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1. Introduction

In recent years considerable attention has been given to Markov games with a speci-
fied discount factor $\beta,$ $0\leqq\beta<1$ , so that the unit reward on the nth day is worth only $\beta^{n-1}$ .
The optimization problem, then, is to maximize the total expected discounted gain of
player I as the game proceeds over the infinite future and to minimize the total expected
loss of player II.

But, if $\beta=1$ , the total expected gain of player I or total expected loss of player II may
diverge. Then, we need to consider the expected average reward as a criterion of opti-
mality. For this reason, in this paper, we shall treat the problem, that is, to maximize
the expected average gain per unit time of player I as the game continues on the infinite
future and to minimize the expected average loss per unit time of player II. Then, under
this criterion and some assumptions, we shall show that Markov game has a value and,
moreover, we shall give an algorithm for finding the value of the game and for finding
$\epsilon$-optimal strategies. Furthermore, we shall show that, under some assumptions, Markov
game with the expected average reward criterion is reduced to one with some specified
discount factor.

This paper consists of four sections. In Section 2, we shall give the formulation of
the problem treated by us in this paper. In Section 3, we shall show the existence of
optimal stationary strategies and give an algorithm for finding $\epsilon\cdot optimal$ strategies.

2. The formulation of the problem

In this paper, our Markov game is determined by a tupel $(S, A, B, q, r)$ . Here, $S$ is
a non-empty Borel subset of a Polish space, the set of states of a system; $A$ is a non-empty
Borel subset of a Polish space, the set of actions available to player I; $B$ is a non-empty

Borel subset of a Polish space, the set of actions available to player II; $q$ is the law of
motion of the system, it associates Borel measurably with each triple $(s, a, b)\in S\times A\times B$ a
probability measure $q(\cdot|s, a, b)$ on the Borel measurable space $(S, oe(S))$ , where $oe(S)$ is
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the $\sigma- field$ generated by the metric on $S;r$, the reward function, is a bounded Borel
measurable function on $S\times A\times B$.

Periodically, player I and player II observe the current state $s$ and choose actions $a$

and $b$ according to the current state $s$ and the full knowledge of the history of the system.
As a consequence of the actions chosen by the players, player II pays player I reward
$r(s, a, b)$ units of money and the system moves to a new state $s^{\prime}$ according to the condi-
tional distribution $q(\cdot|s, a, b)$. Then, the whole process is repeated from the new state
$s^{\prime}$ . Here, our optimization problem is to maximize the expected average gain per unit
time of player I and to minimize the expected average loss per unit time of player II.

A strategy $\pi$ for player I is a sequence of $\pi_{1},$ $\pi_{2},\ldots$ , where $\pi_{\hslash}$ specifies the action to be
chosen by player I on the nth time by associating Borel measurably with each history
$h_{n}=(s_{1}, a_{1}, b_{1}, s_{2}, \ldots, a_{n-1}, b_{n-1}, s_{n})$ of the system a probability distribution $\pi_{n}(\cdot|h_{n})$ on
$(A, R(A))$. A strategy $\pi$ is, particularly, said to be stationary if there is a Borel measur $\cdot$

able map $f$ from $S$ into PA such that $\pi_{n}=f$, for all $n$, where PA is the set of all probability
measures on ($A$ , es $(A)$). $\Pi$ denotes the class of all strategies for player I. Strategies
and stationary strategies for player II are defined analogously. $\Gamma$ denotes the class of all
strategies for player II.

For each $n$, a pair $(\pi, \sigma)$ of the strategies for player I and player II associates with
each initial state $s$ the total expected reward $I_{n}(\pi, \sigma)(s)$ of player I up to the nth time
and the expected average gain per unit time of player I up to the nth time:

$I_{n}(\pi, \sigma)(s)$

(2. 1)
$n$

Then, player I wants to maximize

$\varlimsup_{n\rightarrow\infty}\frac{I_{n}(\pi,\sigma)(s)}{n}$ (2. 2)

and player II wants to minimize

$\varliminf_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}$ (2. 3)

For each $n$ the function $I_{n}(\pi, \sigma)$ is, plainly, Borel measurable and, consequently,

$\varlimsup_{\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}$ and

are Borel measurable.

$\varliminf_{n\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}$

A strategy $\pi^{*}$ is optimal for player I if for all strategies $\sigma^{\prime}$ for player II and all $s\in S$,

$\inf_{\sigma\in\Gamma}\sup_{n\in\Pi}\varlimsup_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}S\varliminf_{n\rightarrow\infty}$ $\frac{I(\pi^{*},\sigma^{\prime})(s)}{n}$ (2. 4)

A strategy $\sigma^{*}$ is optimal for player II if for all strategies $\pi^{\prime}$ for player I and all $s\in S$,
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$\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}\geqq\varlimsup_{n\rightarrow\infty}$ $\frac{I_{n}(\pi^{\prime},\sigma^{*})(s)}{n}$ . (2. 5)

We shall say that the Markov game has a value if for all $s\in S$,

$\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}=\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{n\rightarrow\infty}$ $\frac{I_{n}(\pi,\sigma)(s)}{n}$ . (2. 6)

In case the Markov game has a value, the quantity

$\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}$

as a function on $S$, is called the value function.

3. Existence of optimal stationary strategies

In this section, we shall study the existence of optimal stationary strategies for our
Markov game. First, we shall state several assumptions and lemmas necessary for the
proofs of main results. We shall assume the following assumptions: (A1) $S,$ $A$ and $B$

are compact metric spaces, (A2) $r=r(s, a, b)$ is a continuous function $mS\times A\times B$, (A3)

whenever $Sn\rightarrow s_{0},$ $a_{n}\rightarrow a_{0}$ and $b_{n}\rightarrow b_{0},$ $q(\cdot|s_{n}, a_{n}, b_{n})$ converges weakly to $q(\cdot|s_{0},$ $a_{0}$,
$b_{0})$, (A4) there exist a continuous function $u(s)$ on $S$ and a constant $d$ such that for each
$s\in S$,

$d+u(s)=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\int_{S}u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ , (3. 1)

where, for each $\mu\in PA$ and $\lambda\in PB$ ,

$r(s, \mu, \lambda)=\int\int r(s, a, b)d\mu(a)d\lambda(b)$ (3. 2)

and, for each $ E\in$ es $(S),$ $\mu\in PA$ and $\lambda\in PB$ ,

$q(E|s, \mu, \lambda)=\int\int q(E|s, a, b)d\mu(a)d\lambda(b)$ . (3. 3)

Then, by (A1), PA and $PB$, endowed with weak topology, are compact metric spaces.
Moreover, from (A1) and (A3), we can show the following lemmas:

LEMMA 3. 1 Let $f(s, a, b)$ be a continuous, real-valued function on $S\times A\times B$. Then,
$f(s, \mu, \lambda)=\int\int f(s, a, b)d\mu(a)d\lambda(b),$ $s\in S,$ $\mu\in PA,$ $\lambda\in PB$ is a continuous function on $S\times PA$

$\times P_{B}$.
LEMMA 3. 2 Let $u$ be a bounded, continuous, real-valued function on $X\times Y$, where $X$ is

a Borel subset of a Polish space and $Y$ is a compact metric space. Then, $u^{*}(x)=\max_{y\in Y}u(x, y)$

is continuous. Moreover, $u_{*}(x)=\min u(x, y)$ is also continuous.
These lemmas are given in $[1]y\in.Y$
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Let $C(S)$ denote the family of all bounded, continuous functions on $S$. For $u\in C(S)$

we define $\Vert u\Vert=\sup_{s\in S}|u(s)|$ . Then $(C(S), d)$ is a complete metric space, where $d(u, v)=$

$\Vert u-v\Vert$ for each $u,$ $v\in C(S)$ . For each $\mu\in PA$ and $\lambda\in PB$, we define an operator $L(\mu, \lambda)$ on
$C(S)$ as follows: for each $u\in C(S)$ and $s\in S$,

$L(\mu, \lambda)u(s)=r(s, \mu, \lambda)+\int_{S}u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)$ (3. 4)

Then, by virtue of Lemma 3. 1, $L(\mu, \lambda)u$ is a continuous function on $S\times PA\times PB$. Since
$L(\mu, \lambda)u$, PA and PB satisfy the conditions of Sion’s minimax theorem (Theorem 3. 4 of
[41), we can show that for each $u\in C(S)$,

$\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}L(\mu, \lambda)u(s)=\inf_{\lambda\in P_{B}}\sup_{\mu\in P_{A}}L(\mu, \lambda)u(s)$ . (3. 5)

Moreover, since $L(\mu, \lambda)u(s)$ is continuous on $S\times PA\times PB$ and PA and PB are compact, $\sup$

and inf can be replaced by $\max$ and $\min$ , respectively, and we can prove the following
lemma under (A1), (A2) and (A3).

LEMMA 3. 3 For each $u\in C(S)$, there exist Borel measurable maps $\mu_{*}$ and $\lambda_{*}from$ $S$

into PA and $PB$, such that

$\min_{\lambda\in P_{B}}L(\mu_{*}, \lambda)u(s)=\max_{\mu\in}\min_{P_{A^{\lambda\in P_{B}}}}L(\mu, \lambda)u(s)$
(3. 6)

$=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}L(\mu, \lambda)u(s)$

$=\max_{\mu\in P_{A}}L(\mu, \lambda_{*})u(s)$

$=L(\mu_{*}, \lambda_{*}]u(s)$ .
The proof of this lemma is stated in Lemma 2. 4 of [1].

Then, under (A1), (A2), (A3) and (A4), we can prove Theorem 3. 1, Theorem 3. 2
and Theorem 3. 3 by using the lemmas.

THEOREM3. 1 $OurMarkovgamehasavalueinasenseof(2.6),$ $i.e.,$ $foraIIs\in S$,

$\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{n\rightarrow\infty}$

$\frac{I_{n}(\pi,\sigma)(s)}{n}=\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{n\rightarrow\infty}$ $\frac{I_{n}(\pi,\sigma)(s)}{n}$ , (3. 7)

and player I and player $\Pi$ have optimal stationary strategies.

PROOF. By (A4) and Lemma 3. 3, there exists a Borel measurable map $\mu_{*}$ from $S$

into PA such that

$d+u(s)=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\int_{S}u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$

$=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}L(\mu, \lambda)u(s)$
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$=\inf_{\lambda\in P_{B}}L(\mu_{*}, \lambda)u(s)$ .

For a pair $(\pi, \sigma)$ of the strategies of player I and player II, let $E_{\pi\sigma}$ be an integral oparator
associated with a probability measure on $S$ generated by strategies $\pi$ and $\sigma$. Then, for a
stationary strategy $\mu_{*}^{\infty}=(\mu_{*}, \mu_{*}, \ldots)$ for player I and any strategy $\sigma$ for player II,

$E_{\mu.\infty\sigma}\{\sum_{t-2}^{n+1}[u(s_{t})-E_{\mu_{*}\infty\sigma}[u(s_{t})|h_{t-1}]]\}=0$ , (3. 8)

where $s_{t}$ is the state of the system on tth time.
But, for each $t$, it holds that

$E_{\mu_{*}\infty\sigma\prime}[u(s_{t})|h_{t-1}]$ (3. 9)

$=\int_{S}u(s^{\prime})dq(s^{\prime}|s_{t-1}, \mu_{*}(s_{t-1}),$ $\lambda_{t-1}$)

$=r(s_{t-1}, \mu_{*}(s_{t-1}),$ $\lambda_{i-1}$) $+\int_{S}u(s^{\prime})dq(s^{\prime}|s_{t-1}, \mu_{*}(s_{t-1})$ . $\lambda_{l-1}$)

$-r(s_{t-1}, \mu_{*}(s_{t-1}),$ $\lambda_{t-1}$)

$\geqq\min_{\lambda\in P_{B}}\{r(s_{t-1}, \mu_{*}(s_{t-1}),$
$\lambda$) $+\int_{S}u(s^{\prime})dq(s^{\prime}|s_{t-1}, \mu_{*}(s_{i-1}),$ $\lambda$) $\}$

$-r(s_{t-1}, \mu_{*}(s_{t-1}),$ $\lambda_{t-1}$)

$=\min_{\lambda\in P_{B}}L(\mu_{*}, \lambda)u(s_{t-1})-r(s_{t-1}, \mu_{*}(s_{t-1}),$
$\lambda_{t-1}$)

$=d+u(s_{t-1})-r(s_{t-1}, \mu_{*}(s_{t-1}),$ $\lambda_{t-1}$),

where $\lambda_{t-1}$ denotes a probability measure on $B$ determined by $\sigma_{l-1}\zeta\cdot|ht-1$).

Hence, by (3. 8) and (3. 9), we have

$0\leqq E_{\mu_{*}\infty\sigma}\{\sum_{t-2}^{n+1}[u(s_{t})-(d+u(s_{t-1})-r(s_{t-1}, a_{t-1}, b_{l-1}))]\}$ (3. 10)

or

$d\leqq n^{-1}E_{\mu_{*}\infty\sigma}[u(s_{n+1})]-n^{-1}E_{\mu.\infty\sigma}[u(s_{1})]+n^{-1}I_{n}(\mu_{*}^{\infty}, \sigma)(s_{1})$ , (3. 11)

where

$I_{n}(\mu_{*}, \sigma)(s_{1})=\sum_{t-1}^{n}E_{\mu_{*}\infty\sigma}[r(s_{t}, a_{t}, b_{l})]$ .

Using the fact that $\Vert u\Vert\leqq M$, we get, for any strategy $\sigma$ for player II and all $s\in S$,
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$d\leqq\varliminf_{n\rightarrow\infty}$

$\frac{I_{n}(\mu_{*}^{\infty},\sigma)(s)}{n}$ (3. 12)

Thus, from (3. 12), it holds that for all $s\in S$,

$d\leqq\inf_{\sigma\in\Gamma}\varliminf_{n\rightarrow\infty}\frac{I_{n}(\mu_{*}^{\infty},\sigma)(s)}{n}\leqq\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{n\rightarrow\infty}\frac{I_{n}(\pi,\sigma)(s)}{n}$ . (3. 13)

Similarly, we get, for all $s\in S$,

$d\geqq\sup_{\pi\in\Pi}\varlimsup_{n\rightarrow\infty}\frac{I_{n}(\pi,\lambda_{*}^{\infty})(s)}{n}\geqq\inf_{\sigma\in\Gamma}\sup_{x\in\Pi}\varlimsup_{n\rightarrow\infty}\frac{I_{n}(\pi,\sigma)(s)}{n}$ . (3. 14)

where $\lambda_{*}$ is a Borel measurable map from $S$ into PB satisfying the equation in Lemma
3. 3. On the other hand, it is generally true that, for all $s\in S$,

$\sup_{\pi\in\Pi}jnf\varliminf_{n\sigma\in\Gamma\rightarrow\infty}\frac{I_{n}(\mu,\sigma)(s)}{n}\leqq\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varliminf_{n\rightarrow\infty}\frac{I_{n}(\pi,\sigma)(s)}{n}$ (3. 15)

$\leqq\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{n\rightarrow\infty}\frac{I_{n}(\pi,\sigma)(s)}{n}$ .

By (3. 13), (3. 14) and (3. 15), we have a constant $d$ as the value of the game and $\mu_{*}^{\infty}$ and
$\lambda_{*}^{\infty}$ are optimal stationary strategies for player I and player II, respectivery. Thus the
proof is complete.

Now, we define an operator $T$ on $C(S)$ as follows: for each $u\in C(S)$,

Tu$(s)=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}L(\mu, \lambda)u(s)$ . (3. 16)

Then, by Lemma 3. 2, we can define a sequence of bounded, continuous functions $ d_{n}\in$

$C(S),$ $n=0,1,2,$ $\ldots$ , suth that, for each $s\in S$,

$d_{0}(s)=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}r(s, \mu, \lambda)$ (3. 17)

and

$d_{n+1}(s)=Td_{n}(s),$ $n=0,1,2,$ $\ldots$ . (3. 18)

THEOREM 3. 2 There exists a constant $M$ such that, for all $s\in S$ and $n$ ,

$|d_{n}(s)-nd|\leqq 2M$ . (3. 19)

PROOF. Since $u(s)$ and $r(s, a, b)$ are bounded, there exists a constant $M$ such that,

for all $s\in S,$ $|u(s)|\leqq M$ and $u(s)-M\leqq d_{0}(s)\leqq u(s)+M$

By (3. 18) and (A4), we have, for all $s\in S$,

$d_{1}(s)=Td_{0}(s)$

$=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}L(\mu, \lambda)d_{0}(s)$
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$\leqq\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}L(\mu, \lambda)(u(s)+M)$

$=d+u(s)+M$ .
By the same way, we get, for all $s\in S$,

$d_{1}(s)\geqq(d+u(s))-M$.
Repeating the above calculation, we can obtain, for all $s\in S$ and $n$,

$nd+u(s)-M\leqq d_{n}(s)\leqq nd+u(s)+M$. (3. 20)

By (3. 20), we get (3. 19). Thus, the proof is complete.
In order to find $\epsilon$-optimal strategies, for any strategies $\pi=(\mu_{1}, \mu_{2}, \ldots)$ and $a=(\lambda_{1}$ ,

$\lambda_{2},$ $\ldots$), we define $ n\pi$ and $ n\sigma$ as follows: $n\pi=(\mu_{1}, \mu_{2}, \ldots, \mu_{n})$ and $n\sigma=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n})$ .
THEOREM 3. 3 For any fixed \’e>O, then there exist a number $N$ and $ strate\dot{g}es\pi$, $a$ for

player $I,$ $II$, respectiv $ely$, such that, for all $s\in S$ and all $n\geqq N$,

$ d\leqq\frac{I_{n}(n\pi\cdot,\sigma)(s)}{n}+\epsilon$

and

$ d\geqq\frac{I_{n}(\pi,n\sigma\cdot)(s)}{n}-\epsilon$

for any Markov strategy $\sigma$ (3. 21)

for any Markov strategy $\pi$, (3. 22)

where a strategy $\pi$ is said to be Markov if, for all $n,$ $\pi_{n}$ is a Borel measurable map from $S$

into $PA$.
PROOF. If we take $n_{0}$ such that $ n_{0}>4M/\epsilon$, then for all $n\geqq n_{0}$ , it holds that

$|d-\frac{d_{n}(s)}{n}|\leqq\frac{2M}{n}\leqq\frac{2M}{n_{0}}<\frac{\epsilon}{2}$ . (3. 23)

On the other hand, by the definition of $d_{n}$ and Lemma 3. 3, there exists a Borel measur-
able map $\mu_{n}$

. from $S$ into PA such that

$d_{n}(s)=Td_{n-1}(s)$

$=\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\int_{S}d_{n-1}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$

$=\inf_{\lambda\in P_{B}}\{r(s, \mu_{n}\cdot, \lambda)+\int_{S}d_{n-1}(s^{\prime})dq(s^{\prime}|s, \mu_{n}\cdot, \lambda)\}$

$\leqq L(\mu_{n}\cdot, \lambda_{n})d_{n-1}(s)$

for any Borel measurable map $\lambda_{n}$ from $S$ into $PB$ .
Thus, repeating the above calculation, we get

$d_{n}(s)\leqq L(\mu_{t^{C}}, \lambda,)d_{n-1}(s)$
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$\leqq L(\mu_{n}\cdot, \lambda_{n})L(\mu_{n-1^{\iota}}, \lambda_{n-1})d_{n-2}(s)$

$\leqq_{i-0}^{n1}\overline{\Pi}L(\mu_{n-1}\cdot, \lambda_{n-1})d_{0}(s)$

$=I_{\#(\#\pi^{\iota},\#\sigma)(s)+\int_{s^{d\kappa s^{\prime})dXs^{\prime}|S}’}n\pi\cdot,n\sigma)}$,

where $n\pi\cdot=(\mu_{n^{\iota}}, \mu_{n-1}\cdot, \ldots, \mu_{1}\cdot)$ and $n\sigma=(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1})$.
Since $d_{n}(s)\geqq nd-n\epsilon/2$ and $\Vert d_{0}\Vert\leqq M$, by (3. 24),

$nd\leqq I_{n}(\#\pi\cdot, n\sigma)(s)+M+n\epsilon/2$. (3. 25)

Hence, we get, for all sufficiently large $n$ and all $s\in S$,

$ d\leqq\frac{I_{n}(n\pi\cdot,\sigma)(s)}{n}+\epsilon$ for any Markov strategy $\sigma$. (3. 26)

Similarly, for all sufficiently large $n$ and all $s\in S$,

$ d\geqq\frac{I_{n}(\pi,n\sigma^{l})(s)}{n}-\epsilon$ for any Markov strategy $\pi$. (3. 27)

Thus, the proof is complete.
Next, we shall show that, under (A1), (A2), (A3) and some conditions, our Markov

game with the expected average reward criterion is reduced to one with some specified
discount factor, In order to show the fact, we need impose on $q$ the following additional
assumption: (A5) there exists a state $s_{0}$ and $1>a>0$ such that, for all $s\in S,$ $a\in A$ and
$b\in B$,

$q(\{s_{0}\}|s, a, b)\geqq a$. (3. 28)

Then, from (3. 28), it holds that, for all $\mu\in PA$ and $\lambda\in PB$,

$ q(\{s_{0}\}|s, \mu, \lambda)\geqq\alpha$. (3. 29)

For Markov game with the law of motion of the system satisfying the above assumption,
consider a new Markov game with identical state and action space, with identical rewards,
but with the law of motion of the system given for $E\in oe(S)$ by

$q^{\prime}(E|s, a, b)=\{$

$\frac{q(E|s,a,b)}{1-\alpha}$ for $s_{0}\not\in E$

$\frac{q(E|s,a,b)-\alpha}{1-a}$ for $s_{0}\in E$

We now call the game ( $S,$ $A$ , B. $q,$ $r$) original Markov game and the game $(S, A, B, q^{\prime}, r)$

modified Markov game, or simply “original M. G.” and “modified M. G.”, respectively.
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It should be noted that $q^{\prime}(\cdot|s, a, b)$ also satisfies the assumption (A3) since for all
$u\in C(S),$ $a\in A$ and $b\in B$,

$\int_{S}u(s^{\prime})dq^{\prime}(s^{\prime}|s, a, b)=\frac{1}{1-\alpha}\int_{S}u(s^{\prime})dq(s^{\prime}|s, a, b)-\frac{\alpha}{1-}$

a
$u(s_{0})$

(3. 30)

Since modified M. G. $(S, A, B, q^{\prime}, r)$ satisfies the assumptions (A1), (A2) and (A3), we
have the following lemma by the results of [11.

LEMMA 3. 4 The modified M. G. $(S, A, B, q^{\prime}, r)$ with a discount factor $\beta,$ $0\leqq\beta<1$ , has
a value, the value function is continuous, and player I and player $\Pi$ have optimal stationary
strategies.

Let $f\rho^{*(\infty)}$ and $g_{\beta^{*(\infty)}}$ be optimal stationary strategies for player I and player II in the
modified M. G. with a discount factor $0\leqq\beta<1$ , respectively, and $w_{\beta^{*}}(s)$ be the value of
the game. Then, for $f_{\beta}^{*},$ $g_{\beta^{*}}$ and $w_{\beta^{*}}(s)$ , it holds that

$w_{\beta^{*}}(s)=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}\{r(s, \mu, \lambda)+\beta\int_{S}w_{\beta^{*}}(s^{\prime})dq^{\prime}(s^{\prime}|s, \mu, \lambda)\}$ (3. 31)

$=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\beta\int_{S}w^{*}(s^{\prime})dq^{\prime}(s^{\prime}|s, \mu, \lambda)\}$

$=r(s, f_{\beta}^{*}(s),$ $g_{\beta^{*}}(s))+\beta\int_{S}w^{*}(s^{\prime})dq^{\prime}(s^{\prime}|s, f_{\beta^{*}}(s),$ $g_{\beta^{*}}(s))$

Then we can prove the following theorem.

THEOREM 3. 4 Under the assumptions (A1), (A2), (A3) and (A5), there exist optimal
stationary strategies for player I and player $\Pi$ for the original M. G. with the expected ave-
rage reward criterion and the value of the game is $\alpha I_{1-\alpha}^{\prime}(f_{1-a}^{*()}\infty, g_{1-a}^{*()}\infty)(s_{0})$ . Further, the
optimal stationary strategies for player I and $ player\Pi$ are the sequences ofBOrel measurable
maps from $S$ into PA and $PB,$ $respect\dot{w}ely$, satisfying the following equation:

$\alpha w_{1-\alpha}^{*}(s_{0})+u^{\prime}(s)=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\int_{S}u^{\prime}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$

(3. 32)

where

$u^{\prime}(s)=w_{1-\alpha}^{*}(s)-w_{1-a}^{*}(s_{0})$ (3. 33)

PROOF. A. Maitra and T. Parthasarathy [11 have shown that, since $w_{1-a}^{*}$ is the
value of the modified M. G. with a discount factor $1-a,$ $w_{1-a}^{*}$ satisfies the $\min\max$

equation, namely, for all $s\in S$,

$w_{1-a}^{*}(s)=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+(1-\alpha)\int_{S}w_{1-\alpha}^{*}(s^{\prime})dq^{\prime}(s^{\prime}|s, \mu, \lambda)\}$ .



40 K. Tanaka, S. Iwase and K. Wakuta

Using (3. 33), we get

$u^{\prime}(s)+w_{1-\alpha}^{*}(s_{0})=(1-a)w_{1-\alpha}^{*}(s_{0})+\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+$

$+(1-\alpha)\int_{S}u^{\prime}(s^{\prime})dq^{\prime}(s^{\prime}|s, \mu, \lambda)\}$ . (3. 34)

From $u^{\prime}(s_{0})=0,$ $(3.34)$ yields that

$\alpha w_{1-a}^{*}(s_{0})+u^{\prime}(s)=\max_{\mu\in}\min_{P_{A^{\lambda\in P_{B}}}}\{r(s, \mu, \lambda)+\int_{S}u^{\prime}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ .

(3. 35)

This shows that the original M. G. satisfies, also, the assumption (A4). Hence, by
Theorem 3. 1, a value of the game is $\alpha w_{1-\alpha}^{*}(s_{0})$ and there exist optimal stationary stra-
tegies for player I and player II. Thus, the proof is complete.

In order to give sufficient conditions for the existence of the assumption (A4), fix
some state $s_{0}$ and let

$u\rho(s)=w_{\beta}^{*}(s)-w_{\beta}^{*}(s_{0})$ . (3. 36)

Then, from (3. 31) and (3. 36), it holds that

$d\beta+u\beta(s)=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\beta\int_{S}u\beta(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ , (3. 37)

where $d\beta=(1-\beta)w^{*}\beta(s_{0})$.
We can prove the following theorem under the assumptions (A1), (A2) and (A3).

THEOREM 3. 5 If $\{u\rho\}$ is a uniformly bounded equicontinuous family of functions, then
it follows that (A4) holds and $(1-\beta)w^{*}\rho(s)$ converges to $d$ as $\beta\rightarrow 1^{-}for$ all $s\in S$.

PROOF. By the Ascoli-Arzela’s theorem there exist a sequence $\beta_{\nu}\rightarrow 1$ and a con-
tinuous function $u(s)$ such that $u\rho_{\nu}(s)$ converges uniformly to $u(s)$ on $S$. Now, sinoe $ u\beta$

is bounded, we can also require that $d\beta_{y}$ converges to $d$. Hence, from (3. 37), we get

$d+u(s)=\max_{\mu\in}\min_{P_{A^{\lambda\in P_{B}}}}\{r(s, \mu, \lambda)+\int_{S}u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ . (3. 38)

For any sequence $\beta_{\nu}\rightarrow 1$ , there is a subsequence $\beta_{\nu}^{\prime}$ such that $\lim d\beta’$ . exists. By the
above this limit is $d$. Thus,

$ d=\lim_{\rho\rightarrow 1}d\beta$ . The result follows since $s_{0}$ is any arbitrary state.

Thus, the proof is complete.
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