
Background of Airglow [0I] 5577\AA and Two-Colour Photometry

By

Bun-ichi SAITO

Department of Physics, Faculty of Science, Niigata University

(Received May 15, 1960)

Abstract

Some informations for colour of the background of the airglow [OI] $5577^{Q}A$

line were obtained empirically, which is a continuous spectrum composed of the
integrated star light, the zodiacal light and the airglow continuum.

A relation between the intensity of the airglow continuum and the one of the
$5577\mathring{A}$ line was found, which is not linear, but the former varies with a power of
0.78 for the latter and this suggests that the two-body collision process of [OI] atoms
is possible as the origin of the airglow continuum near $5250\mathring{A}$ .

These informations were utilized into the explicit formulation of the method of
the two-colour photometry.

An information was found on the spatial distribution of the zodiacal light
extending to higher ecliptic latitude.

For the calibration of the photometer, an improved method was expressed in
connection with the two-colour photometry.

\S 1. Introduction

In the measurement of the absolute intensity of the airglow emission line,

it is well known that the basic problems are classified into three groups:
(a) the calibration of the photometer;
(b) the subtraction of the background which is the continuous spectrum com-

posed of the integrated star light, the zodiacal 1ight and the airglow
continuum;

(c) corrections for the extinction and scattering by the earth’s lower atmosphere.
The two-colour photometry after Roach and Barbier [1] can be an effective

method of the subtraction of the background only if its spectrum can be estimated.

(1) In this report, the term of “zodiacal light” is used in the sence of the reflected
solar light by the interplanetary matter, which is of course intensified near the ecliptic
but can not be neglected even in the higher ecliptic latitude.
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This paper is aimed to give some informations of such the background, that is,
mean spectra in $5W0\mathring{A}$ region of the integrated star and the zodiacal light, or actually
the flux ratio at the special two wavelengths near $5000\mathring{A}$ .

As the airglow continuum, a relation between its intensity and the one of the
airglow [OI] $5577\mathring{A}$ green line will be given. These informations are all utilized in
the estimation of the part due to only the emission line in the actually observed
night sky photo-currents.

For the calibration of the photometer, there is an improved method by combining
the observations of some selected stars, with the relative sensitivity obtained by the
direct projection of the monochromatic light into the photometer itself, which has
been originally presented by Hikosaka and us [2]. Somewhat detailed treatments
of this method will be described in this paper specially in connection with the two.
colour photometry.

The actual observations for these purposes were made by Japanese IGY photo-
meter for the airglow $5577\mathring{A}$ line by Huruhata et al. [3], and data were taken from
those at Niigata airglow station $(37^{0}42^{\prime}N, 138^{0}49^{\prime}E)$ during Jul. 1957 and May 1958.

\S 2. Basic Equations of the Two-Colour Photometry

When the airglow [OI] $ 5577A\circ$ green line intensity is $G^{\prime}$ in Rayleigh units, the
photometer receives

$G^{\prime}\cdot 1\alpha\frac{1}{4\pi(57.3)^{2}}$ photons per cm sec. $\deg^{2}$,

if there were no atmospheric extinctions, as the Rayleigh unit is defined by $ 4\pi$

brightness of the sky (emitting photons per cm sec. steradian) $\times 10^{-6}$.
The sensitivity of the photometer, that is the photocurrent mm. produced per

unit photon per cm sec. $\mathring{A}$, is the product of the following factors of the optical
system:

(a) the area of objective,
(b) the transmission of filters,
(c) the local sensitivity of photocathode,
(d) the flux loss, if exists, due to geometry.

Especially saying of the filter, in the case of an interference type, it must be $con$ .
sidered the shifting of its transmission wavelength by an oblique incidence.

Therefore the overall sensitivity of the photometer, $t_{1}$ , is a function $(\lambda, \theta, \varphi)$ ,

where $\lambda$ is wavelength, $\theta$ is the vertical angular distance of the incidence from the

optical axis and $\varphi$ is the horizontal as same as $\theta$. Thus the photocurrent by the
$55577\mathring{A}$ green line, $Go$ mm., is given by

/
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$ G_{0}=G^{\prime}\frac{10^{6}}{41250}\int\int t_{1}(5577, \theta, \varphi)d\theta d\varphi$ ,

or by using the effective field, $\Omega\deg^{2}$, defined as

$\Omega=\frac{\int\int t_{1}(5577,\theta,\varphi)d\theta d\varphi}{t_{1}(5577,0,0)}$

,

more simply

$10^{6}$

$Go=G^{\prime}t_{1}(5577)\Omega\overline{41250}$ (2.1)

where $t_{1}(5577)$ represents the sensitivity in the case of the optical axis being directed
to an object, that is $t_{1}(5577,0,0)$ . If we get $Go$ due to the airglow line observa-
tionally, whose intensity $G^{\prime}$ can be derived by eq.(2.1) in Rayleigh units.

By the method of two-colour photometry, in which the photometer has two
changeable filters, the one named the green line filter has peak transmission near
$5577\mathring{A}$ and the other named the control filter has a peak at, say $5250^{o}A$, and both of
them have about several ten A as halfwidths, the green line current $Go$ is obtained
by using the following notations:

$I_{1}$ ; the observed current mm. by the green line filter,
$I_{2}$ ; the observed current mm. by the control filter. Both $I_{1}$ and $I_{2}$ have been

corrected for the earth’s lower atmospheric extinction.
$t_{1}(\lambda)$ ; the overall sensitivity of the photometer with the green line filter re.

presented by mm. per unit photon per cm sec. A $\deg^{2}$,
$t_{2}(\lambda)$ ; the overall sensitivity with the control filter in the same sense as $t_{1}(\lambda)$ ,
$G$ ; the brightness of the sky due to the airglow green line in units of photons

per cm.2 sec. $\deg^{2}$, so that $G$ is connected with $G^{\prime}$ , which is the brightness in Ray-
leigh units, by the equation

41250
$G=G\overline{10^{6}}$

$Gc(\lambda)$ ; the brightness of the sky due to the airglow continuum in photons per
cm sec. $\deg^{2}$ A,

$A(\lambda)$ ; the astronomical content of the night sky brightness which is the sum
of the integrated star light $S(\lambda)$ and the zodiacal light $Z(\lambda)$ in units as same as

$\backslash $

$G_{c}(\lambda)$ .
When the photometer is exposed to the sky by alternating its two filters, the

observed photocurrent $I_{1},$ $I_{2}$ are expressed as

$I_{1}=\int_{0}^{\infty}\{A(\lambda)+G_{c}(\lambda)\}t_{1}(\lambda)d\lambda+Gt_{1}(5577)$ , (2.2)
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$I_{2}=\int_{0}^{\infty}\{A(\lambda)+G_{c}(\lambda)\}t_{2}(\lambda)d\lambda+Gt_{2}(5577)$ , (2.3)

where of course $Gt_{2}(5577)$ is a correction term in the $I_{2}$ current through the control
filter. Introducing the following symbols to simplify eqs. (2.2), (2.3), that is

$\int_{0}^{\infty}t_{1}(\lambda)d\lambda/\int_{0}^{\infty}t_{2}(\lambda)d\lambda=t$,

$t_{1}(5577)/t_{2}(5577)=1/p$,

$\int_{0}^{\infty}A(\lambda)t_{1}(\lambda)d\lambda/\int_{0}^{\infty}A(\lambda)t_{2}(\lambda)d\lambda=ta$,

$\int_{0}^{\infty}G_{c}(\lambda)t_{1}(\lambda)d\lambda/\int_{0}^{\infty}G_{c}(\lambda)t_{2}(\lambda)d\lambda=t_{c}$,

$Gt_{1}(5577)=G_{0}$ ,

$\int_{0}^{\infty}A(\lambda)t_{2}(\lambda)d\lambda=A_{0}$ ,

$\int_{0}^{\infty}G_{c}(\lambda)t_{2}(\lambda)d\lambda=G_{c}$,

thus we get

$I_{1}=t(aA_{0}+cG_{c})+G_{0}$ , (2.4)

$I_{2}=A_{0}+G_{c}+pG_{0}$ . (2.5)

Here, if we divide the astronomical light $A(\lambda)$ into two parts of the star light
$S(\lambda)$ and the zodiacal light $Z(\lambda)$ , eqs. (2.4) and (2.5) may be expressed in the next
equations by using same symbols, $ts,$ $tz$ and $S_{0},$ $Z_{0}$ as $ta$ and $A_{0}$ , respectively,

$I_{1}=t(sS_{0}+zZ_{0}+cG_{c})+G_{0}$ , (2.6)

$I_{2}=S_{0}+Z_{0}+G_{c}+pG_{0}$, (2.7)

where $pG_{0}$ represents the contamination of the green line intensity in $I_{2}$.
The instrumental constants,. which are sensitivities $t_{1}(\lambda),$ $t_{2}(\lambda)$ and sensitivity

ratio of two filters $t$ and $p$ appeared in these basic equations, will be measured by
the method of \S 3. Since two filters have maxima near $ 5577A\circ$ and $ 5250A\circ$ in our case,
constants $a$ or $s,$ $z$ and $c$ in eqs. (2.4), (2.6) represent flux ratios between $5577\mathring{A}$

and $5250\mathring{A}$ for the above mentioned four continuous light sources. From \S 4, it will
be discussed how these constants may be determined as possible as empirically.
For the airglow continuum $G_{c}$ , a relation between its intensity and the one of the
green line intensity $G_{0}$ will be found in \S 5. By doing so, if we observe two photo-
currents $I_{1}$ and $I_{2}$, we can get the content of the green line $G_{0}$ and the one of the
astronomical light $A_{0}$ or $S_{0}+Z_{0}$ from eqs.(2.4), (2.5) or (2.6), (2.7). Here we note
that $I_{1}$ and $I_{2}$ have to been corrected for the atmospheric extinction. For these
actual treatments the method of Ashburn’s function [4] is used.



Backgrouud of Airglow [OI] $5577A^{o}$ and Two-Colour Photometry 61

\S 3. Characters of the Optical System

Overall sensitivities $t_{1,2}(\lambda, \theta, \varphi)$ of the whole optical system of the photometer
as described in \S 2, where signs 1, 2 denote sensitivities with the green line filter
and the control filter respectively, may be expressed in eq. (3.1) by using two new
terms, relative sensitivities, $t_{12}(\lambda, \theta, \varphi)$ and a conversion factor, $\alpha$ , that is

$t_{1,2}(\lambda, \theta, \varphi)=\alpha t_{1,2}(\lambda, \theta, \varphi)$ (3.1)

or in the case of $\theta=\varphi=0$ more simply

$t_{1,2}(\lambda)=\alpha t_{1,2}(\lambda)$ , (3.2)

where $\alpha$ is photocurrent mm. per unit photon per. cm sec. A $\deg^{2}$, and $t_{1,2}(\lambda, \theta, \varphi)$

and $\alpha$ can be measured by the following way.
3.1. dependences of relative sensitivities $t_{1,2}(\lambda\theta\varphi)$ on $\theta,$

$\varphi$ and the effective
field of the photometer.

We point the photometer to a distant small light source and read the photocurrent
$i(\lambda, \theta, \varphi)$ , leting its image systematically cross the photocathode.

Mapping out these readings, the effective field $\Omega$ is determined in $\deg^{2}$ as

$\Omega=\frac{\int\int\dot{i}(\lambda,\theta,\varphi)d\theta d\varphi}{i(\lambda,0,0)}$ , (3.3)

then from eqs. (3.1), (3.2) and (3.3),

$\int\int t_{1,2}(\lambda, \theta, \varphi)d\theta d\varphi=\alpha t_{1,2}^{\prime}(\lambda, 0,0)\Omega$,

and more simply

$=\alpha t_{1,2}(\lambda)\Omega$ , (3.4)

in our case
$\Omega=2.92\deg^{2}$. (3.5)

3.2. dependences of overall sensitivities $t_{1,2}(\lambda)$ of the optical system on wave-
length.

Dependences of the relative overall sensitivities $t_{1,2}(\lambda)$ of the optical system on
wavelength $\lambda$ is possible to be measured in laboratory under the following cautions.

(a) The colour temperature of an incandescent lamp which is a light source
of the monochrometer should be examined elaborately by a standard lamp.

(b) The light beam coming from the monochrometer has to cover fully the

objective of the photometer.
(c) The light through the objective has to cover the field stop of the photo-

meter and illuminate the same position and area on the filter and the
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photocathode as the case of the actual airglow observation. Such a
condition may be reached by using a ground glass set in front of the
objective.

Thus obtained final curves of the relative overall sensitivities $t_{1}(\lambda)$ and $t_{2}^{\prime}(\lambda)$

in arbitrary units are illustrated in Fig. 3.1, and some characters of them are given
in Table 3. 1.

Fig. 3.1 Relative Sensitivities of the Photometer using the GreenLin $e$ or the Control
Filter, $t_{1}(\lambda),$ $t_{2}(\lambda)$ in Arbitrary Unit.

For the small regions of values of $t_{1}(\lambda)$ and $l_{2}(\lambda)$ , the ordinate scale $ha8$ been used in
10 times.

Table 3.1 Some Characters of the Photometer using the Green Line
or the Control Interference Filter

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} Used$Filter $|$ P. Wave. $|$ H. W. $|$ E. W. $|$ $t_{1\cdot 2}(5577)$

Control
Green Line.

$|$ $5245\dot{A}5580A$ $|$

$66\dot{A}94\dot{A}$
$|$

$119A99\dot{A^{*}}$
$|$

$5971.\dot{0}5$

P. Wave. $=Peak$ Wavelength.
H. W. $=Half$ Width.
E. W. $=Effective$ Width.

Effective widths $W_{1},$ $W_{2}$ are defined as eq. (3.6), where $t_{1\cdot 2}(\lambda)$ are the relative sen8i-
tivities in arbitrary units.

In Table 3. 1, the effective widths of the whole optical system, $W_{1}$ and $W_{2}$,
were defined as
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as
$W_{1}=\frac{\int_{0}^{\infty}t_{1}(\lambda)d\lambda}{t_{1}(5577)}=119A$

$W_{2}=\frac{\int_{0}^{\infty}t_{2}(\lambda)d\lambda}{t_{2}(5245)}=99A$ .
(3.6)

From Fig. 3.1, the ratio of two sensitivities is given by

$ t=\int_{0}^{\infty}t_{1}(\lambda)d\lambda/\int_{0}^{\infty}t_{2}(\lambda)d\lambda$

in our case $=0.88$ . (3.8)

In the two-colour photometry, since the value of $t$ is definitely important, it will
be tested again by the way of 3.4 of this section.

3.3 the conversion factor, $a$

In order to get the value of conversion factor $\alpha$ , which is the current per unit
photon per cm sec. A $\deg^{2}$ of the incidence to the photometer, we observe some
standard stars, whose magnitudes and colour temperatures are known.

If $F(m, T, \lambda)$ is the flux of any star, photons per cm sec. A, having vis. mag.
$m$ and col. temp. $T$ , the current through the green line filter due to the star being
$m=1$ and $T=T_{0}=6400^{o}K$($G$ type) after the correction for the extinction, $j_{0}$ , is

$ j_{0}=\int_{0}^{\infty}F(1, T_{0}, \lambda)t_{1}(\lambda)d\lambda$ ,

where $t_{1}(\lambda)$ is the sensitivity in this case.

Therefore by eqs. (3.2) and (3.6)

$ j_{0}=\int_{0}^{\infty}F(1, T_{0}, \lambda)\alpha t_{1}(\lambda)d\lambda$

$=\alpha F(1, T_{0},5577)t_{1}(5577)W_{1}$ . (3.8)

In this equation, since $F(1, T_{0}, 5577)$ is known and $t_{1}(5577)$ and $W_{1}$ may be
measured by the way of 3.2 of this section, then if we can get $j_{0}$ observationally,
the value of conversion factor $\alpha$ will be given by eq. (3.8), that is

$\alpha=\frac{j_{0}}{F(1,T_{0},5577)t_{1}(5577)W_{1}}$

Thus from eqs. (3.2) and (3.8),

$t_{1}(5577)=\frac{j_{0}}{F(1,T_{0},5577)W_{1}}$ , (3.9)

and the brightness of the green line in Rayleigh units, (? is from eq. (2.1) as a
result,

$G=G_{0}\frac{41250}{10^{\epsilon}}\frac{W_{1}}{\Omega}\frac{F(1,T_{0},5577)}{j_{0}}$ (3.10)
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Now $j_{0}$ in eq. (3.10) will be derived from $i_{0}$ , which is the same quantity as $j_{0}$

but through the condrol filter, that is

$ i_{0}=\int_{0}^{\infty}F(1, T_{0}, \lambda)t_{2}(\lambda)d\lambda$ ,

if we correct for the magnitude, colour temp., the photometer sensitivity and the
extinction. The reason for such the employing the control filter is that the subtrac-
tion of the background of the fixed star is more easy in this case. For these
purposes some standard stars to be observed have been selected as summarized in
Table 3.2. In this table the last column $r$ represents the adjusting coefficient to

Table 3.2 The Standard Stars Selected for the Calibration of the
Photometer and their Adjusting Coefficients

$\overline{\overline{Star|}}$Sp. $|$ $m$ $|$ $C$
$|$

$T^{\circ}K$
$|$ $r$

Sp. $=Spectral$ Type,
$m=Visual$ Magnitude,
$C=Colour$ Index,
$T=Colour$ Temperature, all the above values are taken from “Astrophysical

Quantities” by Allen, C. W., The Athlone Press, Univ. London (1955).
$r=$ Adjusting Coefficient to $i_{0}$ of the star $(m=1.0, T=T_{0}=\text{\’{o}} 400^{o}K),$ $i_{0}$ is discussed

in 3.3.

the photocurrent due to the star being $m=1$ and $T=T_{0}$ from the one being any
$n$ and T.

Then
$j_{0}=i_{0}\frac{\int_{0}^{\infty}F(1,T_{0},\lambda)t_{1}(\lambda)d\lambda}{\int_{0}^{\infty}F(1,T_{0},\lambda)t_{2}(\lambda)d\lambda}$

or
$=i_{0}\frac{F}{F}(1,\frac{T_{0},5577)}{1,T_{0},5250)}t$

( (3.11)

An example to get such $i_{0}$ observationally is illustrated in Table 3.3 and Fig. 3.2,
in which $i(Z)$ is the photocurrent of a star through the control filter at zenith
distance $Z$ and $\log ri(Z)$ are plotted against their air masses belonging to Z.
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Table 3.3 An Example of Star Observations Prepared for Fig. 3.2.

Aug. 1-2, 1957

Aug. 2-3, 1957

$\ovalbox{\tt\small REJECT} aAndaAur\alpha PsA\alpha Lyr\{$

$aUMa$

$i(Z)=$ Observed photocurrent mm. through the control filter at zenith distance
$Z$ in $deg.$ ,

$a$ . $m$ . $=$ Air mass for Z.

Fig. 3.2 An Example of Star Observations.

From this figure, we take

$\log i_{0}=1.728$

by the mean straight line of $\log ri(Z)$ and so that
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$i_{0}=53.5$ mm. (3.12)

from eq. (3.11) . . $j_{0}=53.5\times 0.954\times 0.90$

$=46.0$ mm., (3.13)

where we take a value of 0.90 for the sensitivity ratio $t$, in stead of 0.88 of eq. (3.7)

because of being described in 3.4.
3.4 a method of crossing stars having known colour temperatures to determine

the value of sensitivity ratio, $t$.
If we observe the star having known col. temp. by exchanging two filters and

correct for the atmospheric extinction, the relative sensitivity as defined by eq. (3.7),
$t$, can be directly obtained. Our results are summasized in Table 3.4, in which
Jupiter, $\alpha$ Aur and $\alpha$ Boo are selected as the star having known col. temp.. For
the difference of the atmospheric extinctions at two wavelengths $5250\mathring{A}$ and $5577\mathring{A}$ ,
we utili$ze$ an empirical relation being measured beforehand by us, which will be
presented in our next paper.

Table 3.4 Results of the Sensitivity Ratio $t$ obtained by the Various Observations
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3.5. summary

As a result, if we make use of above obtained some constants being needed
for the green line brightness $G^{\prime}$ in Rayleigh as eq. (2.1) or (3.10),

$G^{\prime}=G_{0}\frac{41250}{10^{6}}\frac{W_{1}}{\Omega}\frac{F(1,T_{0},5577)}{j_{0}}$

$=G_{0}\frac{41250}{1\infty}\frac{1.19}{292}\frac{472}{46.0}$

$=G_{0}\times 17.4$ Rayleigh, (3.14)

where a value of 472 is taken from Roach [5] as $F(1, T_{0}, 5577)$ photons per cm sec. A.
The photocurrent due to the green line only, $G_{0}$ , may be given by basic eqs.

(2.4) and (2.5) from data of $I_{1}$ and $I_{2}$ by exchanging two filters as described in \S 2.

\S 4. Mean Colour of the Integrated Star Light

A value of $s$ defined as

$s=\frac{\int_{0}^{\infty}S(\lambda)t_{1}(\lambda)d\lambda}{\int_{0}^{\infty}S(\lambda)t_{2}(\lambda)d\lambda}\frac{\int_{0}^{\infty}t_{2}(\lambda)d\lambda}{\int_{0}^{\infty}t_{1}(\lambda)d\lambda}$

represents a colour index of the integrated star light in a sense since it is the flux
ratio between two maximum sensitive wavelengths of filters, for example $5577\mathring{A}$

and $5250\mathring{A}$ in our case. Such a value of $s$ can be obtained purely empirically by the
following way.

Fig. 4.1 An Example of Zenith Photocurrents $I_{1}$ and $I_{2}$ when the Milky Way is
near the Zenith, Aug. 2-3, 1957.

Above $I_{1}$ and $I_{2}$ are corrected for the atmospheric extinction and the $G$’ is the $8^{reeu}$

line intensity obtained by the equation (8.3) in Rayleigh units.
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Fig. 4.1 shows an example Aug. 2-3, 1957 of the simultaneously observed $I_{1}$

and $I_{2}$ when the integrated star light, $S_{0}$ , is the major part, that is

(a) the airglow intensity $G_{0}$ is seasonally as possible as small,

(b) the zodiacal intensity is almost constant, in our case all the data of $I_{1},$ $I_{2}$

have been taken from those zenith at middle night,

(c) the Milky Way is in zenith.
Thus $I_{1}$ and $I_{2}$ are almost subjected to $S_{0}$ , therefore the gradient $\triangle I_{1}/\triangle I_{2}$

represents $ts$ directly.

Fig. 4.2 $I_{1}$ against $I_{2}$ near the Milky Way of Aug. 2-3 from Fig. 4.1.
Numbers (1), (2), (3), (4), (5), (\’o), (7) are shown in Table 4.1.

Fig. 4.2 shows an example of $I_{1}$ against $I_{2}$ of Aug. 2-3, 1957. The splitting to
some parallel lines as appeared in Fig. 4.2 is clearly due to the variation of the
airglow $G_{0}$ , and the gradients themselves can not probably free from this effect,
although these data are limited to those of very small $G_{0}$ . But in principle we can
employ such a method in order to determine experimentally the mean colour index,
say $s$. Some diagrams for Aug. 1-2 and Aug. 21-22, 1957, as Fig. 4.2, have been
drawn and these results are summarized in Table 4.1.
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Table 4.1 Ratio $\triangle I_{1}/\triangle I_{2}=ts$ near the Milky Way.

$\frac{\ovalbox{\tt\small REJECT}}{Date1}$J. S. T. $|$ R. A. $|$ $ts$

R. A. $=Right$ Ascension.
From this table, we get Mean $ts=0.95$

We get as the mean value of $s$ in this table

$ts=0.95$

. . $s=1.\mathfrak{X}$ (4.1)

and the colour corresponding to this value of is $s$ is $G$ type just as we expected.

\S 5. Airglow Continuum

In Fig. 5.1 we plot $I_{2}$, the observed currents through the control filter, against
$I_{1}$ , those through the green line filter, when the same celestial point (e.g. 00: 50
Right Ascension, $37^{o}42^{\prime}$ Declination) comes to the zenith. As the contribution to

Fig. 5.1 $I_{2}$ against $I_{1}$ , which are observed in zenith when the same celestial
point (R. A. $=00;50$ , Dec. $=37^{O}42^{\prime}$) comes there.
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$I_{1}$ and $I_{2}$ from the stars is constant in this case and the one of the zodiacal light
is also nearly so, as we have selected the celestial points sufficiently far from the
sun, the variation of the green line current $I_{1}$ must solely due to the one of the
green line $G_{0}$ plus the continuum $tcG_{c}$ , and the variation of the control current $I_{2}$

predominantly to $G_{c}$ plus $pc_{0}$ . From Fig. 5.1, then, a relation between the continuum
$G_{c}$ and the green line $G_{0}$ may be suggested as follows,

$G_{c}=KG_{0}^{n}$ (5.1)

where $K$ and $n$ are constants.
These constarts $K$ and $n$ may be determined by the method of least squares, by

plotting as possible as many such curves as shown in Fig. 5.1, e.g., twenty.two,
which have been obtained from the same numbers of groups at the same definite
celestial points (shown in Table 6.1 of \S 6). Our results are $K=0.27$ and $n=0.78$,
after correcting the green line contamination $pc_{0}$ in the control photocurrent $I_{2}$.
Therefore eq. (5.1) is, both $G_{c}$ and $G_{0}$ in mm.,

$G_{c}=0.27G_{0}^{0.78}$, (5.3)

or expressing $G_{c}$ in Rayleigh per A and $G_{0}$ in Rayleigh,

$G_{c}=0.0046G_{0^{0.78}}$, (5.4)

and approTimately at the usual green line intensity (5.3) and (5.4) become

$G_{c}=0.140G_{0}$ in mm. units,

or $G_{c}=0.00128G_{0}$ in Rayleigh units, (5.5)

and in these formulations the flux ratio $c$ of the airglow continuum between $ 5577A\circ$

and $5250\mathring{A}$ has been assumed to be 1.
Now, by determniing $K$ and $n$, that is, $G_{c}$ being expressed by $G_{0}$ , the astronomical

ligh, $A_{0}$ and $taA_{0}$ , belonging to the above twenty-two celestial points may be obtained
by the method of least squares using more than two groups of $I_{1}$ and $I_{2}$, see eqs.
(2.4) and (2.5).

In Table 6.1 of \S 6 we summarize such estimated $A_{0}$ , the astronomical light

contained in the current $I_{2}$ and $taA_{0}$ , the one in the current $I_{1}$ , where $A_{0}$ are observa-
tionally more precise than $taA_{0}$ .

In Fig. 5.2, we plott $I_{2}-A_{0}$ against $I_{1}-taA_{0}$ , where a curve shows a relation
between the continuum $G_{c}$ and the green line $G_{0}$ using eq, (5.3) without a correction
for $pG_{0}$ in $I_{2}$ for a comparision.

Although the relation, $G_{c}\propto G_{0^{0.78}}$, differs apparently from the one of Barbier [6],

in which a perfectly linear relation between $G_{c}$ and $G_{0}$ has been given, this $dis$ .

crepancy is not serious within not strong green line intensity. According to our
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The experimental formula of the mean curve is the equation (5.3) without a cor-
rection for $pG_{0}$ in $I-A_{o}$, for a comparison.

result, however, as the origion of the airglow continuum a possibility of the two.
body collision of [OI] atoms may be suggested, because if $G_{c}$ is owing to a perfect

two-body collision, such a relation is to be

$\tau^{2}$

$G_{c}\propto G_{0}$

as the green line intensity $G_{0}$ is considered that originated from the three-body
process of [OI] atoms.

\S 6. Astronomical Light, its Intensity and Colour

All $taA_{a}$ and $A_{0}$ , which are the sum of the star light and the zodiacal light,

obtained in the former section of the twenty-two celestial points in the constant
declination $37^{Q}42^{\prime}$ are summarized in Table 6.1.

In 6th column the stellar unit with the symbol $S^{10}/\deg^{2}$ are used for convenience
which is defined as the number of 10th vis. mag. $G_{2}$ stars per $\deg^{2}$, and $S_{0}$ of 7th
column in the same unit are taken from Roach’s diagram [7]. Such twenty-two
$A_{0}$ are illustrated against the Right Ascension in Fig. 6.1 and against the galactic

latitude in Fig. 6.2, wherein all the points are classffied into three groups for the
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rable 6.1 Astronomical Light of the Twenty-Two Points at the
Constant Declination $37^{O}42^{\prime}$

R. A. $=$ Right Ascension.
$taA_{o}$ $=Photocurrent$ for the astronomical light of $5577\dot{A}$ in mm.
$A_{o}$ $=$ Photocurrent for the Astronomical light of $5250A$ in mm.
$[A_{o}]=$ The astronomical light of $5250A$ in $S^{10}/\deg^{2}$

$s_{0}$ $=The$ star light given by Roach [9] in $S^{10}/\deg^{2}$

G. L. $=G$alactic Latitude in $deg.$ .
E. L. $=Ecliptic$ Latitude in $deg.$ .

From this table, we get mean $ta=1.04$ .
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Fig. \’o.2 Astronomical Light $A_{O}$ against Galactic Latitude.
All the twenty-two points are classified into three groups for ecliptic latitude as

follows. (1) $=14.3^{O}\sim 25.0^{\circ},$ (2) $=25.1^{\circ}\sim 35.0^{\circ}$ , and (3) $=35.1^{\circ}\sim 61.5^{\circ}$ .

ecliptic latitude: (1) $14^{o}.3-25^{o}.0,$ (2) $25^{o}.1\sim 35^{o}.0,$ (3) $35^{o}.1\sim 61^{o}.1$ .
The mean astronomical light in zenith at any night, which is actually averaged

during two hours after sunset and two hours before sunrise, can be calulated from

Fig. 6.3 Mean Astronomical Light in Zenith, at Niigata and Fritz Peak.
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Fig. 6.1, and is illustrated in Fig. 6.3 seasonally.
This result is to be compared to Roach’s data [8], which gives the mean star

light plus zodiacal light in zenith at Frit$z$ Peak $(39^{0} 54^{\prime}N, 105^{0}20^{\prime}W)$ averaged from
end of evening twilight to beginning of morning twilight. These two results are
well fitted to each other.

The mean value of $a$ is obtained by Table 6.1 since $t=0.90$ in our case,

. . $\overline{a}=1.1$ , (6.1)

and this result suggests a fact that the astronomical light, which is star light plus
zodiacal light, has the colour of nearly $K$ type star in its mean. Of course this value
of $a$ has been derived from data of very small wavelength separation and by filters
with considerably narrow band width.$s$ too, and still more might be affected by the
scattering of the earth’s atmosphere. Just a value of $a$ which obtained by the above
method, however, may be used in the $two\cdot colour$ photometry.

Next, a value of 1.1 is seemed to be closed to a result of Roach and Meinel’s
report [9], where the mean astronomical light is 275 $S^{10}/\deg^{2}$ for $5300\mathring{A}$ and 304
$S^{10}/\deg^{2}$ for $5577\mathring{A}$ , although their data are limited to three nights, so that the ratio
between them become to 1.1.

\S 7. Zodiacal Light

Fig. 7.1 shows the zodiacal lights $Z_{0}$, which are $A_{0}-S_{0}$ in Table 6.1, plotted
against the ecliptic latitude. Here it
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Fig. 7.1 Zodiacal Light, averaged in $120^{\circ}\sim 180^{o}$ of elongation, against the ecliptic latitude.
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should be noticed that original data used to illustrate such the diagram have been
taken from those in the zenith sky at midnight, that is, in $120^{0}\sim 180^{o}$ of elongations,
therefore every point in Fig 7.1 is such as the mean value in 120 $\sim 180^{o}$ of the
elongation.

Next, if we use values of $a$ and $s$ and assume mean intensities of the star light
and the zodiacal light, we can find the mean of $z$ from Table 6.1, which is defined
as the flux ratio between $5577\mathring{A}$ and $5250\mathring{A}$ of the zodiacal light, that is $z=1.2$, for
the instrumental constant $t=0.90$ in our case. Although this value of $z$ is not so
precise, this result may show that the zodiacal light extending to higher ecliptic
latitude has a colour of the $K$ type star.

\S 8. Summary-Absolute Brightness of the Airglow Emission Line
and the Astronomical Light

This paper is especially devoted to the study of the background of the airglow
green line, which is the continuous spectrum composed of the integrated star light,
the zodiacal light and the airglow continuum.

Its total intensity is considerably weak and has the order of 1 Rayleigh per A
at $5250\mathring{A}$ , whereas the green line has the mean intensity of two, three or occasionally
several hundreds of Rayleigh, but if we use such as the interference filter having a
transmission bandwidth of about $100A^{\circ}$ or so, the influnce from backgrounds is very
serious.

Two-colour photometry, which is an effective method of the subtraction of back-
grounds, becomes to more complete one if we know precisely colours of these
continous light sources. In this paper we wanted to establish more explicitly basic
equations of the two-colour photometry and estimate colours of the integrated star
light and the zodiacal light or the astronomical light, which are expressed in symbols
$s,$ $z$ or $a$ . Furthermore we found a relation between the airglow continuum and
the green line intensity. An information of the spatial distribution of the zodiacal
light extending to higher ecliptic latitude was given.

The method, originally presented by Hikosaka and us, of getting Rayleigh values
from the mm.-redings of the photometer, was given specially in connection with the
two-colour photometry.

For the absolute brightness of the airglow green line and the astronomical light,

we can get $G_{0}$ and $A_{0}$ from eqs. (2.4), (2.5) and (5.3) as follows

$G_{0}=\frac{I_{1}-taI_{2}-0.27t(c-a)G_{0^{0.78}}}{1-p}$ . (8.1)

In this equation a term of 0.$27t(c-a)G_{o}^{0.78}$ may be neglected in the case of usual
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green line intensity and $p$ is also small in our case, therefore eq.
(8.1) becomes

$G_{0}=I_{1}-taI_{2}$ in mm., (8.2)

and the absolute brightness of the green line $G^{\prime}$ is from eqs. (3.14) and (8.2)

$G^{\prime}=17.4(I_{1}-taI_{2})$ (8.3)

$=17.4(I_{1}-I_{2})$ in Rayleigh,

for $a=1.1$ from eq. (6.1) and $t=0.90$ in our case.“
Thus obtained $G^{\prime}$ in the case of Aug. 2-3, 1957, have been illustrated together in
Fig. 4.1.

The astronomical light $A_{0}$ can also be obtained from eqs. (2.4) and (2.5).

From eq. (5.5)

$G_{c}=0.140G,$ ,

therefore

$A_{0}=\frac{(0.14ct+1)I_{2}-0.14I_{1}}{(0.14ct+1)-0.14ta}$ , (8.5)

or putting $a=1.1,$ $c=1.0,$ $t=0.90$,

$A_{0}=\frac{8.0I_{2}.-I_{1}}{70}$ in mm., (8.5)

so that $A_{0}=3.61(8.0I_{2}-I_{1})$ in $S^{10}/\deg^{2}$. (8.6)

The author wishes to express his sincere thanks to Prof. T. Hikosaka of
Niigata Univ. for his full directions in this study, and to {Mr. K. Yano for his
collaboration in observations and for many valuable discussions.
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