A Spectral Characterization of a Class of C*-algebras

By

Tadashi Huruya*

(Received October 10, 1977)

1. Introduction

R. A. Hirschfeld and B. E. Johnson [2] studied those C*-algebras of which every selfadjoint element has a finite spectrum. T. Ogasawara and K. Yoshinaga [4] proved that a C*-algebra is dual if and only if every self-adjoint element has a spectrum without limit points other than zero. In this paper we present conditions on a C*-algebra under which every self-adjoint element has a countable spectrum.

2. Preliminaries

We state at first the definition of a dual C*-algebra.

A C*-algebra A is called dual if there is a Hilbert space H such that A is *-isomorphic to a C*-algebra of the C*-algebra of all compact operators on H.

A C*-algebra A is called liminal if for every irreducible representation π of A, $\pi(a)$ is compact for each $a \in A$.

If A is a C*-algebra, A^* denotes its conjugate space and A^{**} denotes its second conjugate space. Assuming A is in its universal representation, then the σ -weak closure of A can be identified with A^{**} .

If A and B are C*-algebras, $A \otimes_{\alpha} B$ denotes their spatial C*-tensor product, $A^{**} \otimes^{-} B^{**}$ denotes the W*-tensor product of A^{**} and B^{**} , and $A^{*} \otimes_{\alpha'} B^{*}$ denotes the norm closure of the algebraic tensor product of A^{*} and B^{*} in $(A \otimes_{\alpha} B)^{*}$.

If X is a compact Hausdorff space, C(X) denotes the C*-algebra of all continuous functions on X, and $C(X)^{*+}$ denotes the set of all positive linear functionals on C(X). By the Riesz representation theorem we can identify $C(X)^{*}$ with the space of all bounded complex regular Borel measures on X. We recall that a pure atomic functional ϕ on C(X)is of the form:

$$\phi = \sum_{i=1}^{\infty} \alpha_i \, \delta_{t_i} \, ,$$

where $\{\alpha_i\}$ is a sequence in the complex field with $\sum_{i=1}^{\infty} |\alpha_i| < \infty$, $\{t_i\}$ is a sequence in X, and ∂_t denotes the evaluation functional of a point $t \in X$.

* Niigata University

T. Huruya

The following lemma is obtained by a method similar to [3, Lemma].

LEMMA 1. Let X be a compact Hausdorff space. Suppose that $(C(X)\otimes_{\alpha} C(X))^* = C(X)^* \otimes_{\alpha'} C(X)^*$. Then every self-adjoint element of C(X) has a countable spectrum.

PROOF. For $\phi \in C(X \times X)^*$, define $\phi_{\Delta} \in C(X \times X)^*$ by

$$\phi_{\Delta}(a) = \int \int_{X \times X} \chi_{\Delta}(s, t) a(s, t) d\phi(s, t)$$

where χ_{Δ} denotes the characteristic function of the diagonal set $\Delta = \{(t, t) : t \in X\}$. Let μ , $\nu \in C(X)^*$. By the Fubini theorem, we have

$$(\mu \times \nu)_{d}(a) = \iint_{X \times X} \chi_{d}(s, t) a(s, t) d\mu(s) d\nu(t)$$
$$= \iint_{X} \left(\int_{X} \chi_{d}(s, t) a(s, t) d\mu(s) \right) d\nu(t)$$
$$= \iint_{X} a(t, t) \mu(\{t\}) d\nu(t) .$$

Since $\{t \in X : \mu(\{t\}) \neq 0\}$ is at most countable, $(\mu \times \nu)_d$ is purely atomic. Now, $C(X) \otimes_a C(X)$ can be identified with $C(X \times X)$. Hence each element of $\{\phi_d : \phi \in C(X \times X^*\}$ is purely atomic since the subspace of all purely atomic functionals on $C(X \times X)$ is closed.

Let $\Psi \in C(X)^*$. For $a \in C(X \times X)$, define $\Psi^- \in C(X \times X)^{*+}$ by

$$\Psi^{-}(a) = \int_X a(t, t) d\Psi(t) \, .$$

Since Δ contains the support of $\Psi^-{}_{\Delta} = \Psi^-$. Thus, Ψ^- is of the form:

$$\Psi^{-}=\sum_{i=1}^{\infty}\alpha_{i}\delta_{(t_{i}, t_{i})}.$$

For a positive element $a \in C(X)$, the function $a^-: (s, t) \longrightarrow a(s)^{1/2} a(t)^{1/2}$ is in $C(X \times X)$. Then we have

$$\Psi(a) = \Psi^{-}(a^{-}) = \sum_{i=1}^{\infty} a(t_i)^{1/2} a(t_i)^{1/2} = (\sum_{i=1}^{\infty} a_i \, \delta_{t_i})(a) \,.$$

Therefore, Ψ is purely atomic. It follows from [5, Theorem] that every self-adjoint element of C(X) has a countable spectrum.

LEMMA 2. Let A be a C*-algebra. Suppose that $(A \otimes_{\alpha} B)^* = A^* \otimes_{\alpha'} B^*$ for an arbitrary C*-algebra B. Then every self-adjoint element of A has a countable spectrum.

PROOF. Let h be a self-adjoint element of A and C be a maximal commutative selfadjoint subalgebra of A which contains h. It is easy to see that

$$(C\otimes_{\alpha}C)^*=C^*\otimes_{\alpha'}C^*.$$

By Lemma 1, h has a countable spectrum. This completes the proof.

LEMMA 3. Let A be a C*-algebra. Suppose that A contains a minimal projection. Then A contains a non-zero dual closed two-sided ideal.

PROOF. Let J be the closed two-sided ideal generated by a minimal projection. Then

J is a minimal ideal. Since J is simple and contains a minimal projection, the image of an irreducible representation of J is *-isomorphic to the C*-algebra of all compact operators on the representation space. Hence J is dual.

3. Theorem

We are in the position to state and prove our theorem.

THOEREM. Let A be a C*-algebra. Then the following statements are equivalent:

(1) Every self-adjoint element of A has a countabe spectrum.

(2) A has a composition series $(I_{\rho})_{0 \leq \rho \leq \alpha}$ such that $I_{\rho+1}/I_{\rho}$ is dual.

(3) The second conjugate space of A is atomic, that is, it is a sum of factors of type I.

PROOF. If A has no identity element, A_1 denotes the C*-algebra obtained by adjoining an identity element to A. It is easy to see that each of the three statements holds if it holds with A_1 in place of A. Thus there is no loss of generality in assuming that A has an identity element.

 $(1)\longrightarrow(2)$. The proof is a modification of the method used by J. Tomiyama [7]. We first show that there is a minimal projection in A. Let C be a maximal commutative self-adjoint subalgebra of A and let X be the carrier space of C. Since C has an identity element, X is compact. Then the Gelfand transformation: $x \longrightarrow x^{\wedge}$ is a *-isomorphism of C onto C(X). Let x' be a real function of C(X). Then we have a unique element x of C such that $x^{\wedge} = x'$. The range of x' is the spectrum of x, which is countable. By [5, Theorom], X has no perfect set. Therefore, there is at least one isolated point x_0 in X, and so the characteristic function p of $\{x_0\}$ is a minimal projection in C(X).

Identifying C with C(X), we may assume that p belongs to C. Let q be a non-zero positive element of A such that $q \leq p$. For each $a \in C$, we have $ap = pa = \gamma p$ for some complex number γ . Then $aq = apq = \gamma q = qa$. Since C is a maximal commutative self-adjoint subalgebra of A, q belongs to C and $q = \delta p$ for some positive real number δ . Thus there is a minimal projection in A. It follows from Lemma 3 that A contains a non-zero dual closed two-sided ideal.

Finally, let J be an arbitrary closed two-sided ideal in A. Then every self-adjoint element of A/J has a countable spectrum. By the above argument, A/J has a non-zero dual closed two-sided ideal. By transfinite induction there is a composition series $(I_{\rho})_{0} \leq \rho \leq \alpha$ such that $I_{\rho+1}/I_{\rho}$ is dual.

(2) \longrightarrow (3). Let I_{ρ}^{-} be the σ -weak closure of I_{ρ} in A^{**} . Since I_{ρ}^{-} is a σ -weakly closed two-sided ideal in A^{**} , there is a central projection z_{ρ} such that $I_{\rho}^{-} = A^{**}z_{\rho}$. Then $A^{**}(z_{\rho+1}-z_{\rho})$ is the σ -weak closure of the image of representation of $I_{\rho+1}/I_{\rho}$. Since the second conjugate space of a dual C*-algebra is atomic, so is $A^{**}(z_{\rho+1}-z_{\rho})$. Then we have that $A^{**}=\sum_{\rho}A^{**}(z_{\rho+1}-z_{\rho})$. Thus, A^{**} is also atomic.

(3) \longrightarrow (1). Let f be a state on $A \bigotimes_{\alpha} B$, and let π be the representation of $A \bigotimes_{\alpha} B$ corresponding to f. By [1, Proposition 1] there are representations π_A and π_B of A and B,

respectively, such that $\pi(x \otimes y) = \pi_A(x) \pi_B(y) = \pi_B(y) \pi_A(x)$ for $x \in A$ and $y \in B$. Since A^{**} is atomic, the σ -weak closure of $\pi_A(A)$ is atomic. Hence, the map: $\pi_A(x) \otimes \pi_B(y) \longrightarrow \pi(x \otimes y)$ extends to a normal homomorphism of $\pi_A(A)^- \otimes \pi_B(B)^-$. Thus, $f \in A^* \otimes_{\alpha'} B^*$, and so $(A \otimes_{\alpha} B)^* = A^* \otimes_{\alpha'} B^*$. Then Lemma 2 implies (1). This completes the proof

REMARK 1. P. Wojtaszczyk [8] considered other conditions in the separable case.

REMARK 2. Let A and B be C*-algebras. By [9, Theoreme 1] there is a canonical *-isomorphism π of $A \otimes_{\alpha} B$ into $A^{**} \otimes^{-} B^{**}$. Then π has a unique normal extension π^{-} to $(A \otimes_{\alpha} B)^{**}$; π^{-} is a *-homomorphism of $(A \otimes_{\alpha} B)^{**}$ onto $A^{**} \otimes^{-} B^{**}$. If π^{-} is a *-isomorphism, we shall say that $(A \otimes_{\alpha} B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes^{-} B^{**}$. It is easy to see that $(A \otimes_{\alpha} B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes^{-} B^{**}$ if and only if $(A \otimes_{\alpha} B)^{*}$ $= A^{*} \otimes_{\alpha'} B^{*}$ (see [6, pp. 66–67]). Thus, each of the three statements of the Theorem is equivalent to the following:

(4) For an arbitrary C*-algebra B, $(A \otimes_{\alpha} B)^{**}$ is canonically *-isomorphic to $A^{**} \otimes^{-} B^{**}$.

References

- [1] A. GUICHARDET, Caractères et représentations de produits tensoriels de C*-algèbres. Ann. Sci Éc. Norm. Sup., 81 (1964), 189-206.
- [2] R. A. HIRSCHFELD and B. E. JOHNSON. Spectral characterization of finite dimensional algebra. Indag. Math., 34 (1972), 19-23.
- [3] T. HURUYA. The second dual of a tensor product of C*-algebras III. Sci. Rep. Niigata Univ. Ser. A, 13 (1976), 25-29.
- [4] T. OGASAWARA and K. YOSHINAGA. A characterization of dual B*-algebras. J. Hiroshima Univ. Ser. A, 18 (1954), 179–182.
- [5] A. PELCZYNSKI and Z. SEMADENI. Spaces of continuous functions III. Studia Math., 18 (1959), 211–222.
- [6] S. SAKAI. C*-algebras and W*-algebras, Springer-Verlarg, 1971.
- [7] J. TOMIYAMA. A characterization of C*-algebra whose conjugate spaces are separable. Tôhoku Math. J., 6 (1963), 96-102.
- [8] P. WOJTASZCZYK. On linear properties of separable conjugate spaces of C*-algebras. Studia Math., 52 (1974), 143-147.
- [9] A. WULFSOHN. Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.