERER ,nars Anl X ...... X Ans_______)AN X ...... XAN'_’
19 veeees 1 g ecenes s
here N] n1+ajl—'1)
1-1 aji
Note that £[ Vi, , --.... , ns (A)] s isomorphic to the subalgebra of 2[ X, ...... » Xy s eennns Y,
...... s Yuzseooee s Ziy wveen s Zns] generated by the monomials Xit... X y{1...yi%.....zk
1 1

ZF%n s, where L+ ... +imi=ap, 1+ --.... FXn,=Apzy.ee-e- s Ryttt +kn,=aps (p=1, 2
ey 7).

ProposiTION 6.2. If G is either SLy or Sp,, the 4-dimensional quasi-homogeneous S-
variety of G is isomorphic to V(B) where B=t(n,, ...... , Ms) Niy positive integers.

Proor. Case G=SL,.

Consider the standard representation ¢ : G—>GL(4, C). Let o4, g5, and o3 be the
basic weights, and let e, e;4 e; and e, 4 e24 e3 be the coresponding leading weight vectors.
By easy calculation we have

1000 a1 a2 0
Either a;; a;2=1 and a;2=a2;=0,
* % k% ds; a2z 0 0
(SL4)91 = (SL4)21Ae2 = or
* ok ok * ok Kk ok
[ i a2 02121 and au=a22=0. I
* ok ok %k * % .

Clearly dim (SLye,=11. Let v=e, @ e, 4e5, it follows that dim (SLy)» =7 and hence X (o,
+4-0,)=SL,(») is 8-dimensional. Similar arguments shows that X (lo;+ma,+nas) is not 4-
dimensional for any triple (/, m, n) of integers of which at least two are positive. There-
fore, since rkoG=1, it follows that if X is of type X(4;, ...... , As) where di=lio1+mioy+
nigs, li, mi, ni; positive integers (=1, 2, ...... , 8), then 4; must be of type lig; (all i), mio,
(all ) or nioz (all ©). On the other hand, since for any pair (oi, g;) there exists an auto-
mophism of Dynkin diagram such that ¢i=0:J, it follows from lemma 8 in [5] that X(», ai,
...... , #s 0i) is isomorphic to X (s, 05, ......, #sa;). So we consider only of the type X (n,0,,

Consider the standard respresentation ¢ with the basic weight ¢;. Then the G-action
on A! is contragradient to the action,

Xj—ra1; X1 X @i Xo X asjXsx asiXy, j=1,2,3, 4.
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where X;, X, X5 and X, are the coordinates of A*.
LeMMA. The A% with the above SLy-action is the S-variety X(o;) of SLy. ([5], lemma 8).

In fact, since G acts transitively on A*—0, X(o,) is A4—0.
By the lemma, it follows that k[AY]=k[X(c)])=k[X, X2 X3, X4l= iosn.n where
=

Sr.: is the algebra generated by the monomials X,i1X,i2X3is X, is, iy +io+is+ig=n ([7]).
Therefore it follows from theorem 6 in [7] that 2T X (n;0y,...... , nsdy)] is generated by
monomials X511 X2 X3is X4, 1,V i+ i3+ i, E{ny, ng, -..... , ns}=the semigroup generated by
Nyyenonn , ns. Hence it follows from the definition of V(B) ([7]) that k[ V«(B)] is isomor-
phic to k[ X(n0,, ...... , nsay)], for B=t(ny, na, ...... , ns). Thus we see X (n,ay, ...... , Ns0q)
=V «B).

Case G=Sp,.

Consider the standard representation ¢ : Sp,——>GL(4, C). Let 7; and r; be the basic
weights and let e¢; and e, 4¢; be the corresponding leading weight vectors. By the similar
calculation to Case G=SLy, (Sp2)e; and (Spz)e, se. are shown to be of the same forms in the
above case. Hence (Sps)e, is of codimension 4. By similar arguments to case G=SL, we
may assume that X is X (n, 7y, no7y, -..... , NsTy).

We may consider the representation space of ¢ as the vector space V spanned by the
indeterminates x;, x5, x3 and x4. Since nr; is the basic weight of the n-th tensor product
of ¢, the representation corresponding to #nz; is the vector space V, spanned by the mono-

mials of degree # in x4, X2, X3, x4. Then V=V, ®...... @® Vaus. Regarding x, as the lead-
ing weight vector of r; and let vy=x"+...... +x7°, we have
000
* x * x| fd—1 where
(Sp2)e = ;

*
«
—o
w
@
O
)
~
B
<
S
4
S
N
S—.

* * * ------
%* * ok
On the other hand, if we cansider V as the representation space of the standard re-
presentation ¢ with the basic weight ¢, and the leading weight vector x,, it is easy to see

that (SLy)y» for v=x,m+...... +xy7s.
Thus, we have an inclusion: Sp;/(Sps)v——>SL4s/(SLy)» and dim Spy/(Sps)y=dim SL,

*

/(SLg)y. If we denote by Y the S-variety X (n;0y, --.... , nsay) of SLy, this implies that X
is isomorphic to Y. Consequently X is also isomorphic to V,(B). Q.E.D.
ProposiTION 6.3. If G=SLy; xSLy,x SL;, the 4-dimensional quasi-homogeneous S-
varieties of G are isomorphic to Vs, 3, o(A), where A=t [, I, ...... Is » liy mi, ni positive
{ml my ...... ms]
n, Ny ...... ns

integers and rank A=1.
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Proor. Let 7i : G=SLyx SLy X SL,—>SL, be the i-th projection, i=1, 2, 3, and p : SLy—>
GL(2, C) the standard representation. We consider the representation ¢ : Gi—>GL(6, C)
defined by the direct sum of the representations pe7; with the basic weight o:.

Consider any 4-dimensional S-variety X(4,,...... , As), di=lio+mioy+nios(i=1, 2, ...
..,s) of G. It is quasi-homogeneous, because we have 3(G)=3 and hence rkg (C)=1.
Moreover rko(C)=1 implies that the polyhedral cone K=@Q+ G spanned by the 4i,s is one
dimensional and hence rank A=1.

By considering ¢, we have a G-action on A%=A2® A2@ A? contragredient to the ac-
tion

(X1, Xay Yy, Yo, 2y, Z5)—(X1, X, Yy, Yo, 24, Z5)[ (aij) 0 0
0 (bij) 0
0 0 (cij)
for (aij) % (bij) < (¢cij) & SLyx SLy x SLy, where X, X,, Y,, Y5, Z, and Z, are the coordinates
of AS.
LEMMA. The A® with the above G-action is the S-variety X(ay, 03, 03) of G, ([6], lemma
11).
It is easy to prove Lemma.
By the lemma we have that k[AS]1=k[Xoay, 05, 031=k[X;, X5, Y3, Y5, Z4, Z2]= 33

Lmnao
Sto1+moz+nss Where Sig, +ma2+n0s 1S the algebra generated by the monomials X;#1.X,2¥Y;7

Yyi:Z\k1Z,k: where ip, jq, Br =0, i1 +is=/, j;+j.=m, and k;+k,=n. Therefore by theorem
6 in [7[, we see that 2[X(4,,...... , As)] is the algebra generated by the monomials X;i:
Xoi2 Y 111Y 02 Z k1 Z5k2 where (iy+is, j1+Jo2, B+ E2) E { (4, my, #y), -..... , (Is, ms, ns)} (the semi-
group generated by these triples). Hence it follows from the definition of V3, (A) that
k[X] is isomorphic to 2[ V; 5 2(A)]. This implies ehat X is isomorphic to V3,2 2(A).
Q.E.D.

References

[1] BIRKES, D.: Orbits of linear algebraic groups. Anna of Math. 93 (1971), 459-475.

[2] HumpHREYs, J. E.: Introduction to Linar Algebraic Groupes. Springer Verlag. 1975.

[3] Mostow, D.: Extensions of representations of algebraic linear groups.

[4] Porov, V. ].: Quasi-homogeneous affine algebic varieties of SL(2). Izv. Akad. Nauk SSSR, Ser. Mat.
37(1973) = Math. USSR Izv. 7 (1973), 793-831.

[5] Porpov, V. L.: Classification of 3-dimentonal quasi-homogeneous algebraic varieties. lzv. Akad.
Nauk SSSR, Ser. Mat. 39 (1975), 566-609.

[6] Porov, V.L.: Classification of affine algebraic surfaces. lzv. Akad. Nauk SSSR, Ser. Mat. 37 (1973),
= Math. USSSR Izv. 7 (1973), 1539-1059.

[7] Porov, V. L. and VINBERG, E. B.: On a class of quasi-homogeneous affine varieties. lzv. Akad. Nauk
SSSR, Ser. Mat. 36(1972),=Math. USSR Izv. 6 (1972), 743-758.

[8] VINBERG, E. B.: Algebraic transformation groups of maximal rank. Mat. Sb. 88 (1972), 493-503.

[9] SERRE, J. P.: Espaces fibres algebriques. Semi. C. Chevalley E. N.S. (1958).



	Introduction
	1. Preliminaries
	THEOREM ([2]) ...

	2. Possibility of semi-simple ...
	THEOREM. Let ...

	3. Subgroups of $P$ with ...
	THEOREM. ([1])(1) ...

	4. 4-dimensional quasi-homogeneous ...
	5. 4-dimensional homogeneous ...
	6. 4-dimensional quasi-homogeneous ...
	References

