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0. Introduction and statement of a result

In [4], W.-C. Hsiang and W.-Y. Hsiang investigated smooth actions of classical groups
on smooth manifolds with vanishing l-st rational Pontrjagin classes. After them, E. A.
Grove [2] studied smooth SU(n)-actions in more detail.

We note that their studies have the restrictions of dimensions of manifolds, and so it
is reasonable that we want to remove those restrictions. But, of course, we need another
assumption that a group, which acts on a manifold with vanishing l-st and 2-nd rational
Pontrjagin classes, is $SU(6)$. The reason which makes us take $SU(6)$ is only that $SU(6)$

has the classification of its semisimple subgroups in [3].

In this paper, we have all possibilities of identity components of principal isotropy
subgroups of $SU(6)$ which acts on a manifold of arbitrary dimension with vanishing l-st
and $2\cdot nd$ Pontrjagin classes.

THEOREM 0.1

Let $SU(6)$ act smoothly on a smooth manifold with vanishing l-st and 2-nd rational
Pontriagin classes. Then the type of identity components of principal isotropy groups of this
action is one of the followings.

$A_{5}(=SU(6))$ ,

$A_{4}^{1}$ ,

$A_{3}^{1}$ , $A_{3}^{2}$ , $A_{2}^{1}\cdot A_{1}^{1}$ , $A_{1}^{1}\cdot A_{1}^{1}\cdot A_{1}^{1}$ ,

$A_{2}^{1}$ , $A_{2}^{2},$ $A_{2}^{5},$ $A_{1}^{1}\cdot A_{1}^{\iota}$ , $A_{1}^{2}\cdot A_{1}^{2},$ $A_{1}^{4}\cdot A_{1}^{4}$ , $B_{2}^{1}$ , $B_{2}^{2}$ ,

$A_{1}^{1},$ $A_{1}^{2},$ $A_{1}^{3},$ $A_{1}^{4},$ $A_{1}^{5},$ $A_{1}^{8}$ , $A_{1}^{10},$ $A_{1}^{11},$ $A_{1}^{20},$ $A_{1}^{35}$ ,
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and $\{e\}$ , where $e$ is the identi $ty$ of $SU(6)$.

1. Notations and preminary results

Let $M$ be a smooth manifold, $Pj(M)$ and $P(M)$ the rational j-th and total Pontrjagin
classes respectively.

Let $G$ be $SU(n),$ $H$ a closed connected subgroup of $G$ with the inclusion $\lambda;H\rightarrow G$.
We denote a maximal torus of $H$ by TH. Let $\eta(TH)$ be a TH-universal bundle, $\tau_{\eta(TH)}$ the
transgression in $\eta(T_{H})$. We write $\tau$ instead of $\tau_{\eta(T_{H})}$ .

Now we recall the following results in [2] which are useful for our purpose.

PROPOSITION 1. 1

Put $\Delta^{+}(H)$ the positive root system of $H$, and $\Omega(\lambda)$ the wecght system of $\lambda$ . Then $P_{1}(G/H)$

$=0$ if and only if there is a rational number $k$ such that

$\omega\in\Omega(\lambda)k\Sigma(\tau(\omega))^{2}=\Sigma(\tau(a))^{2}a\in\Lambda+(H)$

We set $s+(X_{1}, X_{2}, \cdots\cdot, Xk)$ the ring of symmetric polynomials with zero constant term.

PROPOSITION 1. 2

Suppose $P_{1}(G/H)=0$. Then $P_{2}(G/H)=0$ if and only if $\sigma_{2}(\tau(\alpha)^{2})\in<S^{+}(\tau(\omega))>$ : the
ideal in $H^{*}(B\tau_{H})$ , where $\sigma(\tau(\alpha)^{2})=\sigma_{2}(\tau(\alpha_{2})^{2}, \cdots\ldots , \tau(\alpha l)^{2})$ ,

$\Delta^{+}(H)=\{a_{1},\cdots\cdots, \alpha_{l},\}$ ,

$S^{+}(\tau(\omega))=S^{+}(\tau(\omega_{1})),\cdots\cdots,$ $\tau(\omega_{m}))$,

$\Omega(\lambda)=\{\omega_{1}, \cdots\cdots, \omega_{m}\}$ .
We have some corollaries of (1. 1) and (1. 2).

COROLLARY 1. 3

Let $H$ be a closed subgroup of rank 1 in G. Then $P(G/H)$ is trivial.

COROLLARY 1. 4 ([2] pp. 342, lemma 2.7)

Let $H$ be a closed subgroup of $G$ such that $P_{1}(G/H)=0$. Then either the identity com-
ponent $H_{0}$ of $H$ is a toral subgroup or $H$ is semisimple.

COROLLARY 1. 5 ([1])

Let $T$ be a toral subgroup of G. Then $P(G/T)$ is trivial.

REMALK: In (1. 5), we may take $G$ any compact Lie group.
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2. Caluculations

In this section, we will clasify closed subgroups $H$ of $SU(6)$ such that $SU(6)/H$ has
the vanishing l-st and $2\cdot nd$ rational Pontrjagin classes (Proposition 2.2).

We have the following lemma to simplify our many caluculations.

LEMMA 2. 1

Let $K\subset H$ be subgroups of $G$, and $K$ a regular subgroup of H. Then if $P_{1}(G/H)$ is
vanishing, $P_{1}(G/K)$ is also vanishing. Moreover if $P_{1}(G/H)$ and $P_{2}(GH)$ are vanishing,
$P_{1}(G/K)$ and $ P_{2}(G/K\gamma$ are also vanishing.

PROOF

We put $lK$ the Lie algebra of $TK$, and let $\lambda_{1}$ : $K\rightarrow H,$ $\lambda_{2}$ : $H\rightarrow G$ and $\lambda=\lambda_{2}\circ\lambda_{1}$ : $K$

$\rightarrow Gbe$ the inclusions. Then we have $\Delta^{+}(K)=\Delta^{+}(H)|l_{K}$ and $\Omega(\lambda)=\Omega(\lambda_{2}\circ\lambda_{1})=\Omega(\lambda_{2})|l_{K}$ .
Therofore the lemma follows from (1.1) and (1.2) immediately. q.e.$d$.
PROPOSITION 2. 2

Let $H$ be a semisimple closed subgroup of $SU(6)$. Then the $1\cdot st$ and $2\cdot nd$ rational $Pon$.
friagin classes are following, where $H^{o}$ means that $P_{1}(SU(6)/H)$ is not zero, $H^{*}$ means that
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$P_{1}(SU(6)/H)=0$ and $P_{2}(SU(6)/H)\neq 0$ and $H^{**}$ means that both $P_{1}(SU(6)/H)$ and $P_{2}(SU(6)$

$/H)$ are zero.

PROOF

We prove it at only the case $H=B_{2}^{2}$ . In this case, the defining matrix $f$ of $B_{2}^{2}$ in $A_{5}$

is

$\left(\begin{array}{lllll}1 & 0 & 0 & 0 -1 & 0\\0 & 1 & 0 & 0-l & 0\end{array}\right)$

(see [3]). Therefore we have $\Omega(\lambda)=\{y_{1}, y_{2}, -y_{1}, -y_{2},0,0\}$ , where $y_{1},$ $y_{2}$ are the canonical
basis of $1B_{2}$ , and so we have

$\Sigma\omega^{2}=2f_{1}+2f_{2}$ .
Since $\Delta^{+}(b)=\{y_{1}+y_{2}, y_{1}-y_{2}, y_{1}, y_{2}\}$ , we have

$\Sigma\alpha^{2}=3f_{1}+3y_{2}^{2}$ .

Henth $\frac{2}{3}\Sigma\omega^{2}=\Sigma\alpha^{2}$ .
On the other hand, we have

$\sigma_{2}(\alpha^{2})=\sigma_{2}((y_{1}+y_{2})^{2}, (y_{1}-y_{2})^{2},$ $y_{1}^{2},$ $y_{2}^{2}$)

$=6y_{1}^{4}+6y_{2}^{4}+17y_{1}^{2}y_{2}^{2}$

$=11(\sigma_{2}(\omega))^{2}-5\sigma_{4}(\omega)$ ,

and so $\sigma_{2}(\alpha^{2})$ is in $<S^{+}\omega>$ .
Therefore we conclude $Pi(SU(6)/H)=0$ for $i=1,2$ by (1.1) and (1.2).

Moreover we have $Pi(SU(6)/A_{1}^{2}\cdot A_{1}^{2})=0$ for $i=1,2$ by (2.1).

The remainded cases can be proved similarly. q.e.$d$ .

3. Proof of Theorem 0.1

Let $H$ be a principal isotropy group of G. and $i:G/H\rightarrow M$ a inclusion. Then
$i^{*}(P_{j}(w)=P_{j}(G/H^{\sim})$ for any $j=0,1,$ $\cdots\ldots$ Therfore the theorem follows from (2.2).

q.e.$d$ .
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