The second dual of a tensor product of C^* -algebras, II

By

Tadashi HURUYA

(Received September 26, 1973)

1. Introductinn

Let C be a C*-algebra, and let π_C be the universal represensation of C in the universal representation Hilbert space H_C . The second dual C** of C may be identified with the closure of $\pi_C(C)$ in weak operator topology [1: p. 236]. For C*-algebras A and B we denote by $A \otimes B$ the C*-tensor product of A and B, $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} . Since there exists the canonical *-isomorphism $\pi_A \otimes \pi_B$ from $A \otimes B$ into $A^{**} \otimes B^{**}$, $A \otimes B$ may be identified with the weak dense subalgebra $\pi_A \otimes \pi_B (A \otimes B)$ of $A^{**} \otimes B^{**}$. In this paper we shall study positive linear functionals of $A \otimes B$ which has the normal extension to $A^{**} \otimes B^{**}$.

In §2, we shall show a characterization of pure states having the normal extension to $A^{**} \otimes B^{**}$.

In §3, we shall show that $(A \bigotimes B)^{**}$ is *-isomorphic to $A^{**} \otimes B^{**}$ when either A or B is a dual C*-algebra, and the *-isomorphism $\pi_A \otimes \pi_B$ has no normal extension to $(A \bigotimes B)^{**}$ when A and B are UHF algebras [2: Definition 1.1].

2. Theorem

THEOREM. Let A and B be C*-algebras and π be an irreducible representation of $A \bigotimes_{\alpha} B$ on a Hilbert space $H\pi$. Then the following two assertions are equivalent.

(a) π is equivalent with a representation $\pi_1 \otimes \pi_2$ where π_1 and π_2 are representations of A and B, respectively.

(b) A positive linear functional f of $A \bigotimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$, where f is given by the formula

 $f(x) = (\pi(x)\xi, \xi), x \in A \bigotimes B, \xi \in H_{\pi}.$

PROOF. It is obvious that (a) implies (b). If (b) holds, f can be expressed such that

 $f(\mathbf{x}) = (\mathbf{x}\boldsymbol{\xi}, \boldsymbol{\xi}), \ \mathbf{x} \in A \otimes B, \ \boldsymbol{\xi} \in H_A \otimes H_B.$

Now, ξ can be written such that

$$\xi = \sum_{i=1}^{\infty} \xi_i \otimes \eta_i$$

where $\{\xi_i\}$, $\{\eta_i\}$ are orthogonal families in H_A and H_B .

If S is a family of operators acting on a Hilbert space H and K is a set of vectors in H, the [SK] denotes the closed subspace of H generated by vectors of the form Ta with T in S and a in K. Let P_A and P_B be projections on $[\pi_A(A)\xi_i]_{i=1,2,\ldots}$ and $[\pi_B(B)\eta_i]_{i=1,2,\ldots}$

If P is a projection in $\pi(A)'$ such that $P_A \geqq P$. Then there exists a vector ξ_i such that $P\xi_i \models \xi_i$. We have $P \otimes P_B \xi \models \xi$.

Now, we get

$$f(x) = (x(P_A \otimes P_B - P \otimes P_B)\xi, \xi) + (xP \otimes P_B\xi, \xi)$$

for $x \in A \bigotimes_{\alpha} B$. This is a contradiction. Therefore the restriction $x_{A|PA}$ of π_A to $[\pi_A(A) \xi_i]_{i=1,2,...}$ is an irreducible representation of A.

Similarly $\pi_{B|PB}$ is an irreducible representation of *B*.

Since we have $[A \otimes B\xi] \subset P_A \otimes P_B$, $[A \otimes B\xi] = P_A \otimes P_B$.

Consequently the representation: $x \to x|_{[A \otimes B^{\sharp}]}$ of $A \bigotimes_{\alpha} B$ is equivalent with $\pi_{A|PB} \bigotimes_{\pi_{B|PB}}$. This completes the proof.

3. Examples

EXAMPLE 1. If either A or B is a dual C*-algebra, then $(A \bigotimes_{\alpha} B)^{**}$ is *-isomorphic to $A^{**} \otimes B^{**}$.

PROOF. We assume A is a dual C*-algebra.

First, we shall consider in case A is an elementary C*-algebra which has a *-isomorphism ι to the C*-algebra of all compact operators on a Hilbert space H.

Let f be a positive linear functional of $A \bigotimes_{\alpha} B$. For a representation π_f defined by f in a Hilbert space H_f , we have representations π_1 and π_2 of A and B in H_f such that

$$\pi_f(a \otimes b) = \pi_1(a)\pi_2(b) = \pi_2(b)\pi_1(a),$$

for $a \in A$, $b \in B$. Because of the property of the algebra of all compact operators, π_1 is equivalent with a representation $\iota \otimes I$ in a suitable Hilbert space $H \otimes K$. Then there exists a representation ρ of B in the Hilbert space $H \otimes K$. Then there exists a representation ρ of B in the Hilbert space K such that π_2 is equivalent with $I \otimes \rho$ in $H \otimes K$. Hence π_f is equivalent with $\iota \otimes \rho$, and so f has the normal extension to $A^{**} \otimes B^{**}$. By [3: Corollary] $(A \otimes B)^{**}$ is *-isomorphic to $A^{**} \otimes B^{**}$.

Next, we shall consider in case A is a dual C*-algebra, that is, it is the C*-direct sum of A_i , where A_i is an elementary C*-algebra.

Since $A_i \otimes B$ is a closed two-sided ideal in $A \otimes B$, there exists a central projection p_i of

 $(A \bigotimes_{\alpha} B)^{**}$ such that $(A \bigotimes_{\alpha} B)^{**} p_i = \overline{A_i \bigotimes_{\alpha} B}$, where $\overline{A_i \bigotimes_{\alpha} B}$ denotes the weak closure of $A_i \otimes B$ in $(A \bigotimes_{\alpha} B)^{**}$. Then $(A_i \bigotimes_{\alpha} B)^{**}$ is *-isomorphic to $\overline{A_i \bigotimes_{\alpha} B}$. We also have a central projection z_i of A^{**} such that $A_i^{**} = A^{**} z_i$. Since $(A \bigotimes_{\alpha} B)^{**} = \sum_i (A \bigotimes_{\alpha} B)^{**} p_i$, and $A^{**} \otimes B^{**} =$

 $\sum (A^{**}z_i \otimes B^{**})$, $(A \otimes B)^{**}$ is *-isomoprphic to $A^{**} \otimes B^{**}$.

EXAMPLE 2. Let A and B be UHF algebras. The *-isomorphism $\pi_A \otimes \pi_B$ from $A \bigotimes^{\alpha} B$ into $A^{**} \otimes B^{**}$ has no normal extension to $(A \bigotimes^{\alpha} B)^{**}$.

PROOE. By [4: Theorem 4] and Theorem, there exists a pure state of $A \bigotimes_{\alpha} B$ which has no normal extension to $A^{**} \otimes B^{**}$. By [3: Corollary] $\pi_A \otimes \pi_B$ has no normal extension to $(A \bigotimes_{\alpha} B)^{**}$.

NIIGATA UNIVERSITY

References

1. J. DIXMIER: Les C*-algēbres et leurs représentations Gauthier-Villars, Paris, 1969.

- 2. J. GLIMM: On a certain class of operator algebras. Trans. Amer. Math. Soc., 95 (1960), 318-340.
- 3. T. HURUYA: The second dual of a tensor product of C*-algebras. Sci. Rep. Niigata Univ., Ser. A, 9 (1972), 35-38.
- 4. A. WULFSOHN: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.