Differentiable Circle Group Action on Homotopy Complex Projective 3–Spaces

By

Ryo WASHIYAMA

(Received May 20, 1975)

Introduction

Let M be an $H\mathbb{C}P^3$; in other wards M is a simply connected 6-manifold with the same homotopy type as the standard complex projective 3-spaces.

We will denote by T^1 the circle group, by (T^1, M) the action on M and by $F(T^1, M)$ the fixed point set of T^1 action on M. $X \sim P^h(n)$ means that the cohomology ring $H^*(X; R)$ is isomorphic to $R[a]/(a^{h+1})$, where n = deg a.

By a result in [1] (chap. VII, 5–1), it follows that there are following four cases.

(a)
$$F(T^1, M) \longrightarrow \mathbb{C}P^2 + \{point\}$$

(b)
$$F(T^1, M) \sim S^2 + S^2$$

(c)
$$F(T^1, M) \longrightarrow S^2 + \{point\} + \{point\}$$

(d)
$$F(T^1, M) \longrightarrow \{point\} + \{point\}$$

In this paper, we shall consider the cases (a) and (b). We have the following.

THEOREM 1. If $F(T^1, M) \sim_z \mathbb{C}P^2 + \{point\}$ or $F(T^1, M) \sim_z S^2 + S^2$, then M is diffeomorphic to $\mathbb{C}P^3$.

THEOREM 2. T^2 cannot act effectively on exotic complex projective 3-spaces. In the following all actions are asumed to be differentiable.

1. The main lemma

LEMMA 1–1. If M contains a submaniforld A such that $A \sim_{Q} \mathbb{C}P^2$, then M is diffeomorphic to $\mathbb{C}P^3$.

PROOF. Let $\nu = (E, p, A)$ be the normal bundle of A in M, and $((E, E^0), p, A, (\mathbb{D}^2, S^1))$ be pair of disk bundle and sphere bundle associated to ν .

It is known that

(1) $\chi(\nu) = i^* D^{-1}(i_*[A])$

where $\chi(\nu)$ is the Euler class of ν , [A] is the fundamental homology class of A and D is the Poincare duality map. (see [6])

Let $\alpha(\gamma, \text{respectively})$ be a generator of $H^2(A)/tor(H^2(M), \text{respectively})$, where tor denotes the torsion group of $H^2(A)$, let β be the dual base of $[A](\in H_4(A))$ and let k, land m be integers such that satisfy $i^*(\gamma) = m\alpha + t$, $\alpha^2 = k\beta$ and $p_1(M) = l\gamma^2$, where $t \in Tor$ and $p_1(M)$ is the first Pontrjagin class of M.

It follows immediately that

(2)
$$i^*(\gamma^2) = i^*(\gamma)^2 = m^2 \alpha^2 = km^2 \beta.$$

It is easy to see that $i_*[A] = km^2c$, where $c \in H_4(M)$ is the dual base of $\gamma^2 \in H^4(M)$. Hence, we have

$$i^*D^{-1}(i_*[A]) = i^*(km^2 \gamma) = km^3 \alpha + km^2 t.$$

And

(3)
$$p_1(\nu) = \chi^2(\nu) = k^2 m^6 \alpha^2 = k^2 m^6 \beta.$$

Since

$$1 = Index A = 1/3P_1(A) \cdot [A],$$

we have

$$(4) \qquad P_1(A)=3\beta.$$

It follows from the formula $i^*P_1(M) = P_1(A) + P_1(\nu)$, (2), (3) and (4) that

 $lkm^2\beta = k^3m^6\beta + 3\beta$.

Thus we have

(5) $3=km^2(l-k^2m^4).$

It is not difficult to show that possible values of k, l and |m| are (k, l, |m|) = (3, 10, 1), (-3, 8, 1), or (-1, -2, 1).

Since l has the form 24j+4 (see [6]), we have

(6) (k, l, |m|) = (1, 4, 1), which implies

$$(7) \qquad P_1(M) = 4\gamma^2.$$

From a result in [6], it following that M is diffeomorphic to $\mathbb{C}P^3$.

COROLLARY 1-2. If $F(T^1, M) \xrightarrow{\mathbb{C}P^2} + \{point\}$, then M is diffeomorphic to $\mathbb{C}P^3$.

2. The Case (b)

In this section, we will study the case (b).

It is well known that M is the orbit space of a differentiable free S^1 action on a homotopy seven sphere Σ^7 . Let $\pi: \Sigma^7 \longrightarrow M$ be the projection. We may assume that S^1 acts to the right on Σ^7 and T^1 acts to the left on M. By a theorem of [5], the left T^1 action on M lifts to a left T^1 action on Σ^7 which commutes with the right S^1 action.

In the case (b), it follows from the fact $F(Z_p, M) \supset F(T^1, M)$ for any subgroup Z_p of T^1 and a result in [1] (chap. VII 3-1), the action (T^1, M) is semifree. Then we can choose a lifting so that the action is semifree with the fixed point set $\pi^{-1}(F_0) \approx S^3$, where $F(T^1, M) = F_0 + F_1$. (It's proof is not difficult.)

THEOREM 2-1. If $F(T^1, M) \longrightarrow S^2 + S^2$, then M is diffeomorphic to $\mathbb{C}P^3$.

PROOF. By the exact sequence [1] (chap. III, 10–5)

$$\begin{array}{c} \overset{\mu^{*} = \delta^{*}}{\longrightarrow} H^{q}(\Sigma^{7}/T^{1}, F(T^{1}, \Sigma^{7})) \xrightarrow{q^{*}}{\longrightarrow} H^{q}(\Sigma^{7}) \longrightarrow H^{q-1}(\Sigma^{7}/T^{1}, F(T^{1}, \Sigma^{7})) \\ \oplus H^{q}(F(T^{1}, \Sigma^{7})) \xrightarrow{\mu^{*} = \delta^{*}}{\longrightarrow} H^{q+1}(\Sigma^{7}/T^{1}, F(T^{1}, \Sigma^{7})) \longrightarrow \cdots \cdots$$

we see that Σ^7/T^1 is a cohomology 6-sphere and the induced action $(S^1, \Sigma^7/T^1)$ is semifree with the fixed point set $\pi^{-1}(F_1)/T^1 \approx S^2$. It follows from above exact sequence, that $M/T^1 = (\Sigma^7/S^1)/T^1 = (\Sigma^7/T^1)/S^1$ is a cohomology 5-sphere. Since *M* is simply connected and T^1 is connected, M/T^1 is simply connected, and hence M/T^1 is diffeomorphic to S^5 .

Let U be a T¹-invariant tubular neighborhood of F_0 in M. Clearly, U/T^1 is a tubular neighborhood of F_0 in $M/T^1 \approx S^5$. Hence, there is a diffeomorphism from U/T^1 to $S^2 \times \mathbb{D}^3$ such that F_0 corresponds to $S^2 \times \{0\}$.

Hence, $(M-U)/T^1 \approx S^5 - S^2 \times \mathbb{D}^3 \approx \mathbb{D}^3 \times S^2$

Therefore, we may take the following interpretation.

(9) $M/T^1 = S^2 \times \mathbb{D}^3 \cup \mathbb{D}^3 \times S^2$, $F_0 = S^2 \times \{0\}$ and $F_1 \subset \mathbb{D}^3 \times S^2$.

From the following exact sequences,

$$0 \longrightarrow H^{2}(\mathbb{D}^{3} \times S^{2}, F_{1}) \longrightarrow H^{2}(M - U) \xrightarrow{i^{*}} H^{2}(F_{1}) \longrightarrow H^{3}(\mathbb{D}^{3} \times S^{2}, F_{1}) \longrightarrow 0$$

(the sequence in [1] (chap. III. 10-5))

and

$$\cdots \longrightarrow H^{2}(\mathbb{D}^{3} \times S^{2}, F_{1}) \longrightarrow H^{2}(\mathbb{D}^{3} \times S^{2}) \xrightarrow{i^{*}} H^{2}(F_{1}) \longrightarrow H^{3}(\mathbb{D}^{3} \times S^{2}, F_{1}) \longrightarrow \cdots \cdots$$
(cohomology exact sequence of pair $(\mathbb{D}^{3} \times S^{2}, F_{1})$).

We can prove

R. Washiyama

(10)
$$i^*: H^2(\mathbb{D}^3 \times S^2) \xrightarrow{\cong} H^2(F_1).$$

Therefore, we may assume that $F_1 = \{0\} \times S^2 \subset \mathbb{D}^3 \times S^2$. (see [2])

Let X_0 be $a \times \mathbb{D}^3 \subset S^2 \times \mathbb{D}^3$ and X_1 a set in $\mathbb{D}^3 \times S^2$ which is represented the mapping cylinder of $a \times S^2 \longrightarrow \{0\} \times S^2 = F_1$, where $a \in S^2$ is a point and the map is the restriction of the projection $\mathbb{D}^3 \times S^2 \longrightarrow \{0\} \times S^2$.

We will consider $p^{-1}(X_0 \cup X_1) = N_0 \cup N_1$, where p is the orbit projection of T^1 action on M and $N_i = P^{-1}(X_i)$ (i = 0, 1). Clearly, N_0 (N_1 , respectively) is diffeomorphic to the mapping cylinder of $S^3 \longrightarrow a \times \{0\} (\subseteq F_0)(S^1 \longrightarrow F_1$, respectively), where these maps are the restrictions of the normal bundle's projections of F_i in M (i = 0, 1). Hence M containts a submanifold $N_0 \cup N_1$ which is diffeomorphic to $\mathbb{C}P^2$, and hence M is $\mathbb{C}P^3$. This completes the proof of Theorem 2–1.

3. T² action on M

It is not difficult to prove the following.

LEMMA 3-1. Let $T_1(T_2, D, D_{-1}, respectively)$ be a subgroup of $T^1 \times T^1$ such that $T_1 = T^1 \times \{1\}$ $(T_2 = \{1\} \times T^1, D = \{(t, t) \in T^1 \times T\}, D_{-1} = \{(t, t^{-1}) \in T^1 \times T^1\}, respectively\}$, and let K be a one dimensional subtorus of $T^1 \times T^1$.

(i) If $K \cap T_1 = \{1\}$ and $K \cap T_2 = \{1\}$, then K = D or D_{-1} .

(ii) If $K \cap T_1 = \{1\}$, $K \cap D = \{1\}$ and $K \cap D_{-1} = \{1\}$, then $K = T_2$.

THEOREM 3–2. If T^2 acts effectively on M, then M is diffeomorphic to $\mathbb{C}P^3$.

PROOF. It is enough to prove the case in which $F(T^2, M) = \sum_{i=0}^{3} \{p_i\} \ (p_i \in M)$ and dim $F(G, M) \leq 2$ for any subgroup G of T^2 . In this case, we have subtori K_1, K_2 and K_3 of T^2 such that $K_i \cap K_j = \{1\} \ (i \neq j)$ and each components of $F(K_i, M)$ containg P_0 are two dimensional. (Consider the slice representation of T^2 at $P_0 \in M$.)

Now, we may assume that $T^2 = K_1 \times K_2$ By lemma 3–1, we have $K_3 = D$ or D_{-1}

We may assume $F(K_1, M) = F_1 + \{p_2\} + \{p_3\}$, in fact otherwise $M = \mathbb{C}P^3$. From the fact $F(K_2, M-F_1)$ is a cohomology sphere, it can be easily shoown that p_1 is not contained in the component F_2 of $F(K_2, M)$ containing p_0 . Hence, we may assume that the component F_2 contains P_2 . In this case, p_1 and p_2 are not contained in the component F_3 of $F(K_3, M)$ containing P_0 . Hence, the component F_3 contains P_3 .

By [1] (chap. VII, 3-2), it is known that F(G, M) consists of exactly two components for any cyclic subgroup G of order 2 of T^2 . Therefore, we may assume that $F(Z_2, M) =$ $S_0^2 + S_1^2$ for $Z_2 \subset K_3$ such that P_0 , $P_3 \in S_0^2$ and P_1 , $P_2 \in S_1^2$. (clearly, one component of $F(K_3, M)$ is S_0^2).

22

Since S_1^2 is a T^2 -invariant set, there is a subtorus T^1 of T^2 such that acts trivially on S_1^2 . It is easy to see that $T^1 \cap K_1 = \{1\}$ and $T^1 \cap K_2 = \{1\}$, because $T^1 \cap K_i$ fixed $F_i \cup S_1^2$ which contains P_i . Hence, $T^1 = D$ or D_{-1} .

If $T^1 = K_3$, then $M = \mathbb{C}P^3$. Therefore, let $K_3 = D$ and $T^1 = D_{-1}$.

By the same argument as for K_2 , we have a subtorus T_0^1 of T^2 such that $T_0^1 \cap K_1 = \{1\}$, $T_0^1 \cap D = \{1\}$ and $T_0^1 \cap D_{-1} = \{1\}$

It follows from Lemma 3-1 that T_0^1 is K_2 . Therefore, we have $F(K_2, M) \xrightarrow{z} S^2 + S^2$. Theorem 2-1 implies that $M = \mathbb{C}P^3$.

This completes the proof of Theorem 3–2.

4. Acknowledgement

The auther is indebted to Professor T. Watabe of Niigata University for his comments and suggessions.

NIIGATA UNIVERSITY

Reference

- [1] G. E. BREDON: Introduction to Compact transformation groups. Academic Press (1972).
- [2] A. HAEFLIGER: Plongements differentiable de variétes dans varietes, Comment. Math. Nelv. 36 (1961), 47-82.
- [3] D. MANTGOMERY and C. T. YANG: Differentiable action on homotopy spheres, Trans. Amer. Math. Soc. 122 (1966), 480-498.
- [4] T. PETRIE: Smooth S¹ action on homotopy complex projective space and related topics, Bull. A.M. S. 78 (1972), 105–153.
- [5] T. E. STEWART: Lifting groups action in fiber bundles. Ann. of Math. 74 (1961), 192-198.
- [6] D. SULLIVAN: Geometric topology seminar. Notes. Princeton University, 1967.