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FINITE OPERATORS AND ORTHOGONALITY

SALAH MECHERI

ABSTRACT. Let H be a separable infinite dimensional complex Hilbert space, and
let £(H) denote the algebra of all bounded linear operators on H. Let A, B € L(H)
we define the generalized derivation d4 g : L(H) — L(H) by '

04.8(X)=AX - XB,

we note 64,4 = 64. If for all X € L(H) and for all T € keré, the inequality
||T = (AX — X A)|| > ||T||(*) holds, then we say that the range of §4 is orthogonal
to kernel d4 in the sense of Birkhoff. The operator A € L(H) is said to be finite
[17]) if ||I — (AX — XA)|| > 1(**) for all X € L(H), where I is the identity
operator. The well-known Inequality (**) due to J.P.Williams [17] is the starting
point of the topic of commutator approximation (a topic which has its roots in
quantum theory [18]). This topic deals with minimizing the distance, measured
by some norms or other, between a varying commutator X X* — X*X and some
fixed operator [12]. In this paper we prove that a paranormal operator is finite
and we present some generalized finite operators. An extension of inequality (*)
is also given.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of all bounded linear operators on H. Let A,B € L(H) we
define the generalized derivation 64 5 : L(H) — L(H) by

5ap(X)=AX — XB,

we note 844 = d4. Let E be a complex Banach space. We say that b € FE is
orthogonal to a € F if for all complex A there holds

lla+ Abl| > |- (1.1)

This definition has a natural geometric interpretation. Namely, b_La if and only if
the complex line {a + b | A € C} is disjoint with the open ball K (0, ||a]), i-e., iff
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this complex line is a tangent one. Note that if b is orthogonal to a, then a need not
be orthogonal to b. If E is a Hilbert space, then from (1.1) follows (a,b) = 0, i.e.,
orthogonality in the usual sense.

We say that the operator A € L(H) is finite if || — (AX — X A)|| > 1 for all
X € L(H).

Let A € L(H), the approximate reduced spectrum of A, 0,,(A), is the set of
scalars A for which there exists a normed sequence {z,} in H satisfying

(A- Az, -0, (A—A)*z, — 0.

J.P.Williams [17] has shown that the class of finite operators, F, contains every
" normal, hyponormal operators. In [10], J.P.Williams results are generalized to a
more classes of operators containing the classes of normal and hyponormal operators.

An operator A € L(H) is said to be normaloid if ||A|| = r(A), where 7(A) is the
spectral radius of A, paranormal if

||Az||? < ||A%z]|||z||, for allz € H,
and p-hyponormal if [A|%? — |A*|?? > 0(0 < p < 1). We have
hyponormal C p — hyponormal C paranormal C normaloid.
A is said to be log-hyponormal if A is invertible and satisfies the following equality
log(A*A) > log(AA*).

It is known that invertible p-hyponormal operators are log-hyponormal operators
but the converse is not true [14]. However it is very interesting that we may
regard log-hyponormal operators are 0-hyponormal operators [14, 15]. The idea
of log-hyponormal operator is due to Ando [3] and the first paper in which log-
hyponormality appeared is [6]. For properties of log-hyponormal operators (see
[4, 14, 15, 16]).

We say that an operator A € L(H) belongs to the class A if |A%| > |A|?. Class
A was first introduced by Furuta-Ito-Yamazaki [7] as a subclass of paranormal op-
erators which includes the classes of p-hyponormal and log-hyponormal operators.
The following theorem is one of the results associated with class A.

Theorem 1.1. [7]
(1) Every log-hyponormal operator is a class A operator.
(2) Every class A operator is a paranormal operator.

J.H.Anderson and C.Foias [2] have shown that if A, B are normal operators, then

IT — (AX = XB)|| 2 ||T]| (1.2),



for all X € £L(H) and for all T € ker 64 5. Hence the range of d4 p is orthogonal to
the null space of 64 5. In particular the inequality ||T — (AX — X A)|| > ||T|| means
that the range of d4 is orthogonal to kerd4 in the sense of Birkhoff. It is easy to
see that if the range of 64 is orthogonal to ker § 4, then A is finite. Indeed, we have
T = I € kerd4. In this paper we prove that a paranormal operator is finite. An
extension of inequality (1.2) is also given.

2. Main results

In the following theorems we will show that a paranormal operator is finite and it
remains invariant under compact perturbation.

Lemma 2.1. Let A € L(H) be paranormal. Then o.-(A) # ¢.

Proof. If A is paranormal, then A is normaloid. Hence ||A|| = r(A). This implies
that there exists A € o(A) such that || = |[A]|. Since A is in the boundary of o(A),
there exist unit vectors x, such that (A — \)z, — 0. Then (A — X)* — 0, because
1Al = [1A]].

a

Theorem 2.1. Let A € L(H) be paranormal. Then A is finite

Proof. 1t is well known [10] if 0,,(A) # ¢, then A is finite. Hence it suffices to apply
the previous lemma. O

As a consequence of the previous theorem we obtain.

Corollary 2.1. The following operators are finite.
1. Hyponormal operators,
2. p-Hyponormal operators,
3. Class A operators,
4. log-hyponormal operators.

Lemma 2.2. If A is paranormal and if T is a normal operator such that AT = T A,
then for every A € o,(T) (point spectrum of A),

M < |IT — (AX — X A)|, for all X € L(H).
Proof. Let A € 0,(A) and M, the eigenspace associate to A\. Since TA = AT, we

have T*A = AT* by the Fuglede-Putnam’s theorem. Hence M) reduces both A and
T. According to the decomposition of H = M) & Mj-, we can write A, T and X as

follows:
A O A0
A = =
[ 0 A T [ 0 T,

a,ndXz[Xl X2].

X3 X4



Since the restriction of a paranormal operator to an invariant subspace is para-
normal, we have

A=A X+ X4

*

IT - (AX — X 4)|| = | [ 2 1A - A+ X
X X
2 AL = A5 + (H) Al 2 .
a

Proposition 2.1. [5, Berberian technique| Let H be a complex Hilbert space. Then
there exists a Hilbert space H~ O H and ¢ : L(H) — L(H) (A — A™) satisfying: ¢
is an *-isometric isomorphism preserving the order such that

(i) (A*) = @(A)*, o(I) = I, p(@A + BB) = ap(A) + Bp(B), p(AB) =
o(A)e(B), llo(A)l = |All, (A) < @(B), if A < B for allA, B € L(H) and for alla, f €
C.

(it) 0(A) = 0(A~) = 0,(A) = 0,(A~) = 0,(A™), where ,(A) is the approzimate
spectrum of A and o,(A) is the point spectrum of A.

Theorem 2.2. If A is paranormal, then for every normal operator T such that
AT =TA, we have

IT — (AX — XA)|| > ||T|], for allX € L(H) (2.1).

Proof. Let A € o(T) = 04(T) [8], then it follows from Proposition 2.1 that T is
normal, A~ is paranormal, T~A~ = A~T~ and X € 0,(A~). By applying Lemma
2.2, we get

A< |IT™ — (A™X™ - X~ A7)|| = |IT — (AX — XA)|l,
for all X € L(H). Hence
sup |A| = ||T7|| = ||T|| =r(T) < |IT - (AX — XA)|l,
A€o (T™)

for all X € L(H). O

Recall that a paranormal operator on a C*-algebra .A may be defined as an oper-
ator a € A satisfying a**a? — 2ka*a + k* > 0, for all k > 0.

Theorem 2.3. Let A be a C*-algebra and let a € A be a paranormal operator. Then
a 1s finite.

Proof. It is known ([9], p.97) that there exists a *-isometric homomorphism ¢ and
a Hilbert space H (¢ : A+— L(H)). Then ¢(a) is paranormal. Since ¢ is isometric
it results from Theorem 2.1 that a is finite. a



Corollary 2.2. Let A € L(H) be paranormal. Then T = A+ K 1is finite, where K
1S a compact operator.

Proof. Since the Calkin algebra L(H)/K(H) is a C*- algebra, [A] € L(H)/K(H) is
paranormal. Hence it follows from Theorem 2.3. that [A] = A 4 K is finite and we
have

I = (TX — XT)|| = ||[Z] — [A][X] = [X][A]ll = [|U]]] = 1.
a
In the following theorem we will extend Inequality 2.1 to a more general classes

of operators.

Theorem 2.4. If A is p-hyponormal (resp. log-hyponormal) and if B* is p-hyponormal
(resp. log-hyponormal), then

IT - (AX — XB)|| > [ITl,
for all X € L(H) and for all T € ker 4 p.

Proof. Let T € kerda g. Then [15, Theorem 8] implies that T € ker 4- p«. There-
fore, ATT* = TBT* = TT*A. Since by Corollary 2.1 p-hyponormal or log-
hyponormal are finite, Theorem 2.2 implies that

ITT*|| = IT|]? < ||ITT" - (AXT* — XTA)|| < ||TT" — (AXT* — XBT")||
<||T*|||IT - (AX — X B)||.
Thus
I|T|| < ||IT - (AX — X B)||.
O

In [10] the author initiates the study of a more general class of finite operators
defined by

GF(H)={(A,B)e L(H) x L(H) : |/ — (AX — XB)|| > 1, for each X € L(H)}.

Such operators are called generalized finite operators. In the following theorems
we recall some properties of these operators. Let A be a Banach algebra.

Theorem 2.5. [10] GF(A) is closed in A x A.

Theorem 2.6. [10] For a,b € A the following statements are equivalent
(i) [lax — zb—el| 2 1 for allz € A.
(ii) There exists a state f such that f(ax) = f(xb), for all x € A.
(#5i) 0 € Wy(az — xb), Vz € A.



Now we are ready to give a new classes of generalized finite operators. Let R,
be the set of all (A, B) € L(H) x L(H) such that A and B have an n-dimensional
reducing subspace M satisfying A|M = B|M.

By a slight modification in the proof of [17, Theorem 6] we prove the following
theorem which is a generalization of Theorem 6 in [17].

Theorem 2.7. Let (A,B) € R,. Then
I|AX - XB-1I|| > 1,
that is, (A, B) is generalized finite.

Proof. Let (e;)?_, be an orthonormal basis of H; = M. Define the linear form f on
L(H) by f(X) =1%" (Xe e). It is clear that f(I) = ||f|| = 1. According to
the decomposition of H = H; & Hj, we have

4 o a4 o [ x x
A_[o Az],B_[O 132]3”“”{_[)(3 X4]'

An easy calculation shows that

f(AX - XB) = %Z((A;[Xl — X1A1)6i,6i>

=1

= %tr(Ale - X1A1) = 0,

where tr(A;X; — X;A,;) is the trace of A;X; — X;A;. Then Theorem 2.6 implies
that ||[AX — XB —I|| > 1.

Remark 2.1. It is known [13] that there exists a compact operator C such that
R(6c) = K(H). As a consequence we deduce that dist(I, K(H)) = 1, where
dist(I, K(H)) is the distance from I to K(H). Therefore if A, B are compact oper-
ators, then dist(I, R(04)) = 1.

The previous theorem shows that R, C GF(H). Hence it is interesting to ask the
following question.

Question. Does GF(H) C R,?

In the following example we will show that the answer to this question is negative.

LIRS

Example 2.1. Let



on H® H. Then for every

_ X1 X2
X—{X;g X4]e£(H@H)

we have

X3 —X3—1

Hence ||AX — XB —1|| > 1. Thus (A, B) is generalized finite. Clearly (A, B) does
not belong to the class R,.

AX—XB—l:[_l X2_X1J.

Remark 2.2. As I have already mentioned Theorem 2.7 is a generalization of The-
orem 6 in [17]. By a simple and different technique we will show in the following
theorem that the assumption of R, that there is a closed subspace M which reduces
A and B such that A|r = B| s is rather strong condition for generalized finiteness.

Theorem 2.8. Let RGF(H) be the set of all (A, B) € L(H) x L(H) such that there
s a reducing subspace M of A such as M is invariant under B and (A|m, Blm) €
GF(M). Then RGF(H) C GF(H).

4 o0 [ B B

on M @& M. Then for every

Proof. Let

_ X1 X2
X—[X;, X4]€£(H®H)

we have
* *

AX - XB-1= {Alxl_xlBl”l *]

Hence ||[AX — XB - 1|| > ||A1X; — X1B; — 1|| > 1 since (A;, B;) is generalized
finite. Thus RGF(H) C GF(H). O
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