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1. Introduction

The second dual space $A^{**}$ of a Banach algebra $A$ can also be considered as a Banach
algebra by the use of Arens muliplication [Arens, 1]. When $A$ is embedded in $A^{**}$ by
the canonical mapping, $A$ is only a subalgabra of $A^{**}$ but is not an ideal in $A^{**}$ in general.

When does $A^{**}$ contain $A$ as an ideal ? It is well-known that when $A$ is a $C^{*}\cdot algebra$,
$A$ is a dual $C^{*}\cdot algebra$ if and only if $A$ is a two-sided ideal in $A^{**}$ . Recently many
authors obtained other characterizations in this case. In this paper, we shall consider
the above problem for general Banach algebras. In \S 2, we shall show that a Banach
algebra which is an ideal in the second dual space is characterized by the weak compact-
ness of left or right multiplications on $A$ . In \S 3, we shall show that for a group algebra
$A$ of a locally compact topological group $G,$ $A$ is a two-sided ideal in $A^{**}$ if and only if $G$

is compact. Moreover we shall show analogous result for a certain subalgebra in $A^{**}$ .

2. Preliminaries

Let $A$ be a Banach algebra. Denote by $A^{*}$ the dual space of $A$ , and denote by $A^{**}$

the second dual space of $A$ . Throughout we denote by $\pi$ the canonical embedding of $A$

into $A^{**}$ . Let $x,$ $y\in A,f\in A^{*}$ and $F,$ $G\in A^{**}$ . Then we define the following functions:

$(f, x)\rightarrow f\circ x:A^{*}\times A\rightarrow A^{*}$

where $(f\circ x)(y)=f(xy)$ ,

$(F,f)\rightarrow F\circ f:A^{**}\times A^{*}\rightarrow A^{*}$

where $(F\circ f)(x)=F(f\circ x)$ ,

and

$(F, G)\rightarrow F\circ G:A^{**}\times A^{**}\rightarrow A^{**}$

where $(F\circ G)(f)=F(G\circ f)$ .
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The mutiplication $F\circ G$ thus defined on $A^{**}$ , called Arens multiplication, extends the
multiplication on $A$ , is weak *-continuous in $F$ for fixed $G$, and makes $A^{**}$ into a Banach
algebra. $\pi(A)$ is a closed subalgebra of $A^{**}$ . Similarly, we define the following functions:

$(x, f)\rightarrow x*f:A\times A^{*}\rightarrow A^{*}$

where $x*f(y)=j(yx)$ ,

$(f, F)\rightarrow f*F:A^{*}\times A^{**}\rightarrow A^{*}$

where $(f*F)(x)=F(x*f)$ ,

and

$(F, G)\rightarrow F*G:A^{**}\times A^{**}\rightarrow A^{**}$

where $F*G(f)=G(f*F)$ .
Again this multiplication $F*G$ makes $A^{**}$ into a Banach algebra. The two Arens multi $\cdot$

plications agree if one of the factors is in $A$ .

3. Characterizations

Let $A$ be a Banach algebra. Denote by $L_{a}(resp. R_{a})$ the left (resp. right) multiplica-
tion on $A$ . A operator $T$ on a Banach space $X$ is called weakly compact on $X$ if for every
bounded net $\{a_{\alpha}\}\subset X$, there exists a subnet $\{a_{\beta}\}$ of $\{a_{\alpha}\}$ and an element $a\in X$ such that
$T(a_{\beta})\rightarrow a$ weakly. We have the following characterization.

PROPOSITION 3. 1. Let $A$ be a Banach algebra and $a\in A$ . Then the following two state $\cdot$

ments are equivalent.
1) $L_{a}$ (resp. $R_{a}$) isaweauy compact operator on A.
2) $\pi(a)\circ A^{**}\subset\pi(A)$ (resp. $A^{**}\circ\pi(a)\subset\pi(A)$).

PROOF. For each $F\in A^{**}$ , there exists a bounded net $\{a_{a}\}\subset A$ such that $F$ is a weak
$*.limit$ of $\pi(a_{a})$ . Then $\pi(a)\circ F=w^{*}$ -limit $\pi(a)\circ\pi(a_{a})$ .
If there exists a subnet $\{a_{\beta}\}$ of $\{a_{a}\}$ and an element $b\in A$ such that $b$ is a weak limit of
a $ a\rho$ . Then

$\pi(b)=w^{*}-\lim_{\beta}\pi(aa_{\beta})=\pi(a)\circ F$

Thus the implication $1$) $\Leftrightarrow 2$) is proved.
Next we shall show the converse implication $2$) $\Rightarrow 1$). Let $\{a_{a}\}$ be a net such that
$\Vert a_{\alpha}\Vert\leqq 1$ . From the Alaoglu’s theorem there exists a subnet $\{a_{\beta}\}\subset\{a_{a}\}$ and $F\in A^{**}$ such
that $F$ is a weak $*$ -limit of $\pi(a\rho)$ . Since $\pi(a)\circ A^{**}\subset\pi(A)$ , there exists an element $b\in A$

such that $\pi(b)=\pi(a)\circ F$. Then $b=weak\lim_{\beta}L_{a}(a_{\beta})$ . Hence $L_{a}$ is a weakly compact oper-

ator $mA$ . We can prove for $R_{a}$ in a similar way. This completes the proof.

COROLLARLY 3. 2. Let $A$ be a Banach algebra. Then $\pi(A)$ is a $two\cdot sided$ ideal in $A^{**}if$

and only if $L_{a}$ and $R_{a}$ are weakly compact operator for each $a\in A$ .
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Now we define bounded linear operators on $A^{*}$ by the following manner:
$A^{*}\rightarrow A^{*}$

$T_{x}$ : $f\rightarrow f\circ x$ $(x\in A)$ ,

$S_{x}$ : $f\rightarrow x*f$ $(x\in A)$ .

Moreover we use the following notations:

$I_{r}(A)=\{F\in A^{**} ; \pi(A)\circ F\subset\pi(A)\}$ ,

Il $(A)=\{F\in A^{**} ; F\circ\pi(A)\subset\pi(A)\}$ .
Then we have the following proposition.
PROPOSITION 3. 3. Let $A$ be a Banach algebra and $B$ be a subset of $A^{**}$ such that

$B\supset\pi(A)$ . Then $B\subset I_{r}(A)$ (resp. $B\subset Il(A)$) if and only if $T_{x}$ (resp. $S_{x}$) is a $\sigma(A^{*}, B)-$

compact operator for each $x\in A$ .
PROOF. Suppose that $\tau_{x}$ is a $\sigma(A^{*}, B)$ -compact operator for each $x\in A$ . Suppose

$B\not\subset I_{r}(A)$ . Then there exists $x\in A$ and $F\in B$ such that $\pi(x)\circ F\not\in\pi(A)$ .
From the Hahn-Banach theorem there exists $G\in A^{***}$ (the third dual space of $A$)

such that I $G\Vert=1,$ $G(\pi(A))=(O)$ and $G(\pi(x)\circ F)=1$ . Then by the Goldstein’s theorem
there exists a net $\{f_{\alpha}\}\subset A^{*}$ such that $G=w^{*}-\lim_{\alpha}\rho(f_{a})$ and 1$f_{a}\Vert\leqq 1$ where $\rho$ denotes the
canonical mapping of $A^{*}$ into $A^{***}$ . From the assumption we can choose a subnet $\{f_{\beta}\}$

of $\{f_{\alpha}\}$ and $f\in A^{*}$ such that $T_{x}(f_{\beta}$ } converges to $f$ in $\sigma(A^{*}, B)\cdot topology$ .
Then $F(f)=\lim_{\beta}F(f\rho\circ x)=\lim_{\beta}F\circ f\beta(x)$

$=\lim_{\beta}\pi(x)\circ F(f_{\beta})=\lim_{\beta}\rho(f_{\beta})(\pi(x)\circ F)$

$=G(\pi(x)\circ F)=1$ .
But for each $y\in A$ , $f(y)=\pi(y)(x)=\lim_{\beta}f\beta(xy)$

$=\lim_{\beta}\rho(f_{\beta})(\pi(xy))=G(\pi(xy))=0$ .

This \’is a contradiction. Thus $B\subset I_{r}(A)$ .
We can prove for the case of Il$(A)$ similarly.

Conversely suppose that $B\subset I_{r}(A)$ . Let $\{]_{a}\}$ be a net in $A^{*}$ such that $\Vert f_{\alpha}\Vert\leqq 1$ . By

the Alaoglu’s theorem there exists a subnet $\{f\beta\}$ of $\{f_{a}\}$ and a linear functional $f\in A^{*}$

such that $\{f_{\beta}\}$ converges to $f$ in $w^{*}$ -toplolgy. Let $x\in A$ and $F\in A^{**}$ . There exists $y\in A$

such that $\pi(x)\circ F=\pi(y)$ . Then

$F(f_{\beta^{\circ}}x)=\pi(x)\circ F(f_{\beta})=f_{\beta}(y)$

$\rightarrow f(y)=\pi(x)\circ F(f)=F(f\circ x)$ .

Hence $T_{x}$ is a $\sigma(A^{*}, B)$ -compact operator for each $x\in A$ . This completes the proof.

COROLLARY 3. 4. Let $A$ be a Banach algebra. Then $\pi(A)$ is a two-sided ideal in $A^{**}if$
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and only if $T_{x}$ and $S_{x}$ are weakly compact opemtors for each $x\in A$ .
When $A$ is a $B^{*}$ -algebra, a left (or right) ideal $\pi(A)$ is also a right (or left) ideal in

$A^{**}$ . Therefore we have the following corollary.

COROLLARY 3. 5. If $A$ is a $B^{*}$ -algebra, the following five statements are equivalent.
1) $\pi(A)$ is a two-sided ideal in $A^{**}$ .
2) $L_{x}(resp. 2)^{\prime}R_{x})$ is a weakly compact operator on $A$ for each $x\in A$ .
3) $T_{x}(resp. 3)^{\prime}S_{x})$ is a weakly compact operator on $A^{*}for$ each $x\in A$ .

4. A group algebra which is an ideal in the second dual space

Throughout this section, $G$ will denote a locally compact topological group and $\mu$ a
left Haar measure on $G$. In this section, we shall consider the second dual space $L^{1}(G)^{**}$

of the group algebra $L^{1}(G)$ of $G$. Let $L^{\infty}(G)$ be the space of all essentially bounded
functions on $G$. Let $f\in L^{\infty}(G)$ and $x,$ $y\in L^{1}(G)$ . We denote by $\otimes the$ convolution of $x$

and $y$ . Then

$S_{x}(f)(y)=x*f(y)=f(y\otimes x)=\int_{G}f(s)y\otimes x(s)d\mu(s)$

$=\int_{G}f(s)\int_{G}y(t)x(t^{-1}s)d\mu(t)d\mu(s)$

$=\int_{G}\{\int_{G}f(s)x(t^{-1}s)d\mu(s)y(t)d\mu(t)\}$

$=\int_{G}x*f(t)y(t)d\mu(t)\sim$

$=x*f(y)$

where $ x*f\sim$ is defined by $x*f(t)=\sim\int_{G}f(s)x(t^{-1}s)d\mu(s)$ .
We have $|x*f(t)\sim|\leqq\Vert f\Vert_{\infty}\Vert x\Vert_{1}$ .
Moreover

$|_{X*j(t)-x*f(s)|\leqq\int_{G}|f(r)|}^{\sim\sim}|x_{t}(r)-x_{s}(r)|d\mu(r)$

$\leqq\Vert f\Vert_{\infty}\Vert_{Xt}-x_{s}\Vert_{1}$

where $x_{g}$ is defined by $x_{g}(h)=x(g^{-1}h)(g, h\in G)$ .
Therefore $ x*f\sim$ is a bounded continuous function and hence $x*f\in L^{\infty}(G)$ . Consequently

we may identifiy $ x*f\sim$ to the realized function of a bounded linear functional $x*f$. In
[Civin, 2] it is shown that for a locally compact abelian group, the following proposition

is hold.
PROPOSITION 4. 1. Let $G$ be a locally compact topological group and $\mu$ be a left Haar

measure on G. Then $\pi(L^{1}(G))$ is a two-sided ideal in $L^{1}(G)^{**}if$ and only if $G$ is compact.
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PROOF. Since the sufficiency was shown in [Wong, 9], we have only to prove the
necessity. Suppose that $G$ is not compact. Then from the regularity of $\mu$, there exists a
compact set $C_{1}\subset G$ such that $\mu(C_{1})>1$ . From the regularity of $\mu$, we have again a
compact set $C_{2}\subset G-C_{1}$ such that $\mu(C_{2})>1$ .

Repeating this arguments, we have a infinit$e$ sequence $\{C_{n}\}$ of compact sets such
that $C_{n\cap}C_{m}=\phi(n\neq m)$ and $\mu(C_{n})>1$ for all $n$ . Clearly no compact set contains all $C_{n}$ .
We define $C_{n}^{\prime}=UC_{p}p=1n$ and $ C_{\infty}=UC_{p}p=1\infty$ Let $f_{n},$ $\chi$ and $f$ be a characteristic functions of

$C^{\prime}{}_{n}C_{1},$ $C_{1}$ and $C_{\infty}C_{1}$ respectively.
Then $f_{n},$ $f\in L^{\infty}(G)$ and $x\in L^{1}(G)$ . By the definition of $C_{n}^{\prime}$ and $C_{\infty},$ $f_{n}(t)$ converges to

$f(t)$ pointwise. Therefore by the $Lebe$sgue’s bounded convergenoe theor$emf_{n}$ converges
to $f$ in the weak $*$ -topology in $(L^{1}(G))^{*}=L^{\infty}(G)$ . From the assumption of our theorem
there exists an element $h\in L^{1}(G)$ such $th_{\alpha}^{r}t\pi(h)=F*\pi(x)$ . Then

$F(x*f_{n})=f_{n}*F(x)=F*\pi(x)(f_{n})=\pi(h)(f_{n})=f_{n}(h)$

$\rightarrow f(h)=\pi(h)(f)(>.\prime f)$ .

Therefore $x*f$ is a weak limit of $x*f_{n}$ .
Now for any $t\in C_{\infty}$

$x*f(t)=\sim\int_{G}f(ts)x(s)d\mu(s^{\backslash },=\int_{C_{1}}f(ts)d\mu(s)=\mu(C_{1})>1$ .

Hence $\chi*f\sim$ does not vanish at infinity.
On the other hand, for any $t\not\in C^{\prime}{}_{n}C_{1}C_{1^{-1}}$ (compact set)

$x*\sim f_{n}(t)=]_{C_{1}}f_{n}(ts)d\mu(s)=0$ .

This means that the support of $ x*f_{n}\sim$ is compact.
Hence $x*f_{n}$ vanishes at infinity. But the class of $x*f$ belongs to the space $C_{0}(G)$ , as an
element of $L^{\infty}(G)$ , since $x*f$ is a weak limit of $x*f_{n}$ and $C_{0}(G)$ is weakly closed (in fact
norm closed). Sinoe $x*f$ is continuous, it vanishes at infinity. This contradiction leads
to the fact that $G$ is compact. Thus our proposition is completely proved.

Let $f\in L^{\infty}(G)$ and $x,$ $y\in L^{1}(G)$ . We shall consider the realization of bounded linear
functional $f\circ x$.

$T_{x}(f)(y)=\int_{G}f(s)x\otimes y(s)d\mu(s)=\int_{G}f(s)\int_{G}x(st)y(t^{-1})d\mu(t)d\mu(s)$

$=\int_{G}$ $\{ ]_{G}f(s)x(st)d\mu(s)\}y(t^{-1})d\mu(t)=\int_{G}\Delta(t^{-1})f\circ x(t^{-1})y(t^{-1})d\mu(t)\sim$

$=\int_{G}f\circ x(t)y(t)d\mu(t)=f\circ x(y)\sim$
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where $\Delta(t)$ is a modular function on $G$ and $f^{\sim_{\circ}}x$ is defined by $f\circ x(t)=\sim\int_{G}f(s)x(sl^{-1})$

$d\mu(s)$ .
We have $|f\circ x(l)|\leqq\Vert f\Vert_{\infty}\Delta(l^{-1})^{2}\Vert x\Vert_{1}$ .
Since $ f\circ x\sim$ is continuous on $G$, if it is bounded $ f\circ x\in L^{\infty}(G)\sim$ . Then we may identify $ f\circ x\sim$ to
the realized function of a bounded linear functional $f\circ x$ .

Next we consider the certain subalgebra of the second dual algebra. [Flanders 4].

Let $B$ be a Banach algebra and $A$ be a closed subalgebra of B. $A$ is called a block
subalgebra of $B$ if $ABA\subset A$ .

In [Flanders 4] it is shown that for a $B^{*}$ -algebra $A$ the following conditions are
equivalent:

1) $\pi(A)$ is a block subalgebra in $A^{**}$ .
2) $\pi(A)$ is a two-sided ideal in $A^{**}$ .

Here we shall show the above conditions 1) and 2) are equivalent for $L^{1}(G)$ . We
have

PROPOSITION 4. 2. Let $G$ be a locally compact unimodular group. Then $lhe$ following
conditions are equivaleut.

1) $\pi(L^{1}(G))isatwo- sidedidealinL^{1}(G)^{**}$ .
2) $\pi(L^{1}(G))$ is a block subalgeba of $L^{1}(G)^{**}$ .
3) $G$ is compact.

PROOF. It is sufficient to prove the implication $2$) $\Rightarrow 3$). Since $G$ is unimodular, $\Delta(t)=$

1. We shall show the outine of the proof. Suppose that $G$ is not compact. We choose a
sequenoe $\{C_{n}\}$ of compact sets such that $C_{n\cap}C_{m}=\phi(m\neq n)$ and $\mu(C_{n})>1$ for all $n$ . Let
$f_{n},$ $x$ and $f$ be characteristic functions of $C_{\underline{\tau}}C^{\prime}{}_{n}C_{1},$ $C_{1}$ and $C_{1}C_{\infty}C_{1}$ respectively. Then $ f_{n}\rightarrow$

$f$ in weak *-topology in $L^{\infty}(G)$ . From the assumption, for each $x\in L^{1}(G)$ and $F\in L^{1}(G)^{**}$ ,

there exists $g\in L^{1}(G)$ such that

$\pi(g)=\pi(x)\circ F*\pi(x)$ .
$F((x*fn)\circ x)=F\circ(x*fn)(x)=\pi(x)\circ F(x*f_{n})$

$=fn*(\pi(x)\circ F)(x)=\pi(x)\circ F*\pi(x)(f_{n})=fn(g)$

$\rightarrow f(g)=F((x*f)\circ x)$

Hence $(x*f)\circ x=weak\lim(x*f_{n})\circ x$

Now for any $l\in C_{\infty}$,

$x*(f\circ x)(t)=\int_{G}f\circ x(ls)x(s)d\mu(s)$

$=|_{C_{1}}\int_{G}f(rts)x(r)d\mu(r)d\mu(s)$

$=|_{C_{1}}|_{C_{1}}f(rls)d\mu(r)d\mu(s)$
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$=\int_{C_{1}}\mu(C_{1})d\mu(s)$

$=\mu(C_{1})^{2}>1$ .
Hence $x*(f\circ x)\not\in C_{0}(G)$ . However for any $t\oplus C_{1^{-1}}C_{1}C^{\prime}{}_{n}C_{1}C_{1^{-1}}$ (compact set),

$x*(f_{n}\circ x)(t)=\int_{G}f_{n}\circ x(ts)x(s)d\mu(s)$

$=\int_{C_{1}}\int_{G}f_{n}(rts)x(r)d\mu(r)d\mu(s)$

$=\int_{C_{1}}\int_{C_{1}}n$

$=0$ .
This is a contradiction by the same reason as the proof of Proposition 4. 1, and so $G$

is compact.
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