FINITE OPERATORS AND ORTHOGONALITY

SALAH MECHERI

Abstract

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. Let $A, B \in \mathcal{L}(H)$ we define the generalized derivation $\delta_{A, B}: \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by $$
\delta_{A, B}(X)=A X-X B,
$$ we note $\delta_{A, A}=\delta_{A}$. If for all $X \in \mathcal{L}(H)$ and for all $T \in \operatorname{ker} \delta_{A}$ the inequality $\|T-(A X-X A)\| \geq\|T\|\left({ }^{*}\right)$ holds, then we say that the range of δ_{A} is orthogonal to kernel δ_{A} in the sense of Birkhoff. The operator $A \in \mathcal{L}(H)$ is said to be finite [17] if $\|I-(A X-X A)\| \geq 1\left(^{* *}\right)$ for all $X \in \mathcal{L}(H)$, where I is the identity operator. The well-known Inequality $\left({ }^{(* *)}\right.$ due to J.P.Williams [17] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [18]). This topic deals with minimizing the distance, measured by some norms or other, between a varying commutator $X X^{*}-X^{*} X$ and some fixed operator [12]. In this paper we prove that a paranormal operator is finite and we present some generalized finite operators. An extension of inequality (*) is also given.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. Let $A, B \in \mathcal{L}(H)$ we define the generalized derivation $\delta_{A, B}: \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by

$$
\delta_{A, B}(X)=A X-X B,
$$

we note $\delta_{A, A}=\delta_{A}$. Let E be a complex Banach space. We say that $b \in E$ is orthogonal to $a \in E$ if for all complex λ there holds

$$
\begin{equation*}
\|a+\lambda b\| \geq\|a\| . \tag{1.1}
\end{equation*}
$$

This definition has a natural geometric interpretation. Namely, $b \perp a$ if and only if the complex line $\{a+\lambda b \mid \lambda \in \mathbb{C}\}$ is disjoint with the open ball $K(0,\|a\|)$, i.e., iff

[^0]this complex line is a tangent one. Note that if b is orthogonal to a, then a need not be orthogonal to b. If E is a Hilbert space, then from (1.1) follows $\langle a, b\rangle=0$, i.e., orthogonality in the usual sense.

We say that the operator $A \in \mathcal{L}(H)$ is finite if $\|I-(A X-X A)\| \geq 1$ for all $X \in \mathcal{L}(H)$.

Let $A \in \mathcal{L}(H)$, the approximate reduced spectrum of $A, \sigma_{r a}(A)$, is the set of scalars λ for which there exists a normed sequence $\left\{x_{n}\right\}$ in H satisfying

$$
(A-\lambda I) x_{n} \rightarrow 0,(A-\lambda I)^{*} x_{n} \rightarrow 0 .
$$

J.P.Williams [17] has shown that the class of finite operators, \mathcal{F}, contains every normal, hyponormal operators. In [10], J.P.Williams results are generalized to a more classes of operators containing the classes of normal and hyponormal operators.

An operator $A \in \mathcal{L}(H)$ is said to be normaloid if $\|A\|=r(A)$, where $r(A)$ is the spectral radius of A, paranormal if

$$
\|A x\|^{2} \leq\left\|A^{2} x\right\|\|x\|, \text { for all } x \in H
$$

and p-hyponormal if $|A|^{2 p}-\left|A^{*}\right|^{2 p} \geq 0(0<p \leq 1)$. We have
hyponormal $\subset p$-hyponormal \subset paranormal \subset normaloid.
A is said to be log-hyponormal if A is invertible and satisfies the following equality

$$
\log \left(A^{*} A\right) \geq \log \left(A A^{*}\right)
$$

It is known that invertible p-hyponormal operators are log-hyponormal operators but the converse is not true [14]. However it is very interesting that we may regard log-hyponormal operators are 0-hyponormal operators [14, 15]. The idea of log-hyponormal operator is due to Ando [3] and the first paper in which loghyponormality appeared is [6]. For properties of log-hyponormal operators (see $[4,14,15,16])$.

We say that an operator $A \in \mathcal{L}(H)$ belongs to the class A if $\left|A^{2}\right| \geq|A|^{2}$. Class A was first introduced by Furuta-Ito-Yamazaki [7] as a subclass of paranormal operators which includes the classes of p-hyponormal and log-hyponormal operators. The following theorem is one of the results associated with class A.

Theorem 1.1. [7]

(1) Every log-hyponormal operator is a class A operator.
(2) Every class A operator is a paranormal operator.
J.H.Anderson and C.Foias [2] have shown that if A, B are normal operators, then

$$
\begin{equation*}
\|T-(A X-X B)\| \geq\|T\| \tag{1.2}
\end{equation*}
$$

for all $X \in \mathcal{L}(H)$ and for all $T \in \operatorname{ker} \delta_{A, B}$. Hence the range of $\delta_{A, B}$ is orthogonal to the null space of $\delta_{A, B}$. In particular the inequality $\|T-(A X-X A)\| \geq\|T\|$ means that the range of δ_{A} is orthogonal to $\operatorname{ker} \delta_{A}$ in the sense of Birkhoff. It is easy to see that if the range of δ_{A} is orthogonal to $\operatorname{ker} \delta_{A}$, then A is finite. Indeed, we have $T=I \in \operatorname{ker} \delta_{A}$. In this paper we prove that a paranormal operator is finite. An extension of inequality (1.2) is also given.

2. Main results

In the following theorems we will show that a paranormal operator is finite and it remains invariant under compact perturbation.

Lemma 2.1. Let $A \in \mathcal{L}(H)$ be paranormal. Then $\sigma_{a r}(A) \neq \phi$.
Proof. If A is paranormal, then A is normaloid. Hence $\|A\|=r(A)$. This implies that there exists $\lambda \in \sigma(A)$ such that $|\lambda|=\|A\|$. Since λ is in the boundary of $\sigma(A)$, there exist unit vectors x_{n} such that $(A-\lambda) x_{n} \rightarrow 0$. Then $(A-\lambda)^{*} \rightarrow 0$, because $|\lambda|=\|A\|$.

Theorem 2.1. Let $A \in \mathcal{L}(H)$ be paranormal. Then A is finite
Proof. It is well known [10] if $\sigma_{a r}(A) \neq \phi$, then A is finite. Hence it suffices to apply the previous lemma.

As a consequence of the previous theorem we obtain.
Corollary 2.1. The following operators are finite.

1. Hyponormal operators,
2. p-Hyponormal operators,
3. Class A operators,
4. log-hyponormal operators.

Lemma 2.2. If A is paranormal and if T is a normal operator such that $A T=T A$, then for every $\lambda \in \sigma_{p}(T)$ (point spectrum of A),

$$
|\lambda| \leq\|T-(A X-X A)\|, \text { for all } X \in \mathcal{L}(H)
$$

Proof. Let $\lambda \in \sigma_{p}(A)$ and M_{λ} the eigenspace associate to λ. Since $T A=A T$, we have $T^{*} A=A T^{*}$ by the Fuglede-Putnam's theorem. Hence M_{λ} reduces both A and T. According to the decomposition of $H=M_{\lambda} \oplus M_{\lambda}^{\perp}$, we can write A, T and X as follows:

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] T=\left[\begin{array}{ll}
\lambda & 0 \\
0 & T_{2}
\end{array}\right] \text { and } X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

Since the restriction of a paranormal operator to an invariant subspace is paranormal, we have

$$
\begin{aligned}
\|T-(A X-X A)\| & =\left\|\left[\begin{array}{ll}
\lambda-A_{1} X_{1}+X_{1} A_{1} & * \\
* & *
\end{array}\right]\right\| \geq\left\|\lambda-A_{1} X_{1}+X_{1} A_{1}\right\| \\
& \geq|\lambda|\left|1-A_{1}\left(\frac{X_{1}}{\lambda}\right)+\left(\frac{X_{1}}{\lambda}\right) A_{1}\right||\geq|\lambda| .
\end{aligned}
$$

Proposition 2.1. [5, Berberian technique] Let H be a complex Hilbert space. Then there exists a Hilbert space $H^{\sim} \supset H$ and $\varphi: \mathcal{L}(H) \mapsto \mathcal{L}(H)\left(A \mapsto A^{\sim}\right)$ satisfying: φ is an ${ }^{*}$-isometric isomorphism preserving the order such that
(i) $\varphi\left(A^{*}\right)=\varphi(A)^{*}, \varphi(I)=I^{\sim}, \varphi(\alpha A+\beta B)=\alpha \varphi(A)+\beta \varphi(B), \varphi(A B)=$ $\varphi(A) \varphi(B),\|\varphi(A)\|=\|A\|, \varphi(A) \leq \varphi(B)$, if $A \leq B$ for all $A, B \in \mathcal{L}(H)$ and for all $\alpha, \beta \in$ \mathbb{C}.
(ii) $\sigma(A)=\sigma\left(A^{\sim}\right)=\sigma_{a}(A)=\sigma_{a}\left(A^{\sim}\right)=\sigma_{p}\left(A^{\sim}\right)$, where $\sigma_{a}(A)$ is the approximate spectrum of A and $\sigma_{p}(A)$ is the point spectrum of A.

Theorem 2.2. If A is paranormal, then for every normal operator T such that $A T=T A$, we have

$$
\begin{equation*}
\|T-(A X-X A)\| \geq\|T\|, \text { for all } X \in \mathcal{L}(H) \tag{2.1}
\end{equation*}
$$

Proof. Let $\lambda \in \sigma(T)=\sigma_{a}(T)[8]$, then it follows from Proposition 2.1 that T^{\sim} is normal, A^{\sim} is paranormal, $T^{\sim} A^{\sim}=A^{\sim} T^{\sim}$ and $\lambda \in \sigma_{p}\left(A^{\sim}\right)$. By applying Lemma 2.2 , we get

$$
\mid \lambda \leq\left\|T^{\sim}-\left(A^{\sim} X^{\sim}-X^{\sim} A^{\sim}\right)\right\|=\|T-(A X-X A)\|,
$$

for all $X \in \mathcal{L}(H)$. Hence

$$
\sup _{\lambda \in \sigma\left(T^{\sim}\right)}|\lambda|=\left\|T^{\sim}\right\|=\|T\|=r(T) \leq\|T-(A X-X A)\|,
$$

for all $X \in \mathcal{L}(H)$.
Recall that a paranormal operator on a C^{*}-algebra \mathcal{A} may be defined as an operator $a \in \mathcal{A}$ satisfying $a^{2 *} a^{2}-2 k a^{*} a+k^{2} \geq 0$, for all $k>0$.

Theorem 2.3. Let \mathcal{A} be a C^{*}-algebra and let $a \in \mathcal{A}$ be a paranormal operator. Then a is finite.

Proof. It is known ([9], p.97) that there exists a *-isometric homomorphism φ and a Hilbert space $H(\varphi: \mathcal{A} \mapsto \mathcal{L}(H))$. Then $\varphi(a)$ is paranormal. Since φ is isometric it results from Theorem 2.1 that a is finite.

Corollary 2.2. Let $A \in \mathcal{L}(H)$ be paranormal. Then $T=A+K$ is finite, where K is a compact operator.

Proof. Since the Calkin algebra $\mathcal{L}(H) / K(H)$ is a C^{*} - algebra, $[A] \in \mathcal{L}(H) / K(H)$ is paranormal. Hence it follows from Theorem 2.3. that $[A]=A+K$ is finite and we have

$$
\|I-(T X-X T)\| \geq\|[I]-[A][X]-[X][A]\| \geq\|[I]\|=1
$$

In the following theorem we will extend Inequality 2.1 to a more general classes of operators.

Theorem 2.4. If A is p-hyponormal (resp. log-hyponormal) and if B^{*} is p-hyponormal (resp. log-hyponormal), then

$$
\|T-(A X-X B)\| \geq\|T\|
$$

for all $X \in \mathcal{L}(H)$ and for all $T \in \operatorname{ker} \delta_{A, B}$.
Proof. Let $T \in \operatorname{ker} \delta_{A, B}$. Then [15, Theorem 8] implies that $T \in \operatorname{ker} \delta_{A^{*}, B^{*}}$. Therefore, $A T T^{*}=T B T^{*}=T T^{*} A$. Since by Corollary $2.1 p$-hyponormal or loghyponormal are finite, Theorem 2.2 implies that

$$
\begin{gathered}
\left\|T T^{*}\right\|=\|T\|^{2} \leq\left\|T T^{*}-\left(A X T^{*}-X T^{*} A\right)\right\| \leq\left\|T T^{*}-\left(A X T^{*}-X B T^{*}\right)\right\| \\
\leq\left\|T^{*}\right\|\|T-(A X-X B)\|
\end{gathered}
$$

Thus

$$
\|T\| \leq\|T-(A X-X B)\| .
$$

In [10] the author initiates the study of a more general class of finite operators defined by
$\mathcal{G} F(H)=\{(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H):\|I-(A X-X B)\| \geq 1$, for each $X \in \mathcal{L}(H)\}$.
Such operators are called generalized finite operators. In the following theorems we recall some properties of these operators. Let \mathcal{A} be a Banach algebra.

Theorem 2.5. [10] $\mathcal{G} F(A)$ is closed in $\mathcal{A} \times \mathcal{A}$.
Theorem 2.6. [10] For $a, b \in \mathcal{A}$ the following statements are equivalent
(i) $\|a x-x b-e\| \geq 1$ for all $x \in \mathcal{A}$.
(ii) There exists a state f such that $f(a x)=f(x b)$, for all $x \in \mathcal{A}$.
(iii) $0 \in W_{0}(a x-x b), \forall x \in \mathcal{A}$.

Now we are ready to give a new classes of generalized finite operators. Let \mathcal{R}_{n} be the set of all $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H)$ such that A and B have an n-dimensional reducing subspace \mathcal{M} satisfying $A|\mathcal{M}=B| \mathcal{M}$.

By a slight modification in the proof of [17, Theorem 6] we prove the following theorem which is a generalization of Theorem 6 in [17].

Theorem 2.7. Let $(A, B) \in \mathcal{R}_{n}$. Then

$$
\|A X-X B-I\| \geq 1
$$

that is, (A, B) is generalized finite.
Proof. Let $\left(e_{i}\right)_{i=1}^{n}$ be an orthonormal basis of $H_{1}=\mathcal{M}$. Define the linear form f on $\mathcal{L}(H)$ by $f(X)=\frac{1}{n} \sum_{i=1}^{n}\left\langle X e_{i}, e_{i}\right\rangle$. It is clear that $f(I)=\|f\|=1$. According to the decomposition of $H=H_{1} \oplus H_{1}^{\perp}$, we have

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], B=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & B_{2}
\end{array}\right] \text { and } X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

An easy calculation shows that

$$
\begin{gathered}
f(A X-X B)=\frac{1}{n} \sum_{i=1}^{n}\left\langle\left(A_{1} X_{1}-X_{1} A_{1}\right) e_{i}, e_{i}\right\rangle \\
=\frac{1}{n} \operatorname{tr}\left(A_{1} X_{1}-X_{1} A_{1}\right)=0
\end{gathered}
$$

where $\operatorname{tr}\left(A_{1} X_{1}-X_{1} A_{1}\right)$ is the trace of $A_{1} X_{1}-X_{1} A_{1}$. Then Theorem 2.6 implies that $\|A X-X B-I\| \geq 1$.

Remark 2.1. It is known [13] that there exists a compact operator C such that $\overline{R\left(\delta_{C}\right)}=K(H) . \quad$ As a consequence we deduce that $\operatorname{dist}(I, K(H))=1$, where $\operatorname{dist}(I, K(H))$ is the distance from I to $K(H)$. Therefore if A, B are compact operators, then $\operatorname{dist}\left(I, R\left(\delta_{A, B}\right)\right)=1$.

The previous theorem shows that $\mathcal{R}_{n} \subset \mathcal{G} F(H)$. Hence it is interesting to ask the following question.

Question. Does $\mathcal{G} F(H) \subset \mathcal{R}_{n}$?
In the following example we will show that the answer to this question is negative.
Example 2.1. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

on $H \oplus H$. Then for every

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] \in \mathcal{L}(H \oplus H)
$$

we have

$$
A X-X B-1=\left[\begin{array}{ll}
-1 & X_{2}-X_{1} \\
X_{3} & -X_{3}-1
\end{array}\right]
$$

Hence $\|A X-X B-1\| \geq 1$. Thus (A, B) is generalized finite. Clearly (A, B) does not belong to the class \mathcal{R}_{n}.

Remark 2.2. As I have already mentioned Theorem 2.7 is a generalization of Theorem 6 in [17]. By a simple and different technique we will show in the following theorem that the assumption of \mathcal{R}_{n} that there is a closed subspace \mathcal{M} which reduces A and B such that $\left.A\right|_{\mathcal{M}}=\left.B\right|_{\mathcal{M}}$ is rather strong condition for generalized finiteness.

Theorem 2.8. Let $\mathcal{R G} F(H)$ be the set of all $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H)$ such that there is a reducing subspace \mathcal{M} of A such as \mathcal{M} is invariant under B and $\left(\left.A\right|_{\mathcal{M}},\left.B\right|_{\mathcal{M}}\right) \in$ $\mathcal{G} F(\mathcal{M})$. Then $\mathcal{R G F}(H) \subset \mathcal{G} F(H)$.

Proof. Let

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right]
$$

on $\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then for every

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] \in \mathcal{L}(H \oplus H)
$$

we have

$$
A X-X B-1=\left[\begin{array}{ll}
A_{1} X_{1}-X_{1} B_{1}-1 & * \\
* & *
\end{array}\right]
$$

Hence $\|A X-X B-1\| \geq\left\|A_{1} X_{1}-X_{1} B_{1}-1\right\| \geq 1$ since $\left(A_{1}, B_{1}\right)$ is generalized finite. Thus $\mathcal{R G F}(H) \subset \mathcal{G} F(H)$.

Acknowledgements. The author would like to thank the referee for his careful reading of the paper. His valuable suggestions, critical remarks and pertinent comments resulted in numerous improvements throughout.

References

[1] J.H.Anderson, On normal derivation, Proc. Amer. Math.Scoc, 38(1973),135140
[2] J.H.Anderson and C. Foias, Properties which normal operator share with normal derivation and related operators, Pacific J. Math, 61(1975), 313-325.
[3] T.Ando, operators with a norm condition, Acta. Sci. Math(Szeged), 33(1972), 169-178.
[4] Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equat. Oper. Theor, 13(1990), 307-315.
[5] S.K.Berberian, Approximate proper values, Proc. Amer. Math. Soc, 13(1962), 111-114.
[6] M. Fujii, C. Himeji and A. Matsumoto, Theorems of Ando and Saito for phyponormal operators, Math. Japonica, 39(1994), 595-598.
[7] T.Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including the class of log-hyponormal and several related classes, Scientiae Math. Japn, 1(1998), 389-403.
[8] P.R.Halmos, Hibert space problem book, Springer, Verlag, New York, (1962).
[9] D.A. Herrero, Approximation of Hilbert space operator I, Pitnam Advanced publishing programm, Boston, London-Melbourne (1982).
[10] S.Mecheri, Finite operators, Demonstratio Math, 35(2002), 355-366.
[11] S.Mecheri, Non-normal derivations and orthogonality, Proc. Amer. Math. Soc, 133(2005), 759-762.
[12] P.J.Maher, Self commutator approximants, Proc. Amer. Math. Soc, 134(2006), 157-165.
[13] J.G.Stampfli, Derivation on $B(H)$: The range, ILLinois J. Math, 17(1973) 518524.
[14] K.Tanahashi and A. Uchiyama, On log-hyponormal operators, Integr. Equat. operat. Theor, 34(1999), 364-372.
[15] I.H. Jeon and K.Tanahashi and A. Uchiyama, On qasisimilarity for loghyponormal operator, Glasgow Math. J, 46(2004), 169-176.
[16] A.Uchiyama, Inequalities of Putnam and BergerShaw for p-quasihyponormal operator, Integr. Equat. Oper. Theor, 34(1999), 179-180.
[17] J.P.Williams, Finite operators, Proc. Amer. Math. Soc, 26(1970), 129-135.
[18] H. Wielandt, ber die Unbeschrnktheit der Operatoren der Quantenmechanik(German), Math. Ann, 121(1949), 21.
(Salah Mecheri) Univèrsité de Tébéssa, 12000 Tébéssa- Algérie (Algeria).
E-mail address: mecherisalah@hotmail.com

Received March 27, 2008
Revised May 17, 2008

[^0]: 2000 Mathematics Subject Classification. 47A10,47B20.
 Key words and phrases. Finite operators, Orthogonality.
 This research was supported by KSU research center Project No. 2007-40.

