The second dual of a tensor product of \mathbf{C}^{*}-algebras, II

By
Tadashi Huruya

(Received September 26, 1973)

1. Introductinn

Let C be a C*-algebra, and let π_{C} be the universal represensation of C in the universal representation Hilbert space H_{C}. The second dual $C^{* *}$ of C may be identified with the closure of $\pi_{C}(C)$ in weak operator topology [1: p. 236]. For C^{*}-algebras A and B we denote by $A \otimes B$ the C^{*}-tensor product of A and $B, A^{* *} \otimes B^{* *}$ the W^{*}-tensor product of $A^{* *}$ and $B^{* *}$. Since there exists the canonical *-isomorphism $\pi_{A} \otimes \pi_{B}$ from $A \bigotimes_{\alpha} B$ into $A^{* *} \bigotimes_{\alpha} B^{* *}, A \bigotimes_{\alpha} B$ may be identified with the weak dense subalgebra $\pi_{A} \otimes \pi_{B}\left(A \bigotimes_{\alpha}^{\alpha} B\right)$ of $A^{* *} \otimes_{\otimes}^{\alpha} B^{* *}$. In this paper we shall study positive linear functionals of $A \bigotimes_{\alpha} B$ which has the normal extension to $A^{* *} \otimes B^{* *}$.

In $\S 2$, we shall show a characterization of pure states having the normal extension to $A^{* *} \otimes B^{* *}$.

In §3, we shall show that $(A \underset{\alpha}{\otimes} B)^{* *}$ is ${ }^{*}$-isomorphic to $A^{* *} \otimes B^{* *}$ when either A or B is a dual C^{*}-algebra, and the ${ }^{*}$-isomorphism $\pi_{A} \otimes \pi_{B}$ has no normal extension to $(A \otimes B)_{\alpha}^{* *}$ when A and B are UHF algebras [2: Definition 1.1].

2. Theorem

Theorem. Let A and B be C^{*}-algebras and π be an irreducible representation of $A \underset{\alpha}{\otimes} B$ on a Hilbert space $H \pi$. Then the following two assertions are equivalent.
(a) π is equivalent with a representation $\pi_{1} \otimes \pi_{2}$ where π_{1} and π_{2} are representations of A and B, respectively.
(b) A positive linear functional f of $A \underset{\alpha}{\otimes} B$ has the normal extension to $A^{* *} \otimes B^{* *}$, where f is given by the formula

$$
f(x)=(\pi(x) \xi, \xi), x \in A \underset{\alpha}{\otimes} B, \quad \xi \in H_{\pi} .
$$

Proof. It is obvious that (a) implies (b).
If (b) holds, f can be expressed such that

$$
f(x)=(x \xi, \xi), \quad x \in A{\underset{\alpha}{\alpha}}_{\otimes B,}, \xi \in H_{A} \otimes H_{B} .
$$

Now, ξ can be written such that

$$
\xi=\sum_{i=1}^{\infty} \xi_{i} \otimes \eta_{i}
$$

where $\left\{\boldsymbol{\xi}_{i}\right\},\left\{\eta_{i}\right\}$ are orthogonal families in H_{A} and H_{B}.
If S is a family of operators acting on a Hilbert space H and K is a set of vectors in H, the [SK] denotes the closed subspace of H generated by vectors of the form $T a$ with T in S and a in K. Let P_{A} and P_{B} be projections on $\left[\pi_{A}(A) \xi_{i}\right]_{i=1,2, \ldots}$ and $\left[\pi_{B}(B) \eta_{i}\right]_{i=1,2, \ldots}$

If P is a projection in $\pi(A)^{\prime}$ such that $P_{A} \geqq P$. Then there exists a vector ξ_{i} such that $P \xi_{i} \neq \xi_{i}$. We have $P \otimes P_{B} \xi \neq \xi$.

Now, we get

$$
f(x)=\left(x\left(P_{A} \otimes P_{B}-P \otimes P_{B}\right) \xi, \xi\right)+\left(x P \otimes P_{B} \xi, \xi\right)
$$

for $x \in A \underset{\alpha}{\otimes B}$. This is a contradiction. Therefore the restriction $x_{A \mid P A}$ of π_{A} to $\left[\pi_{A}(A)\right.$ $\left.\xi_{i}\right]_{i=1,2, \ldots}$ is an irreducible representation of A.

Similarly $\pi_{B \mid P_{B}}$ is an irreducible representation of B.
Since we have $\left[A \otimes_{\alpha} B \xi\right] \subset P_{A} \otimes P_{B},[A \otimes B \xi]=P_{A} \otimes P_{B}$.
Consequently the representation: $\left.x \rightarrow x\right|_{[A \otimes B \leqslant]}$ of $A \bigotimes_{\alpha} B$ is equivalent with $\pi_{A \mid P_{B}} \otimes$ $\pi_{B \mid P B}$. This completes the proof.

3. Examples

Example 1. If either A or B is a dual C^{*}-algebra, then $\left(A \bigotimes_{\alpha} B\right)^{* *}$ is ${ }^{*}$-isomorphic to $A^{* *} \otimes B^{* *}$.

Proof. We assume A is a dual C^{*}-algebra.
First, we shall consider in case A is an elementary C^{*}-algebra which has a *-isomorphism \& to the C^{*}-algebra of all compact operators on a Hilbert space H.

Let f be a positive linear functional of $A \bigotimes_{\alpha} B$. For a representation π_{f} defined by f in a Hilbert space H_{f}, we have representations π_{1} and π_{2} of A and B in H_{f} such that

$$
\pi_{f}(a \otimes b)=\pi_{1}(a) \pi_{2}(b)=\pi_{2}(b) \pi_{1}(a),
$$

for $a \in A, b \in B$. Because of the property of the algebra of all compact operators, π_{1} is equivalent with a representation $\iota \otimes I$ in a suitable Hilbert space $H \otimes K$. Then there exists a representation ρ of B in the Hilbert space $H \otimes K$. Then there exists a representation ρ of B in the Hilbert space K such that π_{2} is equivalent with $I \otimes \rho$ in $H \otimes K$. Hence π_{f} is equivalent with $c \otimes \rho$, and so f has the normal extension to $A^{* *} \otimes B^{* *}$. By [3: Corollary] $\left(A \otimes_{\alpha} B\right)^{* *}$ is *-isomorphic to $A^{* *} \otimes B^{* *}$.

Next, we shall consider in case A is a dual C^{*}-algebra, that is, it is the C^{*}-direct sum of A_{i}, where A_{i} is an elementary C^{*}-algebra.

Since $A_{i} \bigotimes_{\alpha} B$ is a closed two-sided ideal in $A \bigotimes_{\alpha} B$, there exists a central projection p_{i} of
$\left(A \bigotimes_{\alpha} B\right)^{* *}$ such that $\left(A \bigotimes_{\alpha} B\right)^{* *} p_{i}=\overline{A_{i}} \bigotimes_{\alpha} B$, where $\overline{A_{i}} \bigotimes_{\alpha} B$ denotes the weak closure of $A_{i} \otimes B$ in $\left(A \bigotimes_{\alpha} B\right)^{* *}$. Then $\left(A_{i} \bigotimes_{\alpha} B\right)^{* *}$ is *-isomorphic to $\bar{A}_{i} \bigotimes_{\alpha} \bar{B}$. We also have a central projection z_{i}^{α} of $A^{* *}$ such that $A_{i}^{* *}=A^{* *} z_{i}$. Since $\left(A \bigotimes_{\alpha} B\right)^{* *}=\sum_{i}\left(A \bigotimes_{\alpha} B\right)^{* *} p_{i}$, and $A^{* *} \otimes B^{* *}=$ $\sum_{i}\left(A^{* *} z_{i} \otimes B^{* *}\right),(A \otimes B)^{* *}$ is ${ }^{*}$-isomoprphic to $A^{* *} \otimes B^{* *}$.

Example 2. Let A and B be UHF algebras. The ${ }^{*}$-isomorpism $\pi_{A} \otimes \pi_{B}$ from $A \bigotimes_{\alpha} B$ into $A^{* *} \otimes B^{* *}$ has no normal extension to $\left(A \bigotimes_{\alpha} B\right)^{* *}$.

Prooe. By [4: Theorem 4] and Theorem, there exists a pure state of $A \otimes_{\alpha} B$ which has no normal extension to $A^{* *} \otimes B^{* *}$. By [3: Corollary] $\pi_{A} \otimes \pi_{B}$ has no normal extension to $\left(A \bigotimes_{\alpha} B\right)^{* *}$.

Niggata University

References

1. J. Dixmier: Les C^{*}-algēbres et leurs représentations Gauthier-Villars, Paris, 1969.
2. J. Glimm: On a certain class of operator algebras. Trans. Amer. Math. Soc., 95 (1960), 318-340.
3. T. Huruya: The second dual of a tensor product of C^{*}-algebras. Sci. Rep. Niigata Univ., Ser. A, 9 (1972), 35-38.
4. A. Wulfsohn: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.
