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The purpose of this note is to generalize some theorems which have been
obtained in a K\"ahlerian space [11], [2] to a certain Hermitian space, that is, a
Hermitian space with a condition $\nabla_{r}F_{i}^{r}=0$, where $\nabla_{r}$ denotes the covariant deriva-

tive with respect to the Riemannian connection. we shall call such a space a semi-
K\"ahlerian space or an Apte’s space [1], [6]. In this space we shall consider an
infinitesimal holomorphically projective transformation, the conformally flatness and
a constant sectional curvatur. Next, we shall show that if this space be conformal
to a K\"ahlerian space, then it coincides with a K\"ahlerian space.

As to the notations and conventions, we follow J. $A$ , Schouten [4].

\S 1. Preliminaries

In a $2n$-dimensional differentiable space, if an almost Hermitian structure is
defined by assigning to the space a tensor field $F\}^{i}$ and a positive definite Rieman-
nian meric tensor field $gji$ such that

(1.1) $F_{j}^{r}F:^{i}=-\delta_{J^{i}}$ ,

(1.2) $g_{j};=F_{j}^{b}F_{i}^{a}g_{ba}$ .

then the space is called an almost Hermitian space.
An almost Hermitian space is called a Hermitian space if the Nijenhuis tensor

identically vanishes, that is

(1.3) $N_{ji^{h}\equiv F_{j}^{r}(\nabla_{r}F_{i}^{h}-\nabla;F_{r}^{h})-F_{i}^{r}(F_{r}^{h})=0}\nabla_{r}F_{j}^{h}-\nabla j$.

Taking account of the relation

$N;ih+2Nh(ji)=2(F_{j}^{r}\nabla_{r}Fih+F_{i^{r}}\nabla jF_{rh)}$ ,

we see that (1.3) is equivalent to the following [6]

(1.4) $\nabla jF;h-F_{j}^{b}F_{i}^{a}\nabla_{b}F_{ah}=0$
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or

$F_{j}^{r}\nabla rF;h+F_{i}^{r}\nabla JF_{rh}=0$

where

$Njih=Nji^{r}grh$ , $Fjh=ghrF_{j}^{r}$ .

If a Hermitian spaoe satisfies

(1.5) $\nabla_{r}F_{j^{\gamma}}=0$,

then the space is ealled a semi-K\"ahlerian space or an Apte’s space.
It is easily verified that the condition (1.5) is equivalent to the following, with

respect to a complex coordinates $(Z^{\alpha},\overline{Z}^{\alpha})$

$t_{a\overline{\lambda}}^{a}I=0$, Conj. $\alpha=1,2,$
$\ldots,$

$n$. : $\overline{\lambda}=\overline{1},\overline{2},$

$\ldots,$

$\overline{n}$.

Next, we shall define the following operations for any tensor Tjih, $Tjt^{h}$ in an
almost Hermitian space.

(1.6)
$\left\{\begin{array}{ll}O_{j};T_{jih}=\frac{1}{2}(T_{jih}-F_{j}^{b}F_{i^{a}}T_{bah)}, & oJ^{h}Tjt^{h}=\frac{1}{2} (Tji^{h} -F_{j}^{b}F_{a}^{h}Tbi^{a}),\\*0_{ji}\tau_{jih}=\frac{1}{2}(T_{jih}+F_{j}^{b}F_{\dot{l}}^{a}T_{bah}), & *Oj^{h} Tji^{h}=\frac{1}{2} (Tji^{h} +F_{j}^{b}F_{a}^{h}Tbi^{a}).\end{array}\right.$

As to the two operations with the same indices, we have

(1.7) $00=0,$ $*\alpha 0=*0,$ $*\infty=0^{*}0=0$.
A tensor is called pure (hybrid) in two indices if it vanishes by transvection

of $*o(0)$ on these indices.
By the definition, (1.4) is written

(1.8) $O_{jt\nabla j}F_{ih}=0$.
In an almost Hermitian space we denote the Riemannian curvature tensor by

$K_{kji^{h}}$ and put

(1.9) $\left\{\begin{array}{l}Kkjih =Kkjt^{r}grh, Kji=Kkji^{k},\tilde{K}ji=F_{j}^{r}K;_{r},\\H;;=\frac{1}{2}F^{ba}K_{abji},\tilde{H}j;=F_{j}^{r}H;_{r}, K=g^{ji}K_{j};, H=F^{ji}Hjt.\end{array}\right.$

By the definition (1.9) and the first Bianchi identies, we have

(1.10) $Hjj=F^{kh}K_{kjih}$ .

A vector field $v^{i}$ is called analytic, if it satisfies [8]
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(1.10)
$fF_{j}^{i}=v^{r}\nabla\gamma F_{j}^{i}-F_{j}^{r}\nabla_{r}v^{j}+F:^{i}\nabla;v^{r}=0v$

where $fv$ denotes the operator of Lie derivation with sespect to $v^{i}$ .

A pure tensor $T_{t_{1}i_{2}\cdots;_{p}^{j_{1}j_{2}\cdots jq}}$ is called analytic, if it satisfies [8]

(1.11) $\Phi_{l}T_{()}(j)\nabla rT_{(i)}(j)(F_{i_{1}}^{r}T_{ri_{2}\cdots ip}(j))+\sum_{k-1}^{p}(\nabla i_{k}F_{l}^{r})T;_{1}\ldots\gamma\cdots jp^{(j)}(k)$

$+\sum_{k-1}^{q}(\nabla_{l}F_{r}^{j_{k}}-\nabla_{f}F_{l}^{j_{k}})T_{(i)}J_{1}\cdots r\cdot!_{q}=0(k).$.

where we have put

$T_{(i)^{(j)}}=T_{i_{1}t_{2}\cdots;_{p}^{j_{1}j_{2}\cdots j_{q}}}$ .

\S 2. Semi-K\"ahlerian spaces

We shall consider a semi.K\"ahlerian space, then it holds that

(2.1) $\nabla jp_{ih}-F\}^{b}F_{i}^{a}\nabla_{b}F_{ah}=0$,

(2.2) $\nabla_{r}F_{1}^{r}=0$ .

Operating $\nabla h$ to (2.1), we have

$\nabla h\nabla JF_{i}^{h}-F;^{b}(\nabla hF_{i}^{a})(\nabla_{b}F_{a}^{h})-F_{i^{a}}(\nabla hF_{j}^{b})(\nabla_{b}F_{a}^{h})-F_{j}^{b}F_{i^{a}}\nabla h\nabla bF_{a}^{h}=0$.

It is easily verified that in the left hand side of the abqve equation the second term
is zero and the third term is symmetric with respect to $j$ and $i$.

Hence we have

(2.3) $OJ;(\nabla_{h}\nabla JF_{i}^{h})=Oij(\nabla h\nabla tF_{j}^{h})$ .

On the other hand, applying the Ricci’s identity to $F_{i}^{h}$, we get

$\nabla h\nabla_{J}F_{i}^{h}-\nabla_{j}\nabla_{h}F_{i}^{h}=K_{hjr^{h}}F_{i}^{r}-Khj;^{r}F_{r}^{h}$.

By virtue of (2.2) and (1.9), we have

(2.4) $\nabla h\nabla jF_{i}^{h}=\tilde{K}_{ij}-H;J$ .

Substituting (2.4) into (2.3), we have [5]

(2.5) $O_{ji}H_{j};=0$
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Next, using (2.2), we have

$0=\nabla h[\nabla j(F_{i}^{h}F^{ji})]=F^{ji}\nabla h\nabla_{J}F_{i}^{h}+(\nabla_{j}F_{i}^{h})(\nabla hF^{ji})$

Substituting (2.4) into the last equation, we get

(2.6) $(\nabla_{J}F_{i}^{h})(\nabla hFji)=K-H$.

On the other hand, if we transvect $\nabla^{h}Fi^{j}$ to (2.1), we obtain

(2.7) $(\nabla jF_{jh})(\nabla^{h}F^{ji})=0$.
Hence we have

(2.8) $K-H=0$.
In the next place, we shall consider some analytic tensors.
THEOREM 2.1. In a semi-Kahlerian space, if. a tensor $H_{j}^{i}$ is analytic, then $H(=K)$

is an absolute constant.
Proof. From (2.5) $H_{j}^{i}$ is a pure tensor. Applying analytic operation $\Phi\iota$ to $H_{j}^{i}$ ,

we get

$\Phi\iota H:^{i}\equiv F_{l}^{r}\nabla {}_{r}H:^{i}-F_{r}^{i}\nabla\iota H_{j}^{r}+H:^{i}\nabla jF_{l}^{r}-H_{j}^{r}\nabla_{f}F_{l}^{i}=0$.

By contraction with respect to $j$ and $i$, we have

$F_{r}^{i}\nabla\iota H_{i}^{r}=0$.
On the other hand,

$\nabla lH=\nabla\iota(F_{r}^{i}H:_{i})=-p:^{i}ll\cdot$

N.B. This theorem is valid for an almost Hermitian space with a pure tensor
$H_{j}^{i}$ , for instance a K\"ahlerian space and a K-space, but in a K-space $H\neq K$.

THEOREM 2.2. In an Hermitian space, $\tilde{H}_{j}^{i}$ is analytic, if and only if $H_{j}^{i}$ is analytic.

Proof. Let $H_{j}^{i}$ be analytic, then by virtue of (1.3), and the purity of $\tilde{H}_{j}^{j}$ , we
can easily get

$\Phi\iota F_{j}^{i}=N_{lj}^{i}=0$, $\Phi\iota\tilde{H}_{j}^{i}=\Phi\iota(F_{j}^{r}H_{r}^{i})=H_{r}^{\dot{l}}\Phi lF_{j}^{r}+F_{j}\Phi\iota H_{r}^{i}=0$.

The converse is obvious.
In a semi-K\"ahlerian space, it is unknown that the Ricci tensor $Kji$ is pure or

hybrid. But $O_{j^{i}}K_{j^{j}}$ is pure, then we have
THEOREM 2.3. In an Hermitian space $OJ^{i}\tilde{K}j^{j}$ is analytic if and only if $O_{J^{i}}K_{j^{j}}$ is

analytic, and in this case $K$ is an absolute constant.
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In fact, let $O_{J^{i}}K_{j^{i}}$ be analytic, then we have

$0_{j^{j}}\tilde{K}J^{i}=0J^{i}(F_{j}^{r}K_{r^{j}})=F_{j}^{r}(0_{r}^{i}K_{r}^{i})$ ,

$\Phi l(0_{i^{t\tilde{K}}1^{i})}=F_{j}^{r}\Phi_{l}(O_{r^{i}}K_{r^{j}})=0$ ,

$\Phi_{l}(OJ^{i}Kj^{j})=F_{l}^{r}\nabla\gamma(OK\nabla l(i^{r}j^{\gamma})+(O_{r}^{i}K_{r}^{i})\nabla JF_{l}^{r}-(OJ^{r}Kj^{\gamma})\nabla_{r}F_{l^{r}}=0$.

Transvecting the last equation with respect to $j$ and $i$, we get

$\nabla_{r}K=0$.

\S 3. Analytic holomorphically projective transformations

If we put $Xvt_{ji}^{h}$ } $=t_{ji^{h}}$ , then the following identities are known [111:

(3.1) $t_{j};^{h}\equiv_{v}Xt_{ji}^{h}$ } $=\nabla j\nabla;v^{h}+K_{rji^{h}}v^{r}$ ,

(3.2) $X\nabla_{J}F_{i}^{h}-\nabla_{J_{v}}fF_{i}^{h}=F_{i}^{r}t_{jr^{h}}-F_{r}^{h}t_{ji^{r}}v$

(3.3) $XK_{kjt^{h}}=\nabla_{k}t_{ji^{h}}-\nabla_{J}t_{ki^{h}}v$

A vector field $v^{i}$ is called an infinitesimal holomorphically projective transforma-
tion or briefly an H. P. Transformation, if it satisfies

(3.4) $tJ_{v}^{j^{h}}=Xt_{ji}^{h}$ } $=\rho;\delta_{i^{h}}+\rho;\delta;^{h}-\tilde{\rho}jF_{i}^{h}-\tilde{\rho}_{i}F$ ;

where $\rho$ ’ is a certain vector and $\tilde{\rho};=F_{i}\rho_{r}$ . We call $\rho$ ; the associated vector of the
H. P. transformation. Contracting (3.4) with respect to $i$ and $h$ , we get $\rho j=$

$\{1/2(n+1)\}\nabla_{J}\nabla_{r}v^{r}$ . Hence $\rho$; is a gradient vector. Thus it holds that

(3.5). $\nabla_{J\rho i}=\nabla;\rho j$ .
Now, in an almost Hermitian space, we shall introduce a curve which satisfies

the following differential equations [3]

(3.6) $\frac{d^{2}x^{h}}{dt^{2}}+\{jhi\}\frac{dx^{j}}{dt}\frac{dx^{i}}{dt}=\alpha\frac{dx^{h}}{dt}+\beta F_{j}^{h}\frac{dx^{j}}{dt}$

where $\alpha$ and $\beta$ are certain functions of the parameter $t$ . Such a curve is called a
holomorphically flat curve and has the property that the tangent holomorphic plane
deplaced parallelly along the curve remains $holomorphically_{I}$ tangent to the curve.

Let $v^{i}$ be an infinitesimal transformation and we assume that an infinitesimal
point transformation $\prime x^{i}=x^{i}+\epsilon v^{i}$ transforms any holomorphically flat curve into
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such a curve.
A necessary and sufficient condition for a vector field $v^{j}$ to be such a trans-

$r$ formation is that [2]

(3.7) $\dot{x}^{j}XF_{j}^{i}=a\dot{x}^{i}+bF_{j}^{i}\dot{x}^{j}v$

(3.8) $\dot{x}i\dot{x}^{\oint}t_{ji^{h}}=c\dot{x}^{h}+dF^{h}\dot{x}ij$

are hold for any direction $\dot{x}^{i}=dx^{j}/dt$, where $a,$ $b,$ $c$, and $d$ are some functions of $x^{i}$

and $\dot{x}^{i}$ .
The following Lemmas are known [2].

LEMMA 1. In an almost conplex space, let $a_{J^{i}}$ be a hybrid tensor, if it satisfies

$a_{r^{j}}u^{r}=au^{i}+\beta F_{r}^{i}u^{r}$

for any vector $u^{i}$ , where $a$ and $\beta$ are real valued functions of $u^{i}$ , then $aj^{i}$ must be
zero tensor.

LEMMA 3. Let $t_{ji^{h}}$ be a symmetric tensor with respect to $j$ and $i$. If it satisfies

$tJ\iota^{h}u^{j}u^{i}=au^{h}+\beta F_{j}^{h}\dot{w}$

for any vector $u^{j}$ , then $t_{j}\iota^{h}$ takes the following forn

$t_{J\iota^{h}=\rho j}\delta;^{h}+\rho;\delta_{j^{h}}+\sigma_{j}p_{i}^{h}+\sigma;F_{j}^{h}$

where $a$ and $\beta$ are real valued functions of $u^{i}$ and $\rho$; and $\sigma i$ are certain vectors.
Now, let $v^{i}$ be an H. P. transformation, then from (3.7) and Lemma 1, we

have

(3.9) $XF_{j}^{j}=0v$

Next, from (3.8) and Lemm 3, we have

(3.10) $t_{J:^{h}=\rho j}\delta;^{\dot{h}}+\rho:\delta_{j^{h}}+\sigma_{j}F_{i}^{h}+\sigma_{i}F_{j}^{h}$ .

If we substitute (3.9) into (3.2), then we get

$x_{\nabla F_{i}^{h}=t_{jr^{h}}F_{i}^{r}-t_{j}\iota^{1}F_{r}^{h}}vj$ .

Contracting with $j$ and $h$ and using (2.2), we have

$t_{jr}JF_{i}^{r}-t_{ji^{r}}F_{r}^{j}=0$.
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Substituting (3.10) into the last equation, we have $\sigma j=-\tilde{\rho}j$ . Hence

(3.11) $t_{J;^{h}=\rho j}\delta;^{h}+\rho\iota\delta_{J^{h}}-\beta_{j}F_{i}^{h}-\tilde{\rho};F_{j}^{h}$ .

Therefore $v^{l}$ is analytic and at the same time an H. P. transformation. The con-
verse is evident. Thus we have the following.

THEOREM 3.1. In an almost Hermitian space with the relation $\nabla_{r}F_{i}^{r}=0$, in order
that an infinitesimal H. P. transformation carried any holomorphically flat curve into
such a curve, it is necessary and sufficient that it is an analytic H. P. transformation,

In a semi-K\"ahlerian space, let $v^{i}$ be an analytic H. P. transformation. If we
substitute (3.11) into (3.3), we have

(3.12) $XK_{kj};^{h}=\delta_{j^{h}}\nabla_{k}\rho;-\delta_{k^{h}}\nabla j\rho;-F_{j}^{h}\nabla k\beta;+F_{k}^{h}\nabla_{J}\tilde{\rho};-F_{i}^{h}v(\nabla k\beta j-\nabla;\tilde{\rho}k)$

$-\beta_{j}\nabla:_{l}F_{i}^{h}+\beta\iota\nabla_{j}F_{i}^{h}+\rho_{i}(\nabla_{J}F_{k}^{h}-\nabla_{k}F;^{h})$ .

Transvecting with $F_{h}^{k}$ and making use of (3.9), (2.2) and (1.9), we have

(3.13) $XH_{j}\iota=-2F_{j}^{r}\nabla;+2nF_{i}^{r}\nabla+(2n+1)\nu(\nabla_{j}F_{i}^{h})\rho_{r}-(\nabla;F_{j}^{r})\rho_{r}$ .

Taking the alternating part with respect to $j$ and $i$, we get

(3.14) $fH_{ji}=-(n+1)[(F_{j}^{r}\nabla_{f}\rho;-F_{i}^{r}\nabla_{f}\rho j)-(\nabla jF_{i}^{r}-\nabla;F_{j}^{r})\rho_{r}]v$

and

$(n-1)$ ($F\}$
‘ V $\gamma\rho;+F_{\dot{k}}^{r}\nabla_{f}\rho j$) $+n(\nabla;F_{i}^{r}+\nabla tF_{j}^{r})\rho_{r}=0$.

This is equivalent to

(3.15) $2(n-1)Oji(F_{j}$
‘$\nabla tj\cdot$

If we operate $O_{ji}$ to (3.15), then by virtue of (1.7) and (1.8), we have

(3.16) $F_{j}^{r}\nabla;+F_{i}^{r}\nabla=0$.

Therefore

(3.17) $(\nabla jF_{i}^{r}+\nabla;F_{j}^{r})\rho_{r}=0$.

From the last two equations, we find

$\nabla_{J}\beta;+\nabla i\beta_{j}=0$.
THEOREM 3.2. In a semi-Kahlerian space, if $\rho i$ is the associated vector $0\int$ an
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analytic H. P. transformation, then $\tilde{\rho}$; is a Killing vector.
From (3.13), (3.16) and (3.17), for an analytic H P. transformation $v^{i}$ , we have

$XH;;=2(n+1)\nabla j\tilde{\rho};v$

Operating $O_{ji}$ to the last equation and taking account of (2.5) and (3.9), we get

$O_{j}\iota XH_{ji}=XO_{j};H_{j};=0=2(n+1)0_{ji}\nabla_{j}\beta_{i}vv$

Thus from (3.16) and the last equation, we have
THEOREM 3.3. In a semi-Kahlerian space, if $\rho\iota$ is the associated vector of an

analytic H. P. transformation, then $\nabla_{j}\rho i$ and V $ j\beta$; are both hybrid with respect to $j$ and $i$.
From (3.14)(3.16) and (3.17), we get

$XH_{j};=-2(n+1)[F_{j}^{r}\nabla_{r}\rho;-v(\nabla_{J}F_{i}^{r})\rho_{r}]$ .

From which we have

(3.18) $X\tilde{H}_{ji}=-2(n+1)[\nabla_{j}\rho;v+(\nabla_{j}F_{i}^{r})\beta_{1}]$ .

Next, if we contract (3.12) with respect to $h$ and $h$ then we have

$4K_{J};=-2n\nabla j\rho i-(F_{j^{r}}\nabla r\beta_{i}+F_{i}^{r}\nabla\beta_{j})v$

By virtue of the theorem 3.3, it holds that

$F_{j}^{r}\nabla r\beta_{i}-F_{i}^{r}\nabla_{r}\beta;=0$.
Therefore we have

(3.19) $XK_{j};=-2[(n+1)\nabla j\rho;+(\nabla_{J}F_{\dot{l}}^{h})\beta_{r}]v$

Eilminating $(\nabla jF_{i^{r}})\beta_{\gamma}$ from (3.18) and (3.19), we obtain

(3.20) $X[\tilde{H}_{J};-(n+1)K_{j};]=2n(n+1)\nabla j\rho;v$

\S 4. Certain Einstein semi-K\"ahlerian spaces

We shall call a semi-K\"ahlerian space with a Ricci tensor proportional to $gji$ an
Einstein semi-K\"ahlerian space, that is,

(4.1) $K_{ji}=\frac{K}{2n}g_{ji}$

is valid. We suppose that $K\neq 0$. It is well known that $K$ is an absolute constant.
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Moreover in this space, if we assume that $H;$ ; be proportional to $F_{j};$ . i.e;

(4.2) $H_{ji}=\lambda F_{ji}$ .

Then we have

$(4\cdot 3)$ $\tilde{H}_{ji}=\frac{H}{2n}g_{ji}$ .

On the other hand, in \S 2, we have seen that in a semi-K\"ahlerian space

$K=H$

is valid.
Thus the assumption (4.2) is equivalent to

(4.4) $\tilde{H}_{j};=K_{ji}$ .
Afterward, we shall consider an Einstein semi-K\"ahlerian space satisfying (4.4).

N.B. An Hermitian space satisfying (4.4) is not a K\"ahlerian space. S. Koto
has called it a S. K. II space [5].

Now, let $v^{i}$ be an analytic H. P. transformation, then (3.20) holds. From (4.4)

we have

(4.5) $XK_{J};=-(n+1)\nabla j\rho iv$

From (4.1), (3.5) and the relation $Xgji=\nabla j\rho_{i}+\nabla;\rho Jv$ we obtain

$\nabla j(vi-\frac{1}{k}\rho t)+\nabla;(v_{j}-\frac{1}{k}\rho j)=0$

where we have put $k=-K/n(n+1)$ .
If we define $p$; by

$p;=v;-\frac{1}{k}\rho t$ ,

then $p_{i}$ is a Killing vector. Next, if we put $q;=\frac{1}{k}\tilde{\rho};$ , then $q$; is also a Killing

vector by virtue of Theorem 3.2.
Thus we obtain the following.

THEOREM 4.1 In an Einstein semi-Kahlerian space satisfying $\tilde{H}_{j};=K_{j}$ ; an analytic
H. P. transformation $v^{i}$ is uniquely decomposed into the form

(4.6) $v^{i}=p^{j}+F$ :
where $p^{i^{\tau}},and_{\sim}q^{i}$ are both Killing vectors.

N.B. Theorem 4.1 is a particular case of the Matsushima’s theorem in a compact
K\"ahlerian space. [10]. For a K-space cf. Tachibana, S. [9].
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From (4.6) we have

$t\{jhhhh$
Substituting (3.1) and (3.11) into the last equation, we obtain

(4.7) $\nabla j\nabla;\rho^{h}+K_{r};;^{h}\rho^{r}=k(\rho j\delta;^{h}+\rho t\delta_{j^{h}}-\rho_{j}F_{i}^{h}-\beta_{i}F_{j}^{h})$ .

From which it follows
THEOREM 4.2 In an Einstein $semi\cdot Kahlerian$ space satisfying $\tilde{H}_{j};=K_{ji}$ , the associated

vector of an analytic H. P. transfornation is an H. P. transformation

\S 5. Conformally flat semi-K\"ahlerian spaces

Now we suppose a semi-K\"ahlerian space to be conformally flat, then the curva-
ture tensor takes the following form [11]

$2(n-1)kjih=gkhj;-gjhki+gkh/(2n-1)$ (gjigkh –gkigjh).

Transvecting with $F^{kh}$ , we get

(5.1) $2(n-1)Hi=\tilde{K}-\tilde{K}_{1J}-\{1/(2n-1)\}KFji$ .
From which we have

$(2n-1)H-K=0$.
Taking account of (2.8), we obtain for $n>1$

$K=H=0$.
THEOREM 5.1 If a semi-Kahlerian space is conformally flat, then the space has a

vanishing scalar curvature.
THEOREM 5.2. In a conformally flat semi.Kahlerian space, the tensor $H_{ji}$ is

effective.
In this space, if we suppose that $\tilde{H};:=K_{ji}$ , then $H_{j};=\tilde{K}_{ji}$ holds, and from (5.1)

we have

$(n-1)Hj;=\frac{1}{2}(\tilde{K}ji-\tilde{K}ij)**jijiji\cdot$

$H_{j}:=\tilde{K}_{j};=0$.
$K_{j};=0$.

THEOREM 5.3. [5] If a semi-Kahlerian space satisfying $\tilde{H}ji=Kji$ is coptformally
flat, then it is of zero curvature.

THEOREM 5.4. If a semi-Kahlerian space is of constant curvature, then it is of
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zero curvature.

\S 6. Semi-K\"ahlerian spaces conformal to a K\"ahlerian spaces

The following theorem is known [11], [12].

THEOREM A necessary and sufficient condition that $2n$-dimensional Hermitian space
be conformal to a Kahlerian space is that

for $2n>4$ $Cjih\equiv Fjih-1/2(n-1)(ih$

and for $2n=4$ $C_{j};\equiv 2\nabla_{[j}F_{i]}=0$

Where $F_{j}=F_{jih}F^{ih},$ $F_{jih}=3\nabla[jF;h]$ .
Now we suppose that a semi-K\"ahlerian space be conformal to a K\"ahlerian space,

then the above theorem is valid. From (2.2) we get

$F_{j}=0$

therefore we have for $n>2$

$F_{jih}=0$.
THEOREM 6.1. In order that a semi-Kahlerian space be conformal to a $K\ddot{a}Mer\dot{t}an$

space, it is necessary sufficient that the tensor $F_{ji}$ be harmonic.
THSOREM 6.2. A necessary and sufficient condition that a semi-Kahlerian space

be conformal to a Kahlerian space is it coincides with a Kahlerian space.
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