Nihonkai Math. J. Vol.19(2008), 53–60

FINITE OPERATORS AND ORTHOGONALITY

SALAH MECHERI

ABSTRACT. Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. Let $A, B \in \mathcal{L}(H)$ we define the generalized derivation $\delta_{A,B} : \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by

$$\delta_{A,B}(X) = AX - XB,$$

we note $\delta_{A,A} = \delta_A$. If for all $X \in \mathcal{L}(H)$ and for all $T \in \ker \delta_A$ the inequality $||T - (AX - XA)|| \ge ||T||(*)$ holds, then we say that the range of δ_A is orthogonal to kernel δ_A in the sense of Birkhoff. The operator $A \in \mathcal{L}(H)$ is said to be finite [17] if $||I - (AX - XA)|| \ge 1(**)$ for all $X \in \mathcal{L}(H)$, where I is the identity operator. The well-known Inequality (**) due to J.P.Williams [17] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [18]). This topic deals with minimizing the distance, measured by some norms or other, between a varying commutator $XX^* - X^*X$ and some fixed operator [12]. In this paper we prove that a paranormal operator is finite and we present some generalized finite operators. An extension of inequality (*) is also given.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. Let $A, B \in \mathcal{L}(H)$ we define the generalized derivation $\delta_{A,B} : \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by

$$\delta_{A,B}(X) = AX - XB,$$

we note $\delta_{A,A} = \delta_A$. Let *E* be a complex Banach space. We say that $b \in E$ is orthogonal to $a \in E$ if for all complex λ there holds

$$\|a + \lambda b\| \ge \|a\|. \tag{1.1}$$

This definition has a natural geometric interpretation. Namely, $b \perp a$ if and only if the complex line $\{a + \lambda b \mid \lambda \in \mathbb{C}\}$ is disjoint with the open ball K(0, ||a||), i.e., iff

²⁰⁰⁰ Mathematics Subject Classification. 47A10,47B20.

Key words and phrases. Finite operators, Orthogonality.

This research was supported by KSU research center Project No. 2007-40.

this complex line is a tangent one. Note that if b is orthogonal to a, then a need not be orthogonal to b. If E is a Hilbert space, then from (1.1) follows $\langle a, b \rangle = 0$, i.e., orthogonality in the usual sense.

We say that the operator $A \in \mathcal{L}(H)$ is finite if $||I - (AX - XA)|| \ge 1$ for all $X \in \mathcal{L}(H)$.

Let $A \in \mathcal{L}(H)$, the approximate reduced spectrum of A, $\sigma_{ra}(A)$, is the set of scalars λ for which there exists a normed sequence $\{x_n\}$ in H satisfying

$$(A - \lambda I)x_n \to 0, \ (A - \lambda I)^*x_n \to 0.$$

J.P.Williams [17] has shown that the class of finite operators, \mathcal{F} , contains every normal, hyponormal operators. In [10], J.P.Williams results are generalized to a more classes of operators containing the classes of normal and hyponormal operators.

An operator $A \in \mathcal{L}(H)$ is said to be normaloid if ||A|| = r(A), where r(A) is the spectral radius of A, paranormal if

$$||Ax||^2 \le ||A^2x||||x||$$
, for all $x \in H$,

and p-hyponormal if $|A|^{2p} - |A^*|^{2p} \ge 0$ (0). We have

hyponormal $\subset p$ - hyponormal \subset paranormal \subset normaloid.

A is said to be log-hyponormal if A is invertible and satisfies the following equality A = 0

$$\log(A^*A) \ge \log(AA^*).$$

It is known that invertible *p*-hyponormal operators are *log*-hyponormal operators but the converse is not true [14]. However it is very interesting that we may regard log-hyponormal operators are 0-hyponormal operators [14, 15]. The idea of log-hyponormal operator is due to Ando [3] and the first paper in which loghyponormality appeared is [6]. For properties of log-hyponormal operators (see [4, 14, 15, 16]).

We say that an operator $A \in \mathcal{L}(H)$ belongs to the class A if $|A^2| \geq |A|^2$. Class A was first introduced by Furuta-Ito-Yamazaki [7] as a subclass of paranormal operators which includes the classes of p-hyponormal and log-hyponormal operators. The following theorem is one of the results associated with class A.

Theorem 1.1. [7]

(1) Every log-hyponormal operator is a class A operator.

(2) Every class A operator is a paranormal operator.

J.H.Anderson and C.Foias [2] have shown that if A, B are normal operators, then

$$||T - (AX - XB)|| \ge ||T||$$
(1.2),

for all $X \in \mathcal{L}(H)$ and for all $T \in \ker \delta_{A,B}$. Hence the range of $\delta_{A,B}$ is orthogonal to the null space of $\delta_{A,B}$. In particular the inequality $||T - (AX - XA)|| \ge ||T||$ means that the range of δ_A is orthogonal to $\ker \delta_A$ in the sense of Birkhoff. It is easy to see that if the range of δ_A is orthogonal to $\ker \delta_A$, then A is finite. Indeed, we have $T = I \in \ker \delta_A$. In this paper we prove that a paranormal operator is finite. An extension of inequality (1.2) is also given.

2. Main results

In the following theorems we will show that a paranormal operator is finite and it remains invariant under compact perturbation.

Lemma 2.1. Let $A \in \mathcal{L}(H)$ be paranormal. Then $\sigma_{ar}(A) \neq \phi$.

Proof. If A is paranormal, then A is normaloid. Hence ||A|| = r(A). This implies that there exists $\lambda \in \sigma(A)$ such that $|\lambda| = ||A||$. Since λ is in the boundary of $\sigma(A)$, there exist unit vectors x_n such that $(A - \lambda)x_n \to 0$. Then $(A - \lambda)^* \to 0$, because $|\lambda| = ||A||$.

Theorem 2.1. Let $A \in \mathcal{L}(H)$ be paranormal. Then A is finite

Proof. It is well known [10] if $\sigma_{ar}(A) \neq \phi$, then A is finite. Hence it suffices to apply the previous lemma.

As a consequence of the previous theorem we obtain.

Corollary 2.1. The following operators are finite.

- 1. Hyponormal operators,
- 2. p-Hyponormal operators,
- 3. Class A operators,
- 4. log-hyponormal operators.

Lemma 2.2. If A is paranormal and if T is a normal operator such that AT = TA, then for every $\lambda \in \sigma_p(T)$ (point spectrum of A),

$$|\lambda| \leq ||T - (AX - XA)||, \text{ for all } X \in \mathcal{L}(H).$$

Proof. Let $\lambda \in \sigma_p(A)$ and M_{λ} the eigenspace associate to λ . Since TA = AT, we have $T^*A = AT^*$ by the Fuglede-Putnam's theorem. Hence M_{λ} reduces both A and T. According to the decomposition of $H = M_{\lambda} \oplus M_{\lambda}^{\perp}$, we can write A, T and X as follows:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} T = \begin{bmatrix} \lambda & 0 \\ 0 & T_2 \end{bmatrix} \text{ and } X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$

— 55 —

Since the restriction of a paranormal operator to an invariant subspace is paranormal, we have

$$||T - (AX - XA)|| = \| \begin{bmatrix} \lambda - A_1 X_1 + X_1 A_1 & * \\ * & * \end{bmatrix} \| \ge ||\lambda - A_1 X_1 + X_1 A_1||$$
$$\ge |\lambda||1 - A_1(\frac{X_1}{\lambda}) + (\frac{X_1}{\lambda})A_1|| \ge |\lambda|.$$

Proposition 2.1. [5, Berberian technique] Let H be a complex Hilbert space. Then there exists a Hilbert space $H^{\sim} \supset H$ and $\varphi : \mathcal{L}(H) \mapsto \mathcal{L}(H) (A \mapsto A^{\sim})$ satisfying: φ is an *-isometric isomorphism preserving the order such that

(i) $\varphi(A^*) = \varphi(A)^*, \varphi(I) = I^{\sim}, \varphi(\alpha A + \beta B) = \alpha \varphi(A) + \beta \varphi(B), \varphi(AB) = \varphi(A)\varphi(B), ||\varphi(A)|| = ||A||, \varphi(A) \le \varphi(B), \text{ if } A \le B \text{ for all } A, B \in \mathcal{L}(H) \text{ and for all } \alpha, \beta \in \mathbb{C}.$

(ii) $\sigma(A) = \sigma(A^{\sim}) = \sigma_a(A) = \sigma_a(A^{\sim}) = \sigma_p(A^{\sim})$, where $\sigma_a(A)$ is the approximate spectrum of A and $\sigma_p(A)$ is the point spectrum of A.

Theorem 2.2. If A is paranormal, then for every normal operator T such that AT = TA, we have

$$||T - (AX - XA)|| \ge ||T||, \text{ for all } X \in \mathcal{L}(H)$$

$$(2.1).$$

Proof. Let $\lambda \in \sigma(T) = \sigma_a(T)$ [8], then it follows from Proposition 2.1 that T^{\sim} is normal, A^{\sim} is paranormal, $T^{\sim}A^{\sim} = A^{\sim}T^{\sim}$ and $\lambda \in \sigma_p(A^{\sim})$. By applying Lemma 2.2, we get

$$|\lambda \le ||T^{\sim} - (A^{\sim}X^{\sim} - X^{\sim}A^{\sim})|| = ||T - (AX - XA)||,$$

for all $X \in \mathcal{L}(H)$. Hence

$$\sup_{\lambda \in \sigma(T^{\sim})} |\lambda| = ||T^{\sim}|| = ||T|| = r(T) \le ||T - (AX - XA)||,$$

for all $X \in \mathcal{L}(H)$.

Recall that a paranormal operator on a C^* -algebra \mathcal{A} may be defined as an operator $a \in \mathcal{A}$ satisfying $a^{2*}a^2 - 2ka^*a + k^2 \ge 0$, for all k > 0.

Theorem 2.3. Let \mathcal{A} be a C^* -algebra and let $a \in \mathcal{A}$ be a paranormal operator. Then a is finite.

Proof. It is known ([9], p.97) that there exists a *-isometric homomorphism φ and a Hilbert space $H(\varphi : \mathcal{A} \mapsto \mathcal{L}(H))$. Then $\varphi(a)$ is paranormal. Since φ is isometric it results from Theorem 2.1 that a is finite.

Corollary 2.2. Let $A \in \mathcal{L}(H)$ be paranormal. Then T = A + K is finite, where K is a compact operator.

Proof. Since the Calkin algebra $\mathcal{L}(H)/K(H)$ is a C^* - algebra, $[A] \in \mathcal{L}(H)/K(H)$ is paranormal. Hence it follows from Theorem 2.3. that [A] = A + K is finite and we have

$$||I - (TX - XT)|| \ge ||[I] - [A][X] - [X][A]|| \ge ||[I]|| = 1.$$

In the following theorem we will extend Inequality 2.1 to a more general classes of operators.

Theorem 2.4. If A is p-hyponormal (resp. log-hyponormal) and if B^* is p-hyponormal (resp. log-hyponormal), then

$$||T - (AX - XB)|| \ge ||T||,$$

for all $X \in \mathcal{L}(H)$ and for all $T \in \ker \delta_{A,B}$.

Proof. Let $T \in \ker \delta_{A,B}$. Then [15, Theorem 8] implies that $T \in \ker \delta_{A^*,B^*}$. Therefore, $ATT^* = TBT^* = TT^*A$. Since by Corollary 2.1 *p*-hyponormal or loghyponormal are finite, Theorem 2.2 implies that

$$||TT^*|| = ||T||^2 \le ||TT^* - (AXT^* - XT^*A)|| \le ||TT^* - (AXT^* - XBT^*)||$$

$$\le ||T^*||||T - (AX - XB)||.$$

Thus

$$||T|| \le ||T - (AX - XB)||.$$

In [10] the author initiates the study of a more general class of finite operators defined by

 $\mathcal{G}F(H) = \{(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H) : ||I - (AX - XB)|| \ge 1, \text{ for each } X \in \mathcal{L}(H)\}.$

Such operators are called generalized finite operators. In the following theorems we recall some properties of these operators. Let \mathcal{A} be a Banach algebra.

Theorem 2.5. [10] $\mathcal{GF}(A)$ is closed in $\mathcal{A} \times \mathcal{A}$.

Theorem 2.6. [10] For $a, b \in A$ the following statements are equivalent

(i) $||ax - xb - e|| \ge 1$ for all $x \in \mathcal{A}$.

(ii) There exists a state f such that f(ax) = f(xb), for all $x \in A$.

(iii) $0 \in W_0(ax - xb), \forall x \in \mathcal{A}.$

- 57 -

Now we are ready to give a new classes of generalized finite operators. Let \mathcal{R}_n be the set of all $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H)$ such that A and B have an n-dimensional reducing subspace \mathcal{M} satisfying $A|\mathcal{M} = B|\mathcal{M}$.

By a slight modification in the proof of [17, Theorem 6] we prove the following theorem which is a generalization of Theorem 6 in [17].

Theorem 2.7. Let $(A, B) \in \mathcal{R}_n$. Then

$$||AX - XB - I|| \ge 1,$$

that is, (A, B) is generalized finite.

Proof. Let $(e_i)_{i=1}^n$ be an orthonormal basis of $H_1 = \mathcal{M}$. Define the linear form f on $\mathcal{L}(H)$ by $f(X) = \frac{1}{n} \sum_{i=1}^n \langle Xe_i, e_i \rangle$. It is clear that f(I) = ||f|| = 1. According to the decomposition of $H = H_1 \oplus H_1^{\perp}$, we have

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, B = \begin{bmatrix} A_1 & 0 \\ 0 & B_2 \end{bmatrix} \text{ and } X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$

An easy calculation shows that

$$f(AX - XB) = rac{1}{n} \sum_{i=1}^{n} \langle (A_1X_1 - X_1A_1)e_i, e_i
angle$$

 $= rac{1}{n} tr(A_1X_1 - X_1A_1) = 0,$

where $tr(A_1X_1 - X_1A_1)$ is the trace of $A_1X_1 - X_1A_1$. Then Theorem 2.6 implies that $||AX - XB - I|| \ge 1$.

Remark 2.1. It is known [13] that there exists a compact operator C such that $\overline{R(\delta_C)} = K(H)$. As a consequence we deduce that dist(I, K(H)) = 1, where dist(I, K(H)) is the distance from I to K(H). Therefore if A, B are compact operators, then $dist(I, R(\delta_{A,B})) = 1$.

The previous theorem shows that $\mathcal{R}_n \subset \mathcal{G}F(H)$. Hence it is interesting to ask the following question.

Question. Does $\mathcal{G}F(H) \subset \mathcal{R}_n$?

In the following example we will show that the answer to this question is negative.

Example 2.1. Let

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], B = \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right]$$

on $H \oplus H$. Then for every

$$X = \left[\begin{array}{cc} X_1 & X_2 \\ X_3 & X_4 \end{array} \right] \in \mathcal{L}(H \oplus H)$$

we have

$$AX - XB - 1 = \begin{bmatrix} -1 & X_2 - X_1 \\ X_3 & -X_3 - 1 \end{bmatrix}.$$

Hence $||AX - XB - 1|| \ge 1$. Thus (A, B) is generalized finite. Clearly (A, B) does not belong to the class \mathcal{R}_n .

Remark 2.2. As I have already mentioned Theorem 2.7 is a generalization of Theorem 6 in [17]. By a simple and different technique we will show in the following theorem that the assumption of \mathcal{R}_n that there is a closed subspace \mathcal{M} which reduces A and B such that $A|_{\mathcal{M}} = B|_{\mathcal{M}}$ is rather strong condition for generalized finiteness.

Theorem 2.8. Let $\mathcal{RGF}(H)$ be the set of all $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H)$ such that there is a reducing subspace \mathcal{M} of A such as \mathcal{M} is invariant under B and $(A|_{\mathcal{M}}, B|_{\mathcal{M}}) \in \mathcal{GF}(\mathcal{M})$. Then $\mathcal{RGF}(H) \subset \mathcal{GF}(H)$.

Proof. Let

$$A = \left[\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array} \right], B = \left[\begin{array}{cc} B_1 & B_2\\ 0 & B_3 \end{array} \right]$$

on $\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then for every

$$X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \in \mathcal{L}(H \oplus H)$$

we have

$$AX - XB - 1 = \begin{bmatrix} A_1X_1 - X_1B_1 - 1 & * \\ * & & * \end{bmatrix}$$

Hence $||AX - XB - 1|| \ge ||A_1X_1 - X_1B_1 - 1|| \ge 1$ since (A_1, B_1) is generalized finite. Thus $\mathcal{RGF}(H) \subset \mathcal{GF}(H)$.

Acknowledgements. The author would like to thank the referee for his careful reading of the paper. His valuable suggestions, critical remarks and pertinent comments resulted in numerous improvements throughout.

References

 J.H.Anderson, On normal derivation, Proc. Amer. Math.Scoc, 38(1973),135-140

- [2] J.H.Anderson and C. Foias, Properties which normal operator share with normal derivation and related operators, Pacific J. Math, 61(1975), 313-325.
- [3] T.Ando, operators with a norm condition, Acta. Sci. Math(Szeged), **33**(1972), 169-178.
- [4] Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Theor, 13(1990), 307-315.
- [5] S.K.Berberian, Approximate proper values, Proc. Amer. Math. Soc, **13**(1962), 111-114.
- [6] M. Fujii, C. Himeji and A. Matsumoto, *Theorems of Ando and Saito for p-hyponormal operators*, Math. Japonica, **39**(1994), 595-598.
- [7] T.Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including the class of log-hyponormal and several related classes, Scientiae Math. Japn, 1(1998), 389-403.
- [8] P.R.Halmos, *Hibert space problem book*, Springer, Verlag, New York, (1962).
- [9] D.A. Herrero, Approximation of Hilbert space operator I, Pitnam Advanced publishing programm, Boston, London-Melbourne (1982).
- [10] S.Mecheri, *Finite operators*, Demonstratio Math, **35**(2002), 355-366.
- [11] S.Mecheri, Non-normal derivations and orthogonality, Proc. Amer. Math. Soc, 133(2005), 759-762.
- [12] P.J.Maher, Self commutator approximants, Proc. Amer. Math. Soc, 134(2006), 157-165.
- [13] J.G.Stampfli, Derivation on B(H): The range, ILLinois J. Math, 17(1973) 518-524.
- [14] K.Tanahashi and A. Uchiyama, On log-hyponormal operators, Integr. Equat. operat. Theor, 34(1999), 364-372.
- [15] I.H. Jeon and K.Tanahashi and A. Uchiyama, On qasisimilarity for loghyponormal operator, Glasgow Math. J, 46(2004), 169-176.
- [16] A.Uchiyama, Inequalities of Putnam and BergerShaw for p-quasihyponormal operator, Integr. Equat. Oper. Theor, 34(1999), 179-180.
- [17] J.P.Williams, *Finite operators*, Proc. Amer. Math. Soc, **26**(1970), 129-135.
- [18] H. Wielandt, ber die Unbeschrnktheit der Operatoren der Quantenmechanik(German), Math. Ann, 121(1949), 21.

(Salah Mecheri) UNIVÈRSITÉ DE TÉBÉSSA, 12000 TÉBÉSSA- ALGÉRIE (ALGERIA). E-mail address: mecherisalah@hotmail.com

Received March 27, 2008 Revised May 17, 2008