Differentiable Circle Group Action on Homotopy Complex Projective 3-Spaces

By
Ryo Washiyama

(Received May 20, 1975)

Introduction

Let M be an $H C P^{3}$; in other wards M is a simply connected 6 -manifold with the same homotopy type as the standard complex projective 3 -spaces.

We will denote by T^{1} the circle group, by (T^{1}, M) the action on M and by $F\left(T^{1}, M\right)$ the fixed point set of T^{1} action on $M . X \sim_{R} P h(n)$ means that the cohomology ring $H^{*}(X$; $R)$ is isomorphic to $R[a] /\left(a^{h+1}\right)$, where $n=\operatorname{deg} a$.

By a result in [1] (chap. VII, 5-1), it follows that there are following four cases.
(a) $F\left(T^{1}, M\right) \sim_{z} \mathbb{C} P^{2}+\{$ point $\}$
(b) $F\left(T^{1}, M\right) \sim_{z} S^{2}+S^{2}$
(c) $F\left(T^{1}, M\right) \sim_{z}^{\sim} S^{2}+\{$ point $\}+\{$ point $\}$
(d) $F\left(T^{1}, M\right) \sim_{z}^{\sim}\{$ point $\}+\{$ point $\}+\{$ point $\}+\{$ point $\}$

In this paper, we shall consider the cases (a) and (b).
We have the following.
Theorem 1. If $F\left(T^{1}, M\right) \sim_{z} \mathbb{C} P^{2}+\{$ point $\}$ or $F\left(T^{1}, M\right) \sim_{z} S^{2}+S^{2}$, then M is diffeomorphic to $\mathbb{C} P^{3}$.

Theorem 2. T^{2} cannot act effectively on exotic complex projective 3-spaces.
In the following all actions are asumed to be differentiable.

1. The main lemma

Lemma 1-1. If M contains a submaniforld A such that $A \sim_{Q} C^{2}$, then M is diffeomorphic to $\mathbb{C} P^{3}$.

Proof. Let $\nu=(E, p, A)$ be the normal bundle of A in M, and $\left(\left(E, E^{0}\right), p, A,\left(\mathbb{D}^{2}\right.\right.$, S^{1})) be pair of disk bundle and sphere bundle associated to ν.

It is known that
(1) $\quad \chi(\nu)=i^{*} D^{-1}\left(i_{*}[A]\right)$
where $\chi(\nu)$ is the Euler class of $\nu,[A]$ is the fundamental homology class of A and D is the Poincare duality map. (see [6])

Let $\alpha\left(\gamma\right.$, respectively) be a generator of $H^{2}(A) / \operatorname{tor}\left(H^{2}(M)\right.$, respectively), where tor denotes the torsion group of $H^{2}(A)$, let β be the dual base of $[A]\left(\in H_{4}(A)\right)$ and let k, l and m be integers such that satisfy $i^{*}(\gamma)=m \alpha+t, \alpha^{2}=k \beta$ and $p_{1}(M)=l \gamma^{2}$, where $t \in$ Tor and $p_{1}(M)$ is the first Pontrjagin class of M.

It follows immediately that

$$
\begin{equation*}
i^{*}\left(\gamma^{2}\right)=i^{*}(\gamma)^{2}=m^{2} \alpha^{2}=k m^{2} \beta . \tag{2}
\end{equation*}
$$

It is easy to see that $i_{*}[A]=k m^{2} c$, where $c\left(\in H_{4}\left(M^{\nu}\right)\right.$ is the dual base of $\gamma^{2}\left(\in H^{4}(M)\right)$. Hence, we have

$$
i^{*} D^{-1}\left(i_{*}[A]\right)=i^{*}\left(k m^{2} \gamma\right)=k m^{3} \alpha+k m^{2} t .
$$

And
(3) $\quad p_{1}(\nu)=\chi^{2}(\nu)=k^{2} m^{6} \alpha^{2}=k^{2} m^{6} \beta$.

Since

$$
1=\operatorname{Index} A=1 / 3 P_{1}(A) \cdot[A]
$$

we have
(4)

$$
P_{1}(A)=3 \beta .
$$

It follows from the formula $i^{*} P_{1}(M)=P_{1}(A)+P_{1}(\nu)$, (2), (3) and (4) that

$$
l k m^{2} \beta=k^{3} m^{6} \beta+3 \beta
$$

Thus we have

$$
\begin{equation*}
3=k m^{2}\left(l-k^{2} m^{4}\right) . \tag{5}
\end{equation*}
$$

It is not difficult to show that possible values of k, l and $|m|$ are $(k, l,|m|)=(3,10,1)$, $(-3,8,1)$, or $(-1,-2,1)$.

Since l has the form $24 j+4$ (see [6]), we have

$$
\begin{equation*}
(k, l,|m|)=(1,4,1), \text { which implies } \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
P_{1}(M)=4 \gamma^{2} . \tag{7}
\end{equation*}
$$

From a result in [6], it following that M is diffeomorphic to $\mathbf{C} P^{3}$.
Corollary 1-2. If $F\left(T^{1}, M\right) \sim_{z} \mathbf{C} P^{2}+\{$ point $\}$, then M is diffeomorphic to $\mathbf{C} P^{3}$.

2. The Case (b)

In this section, we will study the case (b).
It is well known that M is the orbit space of a differentiable free S^{1} action on a homotopy seven sphere Σ^{7}. Let π : $\Sigma^{7} \longrightarrow M$ be the projection. We may assume that S^{1} acts to the right on Σ^{7} and T^{1} acts to the left on M. By a theorem of [5], the left T^{1} action on M lifts to a left T^{1} action on Σ^{7} which commutes with the right S^{1} action.

In the case (b), it follows from the fact $F\left(Z_{p}, M\right) \supset F\left(T^{1}, M\right)$ for any subgroup Z_{p} of T^{1} and a result in [1] (chap. VII 3-1), the action (T^{1}, M) is semifree. Then we can choose a lifting so that the action is semifree with the fixed point set $\pi^{-1}\left(F_{0}\right) \approx S^{3}$, where $F\left(T^{1}, M\right)=F_{0}+F_{1}$. (It's proof is not difficult.)

Theorem 2-1. If $F\left(T^{1}, M\right) \sim_{z} S^{2}+S^{2}$, then M is diffeomorphic to $\mathbb{C} P^{3}$.
Proof. By the exact sequence [1] (chap. III, 10-5)

$$
\ldots \ldots \xrightarrow{\mu^{*-\delta^{*}}} H^{q}\left(\Sigma^{7} / T^{1}, F\left(T^{1}, \Sigma^{7}\right)\right) \xrightarrow{q^{*}} H^{q}\left(\Sigma^{7}\right) \longrightarrow H^{q-1}\left(\Sigma^{7} / T^{1}, F\left(T^{1}, \Sigma^{7}\right)\right)
$$

$\oplus H^{q}\left(F\left(T^{1}, \Sigma^{7}\right)\right) \xrightarrow{\mu *-\delta *} H^{q+1}\left(\Sigma^{7} / T^{1}, F\left(T^{1}, \Sigma^{7}\right)\right) \longrightarrow \cdots \cdots$
we see that Σ^{7} / T^{1} is a cohomology 6 -sphere and the induced action ($S^{1}, \Sigma^{7} / T^{1}$) is semifree with the fixed point set $\pi^{-1}\left(F_{1}\right) / T^{1} \approx S^{2}$. It follows from above exact sequence, that $M / T^{1}=\left(\Sigma^{7} / S^{1}\right) / T^{1}=\left(\Sigma^{7} / T^{1}\right) / S^{1}$ is a cohomology 5 -sphere. Since M is simply connected and T^{1} is connected, M / T^{1} is simply connected, and hence M / T^{1} is diffeomorphic to S^{5}.

Let U be a T^{1}-invariant tubular neighborhood of F_{0} in M. Clearly, U / T^{1} is a tubular neighborhood of F_{0} in $M / T^{1} \approx S^{5}$. Hence, there is a diffeomorphism from U / T^{1} to $S^{2} \times \mathbb{D}^{3}$ such that F_{0} corresponds to $S^{2} \times\{0\}$.
Hence, $(M-U) / T^{1} \approx S^{5}-S^{2} \times \mathbb{D}^{3} \approx \mathbb{D}^{3} \times S^{2}$
Therefore, we may take the following interpretation.

$$
\begin{equation*}
M / T^{1}=S^{2} \times \mathbb{D}^{3} \cup \mathbb{D}^{3} \times S^{2}, F_{0}=S^{2} \times\{0\} \text { and } F_{1} \subset \mathbb{D}^{3} \times S^{2} \tag{9}
\end{equation*}
$$

From the following exact sequences,

(the sequence in [1] (chap. III. 10-5))
and
$\cdots \cdots \longrightarrow H^{2}\left(\mathbb{D}^{3} \times S^{2}, F_{1}\right) \longrightarrow H^{2}\left(\mathbb{D}^{3} \times S^{2}\right) \xrightarrow{i *} H^{2}\left(F_{1}\right) \longrightarrow H^{3}\left(\mathbb{D}^{3} \times S^{2}, F_{1}\right) \longrightarrow \cdots \cdots$
(cohomology exact sequence of pair $\left(\mathbb{D}^{3} \times S^{2}, F_{1}\right)$).
We can prove

$$
\begin{equation*}
i^{*}: H^{2}\left(\mathbb{D}^{3} \times S^{2}\right) \stackrel{\cong}{\longrightarrow} H^{2}\left(F_{1}\right) . \tag{10}
\end{equation*}
$$

Therefore, we may assume that $F_{1}=\{0\} \times S^{2} \subset \mathbb{D}^{3} \times S^{2}$. (see [2])
Let X_{0} be $a \times \mathbb{D}^{3} \subset S^{2} \times \mathbb{D}^{3}$ and X_{1} a set in $\mathbb{D}^{3} \times S^{2}$ which is represented the mapping cylinder of $a \times S^{2} \longrightarrow\{0\} \times S^{2}=F_{1}$, where $a\left(\in S^{2}\right)$ is a point and the map is the restriction of the projection $\mathbb{D}^{3} \times S^{2} \longrightarrow\{0\} \times S^{2}$.

We will consider $p^{-1}\left(X_{0} \cup X_{1}\right)=N_{0} \cup N_{1}$, where p is the orbit projection of T^{1} action on M and $N_{i}=P^{-1}\left(X_{i}\right)(i=0,1)$. Clearly, $N_{0}\left(N_{1}\right.$, respectively) is diffeomorphic to the mapping cylinder of $S^{3} \longrightarrow a \times\{0\}\left(\in F_{0}\right)\left(S^{1} \longrightarrow F_{1}\right.$, respectively), where these maps are the restrictions of the normal bundle's projections of F_{i} in $M(i=0,1)$. Hence M containts a submanifold $N_{0} \cup N_{1}$ which is diffeomorphic to $\mathbb{C} P^{2}$, and hence M is $\mathbb{C} P^{3}$. This completes the proof of Theorem 2-1.

3. \mathbf{T}^{2} action on \mathbf{M}

It is not difficult to prove the following.
Lemma 3-1. Let $T_{1}\left(T_{2}, D, D_{-1}\right.$, respectively) be a subgroup of $T^{1} \times T^{1}$ such that $T_{1}=$ $T^{1} \times\{1\}\left(T_{2}=\{1\} \times T^{1}, D=\left\{(t, t) \in T^{1} \times T\right\}, D_{-1}=\left\{\left(t, t^{-1}\right) \in T^{1} \times T^{1}\right\}\right.$, respectively), and lel K be a one dimensional subtorus of $T^{1} \times T^{1}$.

If $K \cap T_{1}=\{1\}$ and $K \cap T_{2}=\{1\}$, then $K=D$ or D_{-1}.
(ii) If $K \cap T_{1}=\{1\}, K \cap D=\{1\}$ and $K \cap D_{-1}=\{1\}$, then $K=T_{2}$.

Theorem 3-2. If T^{2} acts effectively on M; then M is diffeomorphic to $\mathbb{C} P^{3}$.
Proof. It is enough to prove the case in which $F\left(T^{2}, M\right)=\sum_{i=0}^{3}\left\{p_{i}\right\}\left(p_{i} \in M\right)$ and dim $F(G, M) \leqq 2$ for any subgroup G of T^{2}. In this case, we have subtori K_{1}, K_{2} and K_{3} of T^{2} such that $K_{i} \cap K_{j}=\{1\}(i \neq j)$ and each components of $F\left(K_{i}, M\right)$ containg P_{0} are two dimensional. (Consider the slice representation of T^{2} at $P_{0} \in M$.)
Now, we may assume that $T^{2}=K_{1} \times K_{2}$
By lemma 3-1, we have $K_{3}=D$ or D_{-1}
We may assume $F\left(K_{1}, M\right)=F_{1}+\left\{p_{2}\right\}+\left\{p_{3}\right\}$, in fact otherwise $M=\mathbb{C} P^{3}$. From the fact $F\left(K_{2}, M-F_{1}\right)$ is a cohomology sphere, it can be easily shoown that p_{1} is not contained in the component F_{2} of $F\left(K_{2}, M\right)$ containing p_{0}. Hence, we may assume that the component F_{2} contains P_{2}. In this case, p_{1} and p_{2} are not contained in the component F_{3} of $F\left(K_{3}, M\right)$ containing P_{0}. Hence, the component F_{3} contains P_{3}.

By [1] (chap. VII, 3-2), it is known that $F(G, M)$ consists of exactly two components for any cyclic subgroup G of order 2 of T^{2}. Therefore, we may assume that $F\left(Z_{2}, M\right)=$ $S_{0}{ }^{2}+S_{1}{ }^{2}$ for $Z_{2} \subset K_{3}$ such that $P_{0}, P_{3} \in S_{0}{ }^{2}$ and $P_{1}, P_{2} \in S_{1}{ }^{2}$. (clearly, one component of $F\left(K_{3}\right.$, M) is S_{0}^{2}).

Since $S_{1}{ }^{2}$ is a T^{2}-invariant set, there is a subtorus T^{1} of T^{2} such that acts trivially on $\mathrm{S}_{1}{ }^{2}$. It is easy to see that $T^{1} \cap K_{1}=\{1\}$ and $T^{1} \cap K_{2}=\{1\}$, because $T^{1} \cap K_{i}$ fixed $F_{i} \cup S_{1}{ }^{2}$ which contains P_{i}. Hence, $T^{1}=D$ or D_{-1}.
If $T^{1}=K_{3}$, then $M=\mathbb{C} P^{3}$. Therefore, let $K_{3}=D$ and $T^{1}=D_{-1}$.
By the same argument as for K_{2}, we have a subtorus $T_{0}{ }^{1}$ of T^{2} such that $T_{0}{ }^{1} \cap K_{1}=\{1\}$, $T_{0}{ }^{1} \cap D=\{1\}$ and $T_{0}{ }^{1} \cap D_{-1}=\{1\}$

It follows from Lemma 3-1 that $T_{0}{ }^{1}$ is K_{2}. Therefore, we have $F\left(K_{2}, M\right) \sim_{z} S^{2}+S^{2}$. Theorem 2-1 implies that $M=\mathbb{C} P^{3}$.

This completes the proof of Theorem 3-2.

4. Acknowledgement

The auther is indebted to Professor T. Watabe of Niigata University for his comments and suggessions.

Niggata University

Reference

[1] G. E. Bredon: Introduction to Compact transformation groups. Academic Press (1972).
[2] A. HaEfliger: Plongements differentiable de variétes dans varietes, Comment. Math. Nelv. 36 (1961), 47-82.
[3] D. Mantgomery and C. T. Yang: Differentiable action on homotopy spheres, Trans. Amer. Math. Soc. 122 (1966), 480-498.
[4] T. Petrie: Smooth S^{1} action on homotopy complex projective space and related topics, Bull. A.M. S. 78 (1972), 105-153.
[5] T. E. Stewart: Lifting groups action in fiber bundles. Ann. of Math. 74 (1961), 192-198.
[6] D. Sullivan: Geometric topology seminar. Notes. Princeton University, 1967.

