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FINITE OPERATORS AND ORTHOGONALITY

SALAH MECHERI

ABSTRACT. Let $H$ be a separable infinite dimensional complex Hilbert space, and
let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on $H$ . Let $A,$ $B\in \mathcal{L}(H)$

we define the generalized derivation $\delta_{A,B}$ : $\mathcal{L}(H)\mapsto \mathcal{L}(H)$ by

$\delta_{A,B}(X)=AX-XB$ ,

we note $\delta_{A,A}=\delta_{A}$ . If for all $X\in \mathcal{L}(H)$ and for all $ T\in$ ker $\delta_{A}$ the inequality
$||T-(AX-XA)||\geq||T||(*)$ holds, then we say that the range of $\delta_{A}$ is orthogonal
to kernel $\delta_{A}$ in the sense of Birkhoff. The operator $A\in \mathcal{L}(H)$ is said to be finite
[17] if $||I-(AX-XA)||\geq 1(**)$ for all $X\in \mathcal{L}(H)$ , where $I$ is the identity

operator. The well-known Inequality $(^{**})$ due to J.P.Williams [17] is the starting
point of the topic of commutator approximation (a topic which has its roots in
quantum theory [18]). This topic deals with minimizing the distance, measured
by some norms or other, between a varying commutator $XX^{*}-X^{*}X$ and some
fixed operator [12]. In this paper we prove that a paranormal operator is finite

and we present some generalized finite operators. An extension of inequality $(^{*})$

is also given.

1. Introduction

Let $H$ be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$

denote the algebra of all bounded linear operators on $H$ . Let $A,$ $B\in \mathcal{L}(H)$ we
define the generalized derivation $\delta_{A,B}$ : $\mathcal{L}(H)\mapsto \mathcal{L}(H)$ by

$\delta_{A,B}(X)=AX-XB$ ,

we note $\delta_{A,A}=\delta_{A}$ . Let $E$ be a complex Banach space. We say that $b\in E$ is
orthogonal to $a\in E$ if for all complex $\lambda$ there holds

$||a+\lambda b\Vert\geq$ I $ a\Vert$ . (1.1)

This definition has a natural geometric interpretation. Namely, $b\perp a$ if and only if
the complex line $\{a+\lambda b|\lambda\in \mathbb{C}\}$ is disjoint with the open ball $K(0, \Vert a\Vert)$ , i.e., iff
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this complex line is a tangent one. Note that if $b$ is orthogonal to $a$ , then $a$ need not
be orthogonal to $b$ . If $E$ is a Hilbert space, then from (1.1) follows $\langle a, b\rangle=0$ , i.e.,
orthogonality in the usual sense.

We say that the operator $A\in \mathcal{L}(H)$ is finite if $||I-(AX-XA)||\geq 1$ for all
$X\in \mathcal{L}(H)$ .

Let $A\in \mathcal{L}(H)$ , the approximate reduced spectrum of $A,$ $\sigma_{ra}(A)$ , is the set of
scalars $\lambda$ for which there exists a normed sequence $\{x_{n}\}$ in $H$ satisfying

$(A-\lambda I)x_{n}\rightarrow 0,$ $(A-\lambda I)^{*}x_{n}\rightarrow 0$ .

J.P.Williams [17] has shown that the class of finite operators, $\mathcal{F}$ , contains every
normal, hyponormal operators. In [10], J.P.Williams results are generalized to a
more classes of operators containing the classes of normal and hyponormal operators.

An operator $A\in \mathcal{L}(H)$ is said to be normaloid if $||A||=r(A)$ , where $r(A)$ is the
spectral radius of $A$ , paranormal if

$||Ax||^{2}\leq||A^{2}x||||x||$ , for all $x\in H$,

and p-hyponormal if $|A|^{2p}-|A^{*}|^{2p}\geq 0(0<p\leq 1)$ . We have

hyponormal $\subset p$ –hyponormal $\subset$ paranormal $\subset$ normaloid.

$A$ is said to be log-hyponormal if $A$ is invertible and satisfies the following equality

$\log(A^{*}A)\geq\log(AA^{*})$ .

It is known that invertible p-hyponormal operators are log-hyponormal operators
but the converse is not true [14]. However it is very interesting that we may
regard log-hyponormal operators are O-hyponormal operators $[14, 15]$ . The idea
of log-hyponormal operator is due to Ando [3] and the first paper in which log-
hyponormality appeared is [6]. For properties of log-hyponormal operators (see
[4, 14, 15, 16]).

We say that an operator $A\in \mathcal{L}(H)$ belongs to the class $A$ if $|A^{2}|\geq|A|^{2}$ . Class
$A$ was first introduced by Furuta-Ito-Yamazaki [7] as a subclass of paranormal op-
erators which includes the classes of p-hyponormal and log-hyponormal operators.
The following theorem is one of the results associated with class $A$ .

Theorem 1.1. [7]
(1) Every log-hyponormal operator is a class $A$ operator.
(2) Every class $A$ operator is a paranormal operator.

J.H.Anderson and C.Foias [2] have shown that if $A,$ $B$ are normal operators, then

$||T-(AX-XB)||\geq||T||$ (1.2),



for all $X\in \mathcal{L}(H)$ and for all $T\in ker\delta_{A,B}$ . Hence the range of $\delta_{A,B}$ is orthogonal to
the null space of $\delta_{A,B}$ . In particular the inequality $||T-(AX-XA)||\geq||T||$ means
that the range of $\delta_{A}$ is orthogonal to ker $\delta_{A}$ in the sense of Birkhoff. It is easy to
see that if the range of $\delta_{A}$ is orthogonal to ker $\delta_{A}$ , then $A$ is finite. Indeed, we have
$ T=I\in$ ker $\delta_{A}$ . In this paper we prove that a paranormal operator is finite. An
extension of inequality (1.2) is also given.

2. Main results

In the following theorems we will show that a paranormal operator is finite and it
remains invariant under compact perturbation.

Lemma 2.1. Let $A\in \mathcal{L}(H)$ be paranormal. Then $\sigma_{ar}(A)\neq\phi$ .

Proof. If $A$ is paranormal, then $A$ is normaloid. Hence $||A||=r(A)$ . This implies
that there exists $\lambda\in\sigma(A)$ such that $|\lambda|=||A||$ . Since $\lambda$ is in the boundary of $\sigma(A)$ ,
there exist unit vectors $x_{n}$ such that $(A-\lambda)x_{n}\rightarrow 0$ . Then $(A-\lambda)^{*}\rightarrow 0$ , because
$|\lambda|=||A||$ .

$\square $

Theorem 2.1. Let $A\in \mathcal{L}(H)$ be paranormal. Then $A$ is finite

Proof. It is well known [10] if $\sigma_{ar}(A)\neq\phi$ , then $A$ is finite. Hence it suffices to apply
the previous lemma. $\square $

As a consequence of the previous theorem we obtain.

Corollary 2.1. The following operators are finite.
1. Hyponormal operators,
2. p-Hyponormal operators,
3. Class $A$ operators,
4. log-hyponormal operators.

Lemma 2.2. If $A$ is paranormal and if $T$ is a normal operator such that $AT=TA$ ,
then for every $\lambda\in\sigma_{p}(T)$ (point spectrum of $A$),

$|\lambda|\leq||T-(AX-XA)||$ , for all $X\in \mathcal{L}(H)$ .

Proof. Let $\lambda\in\sigma_{p}(A)$ and $M_{\lambda}$ the eigenspace associate to $\lambda$ . Since $TA=AT$ , we
have $T^{*}A=AT^{*}$ by the Fuglede-Putnam’s theorem. Hence $M_{\lambda}$ reduces both $A$ and
$T$ . According to the decomposition of $H=M_{\lambda}\oplus M_{\lambda}^{\perp}$ , we can write $A,$ $T$ and $X$ as
follows:

$A=\left\{\begin{array}{ll}A_{1} & 0\\0 & A_{2}\end{array}\right\}T=\left\{\begin{array}{ll}\lambda & 0\\0 & T_{2}\end{array}\right\}$ and $X=\left\{\begin{array}{ll}X_{1} & X_{2}\\X_{3} & X_{4}\end{array}\right\}$ .



Since the restriction of a paranormal operator to an invariant subspace is para-
normal, we have

$||T-(AX-XA)||=\Vert[*\lambda-A_{1}X_{1}+X_{1}A_{1}$ $**]\Vert\geq||\lambda-A_{1}X_{1}+X_{1}A_{1}||$

$\geq|\lambda||1-A_{1}(\frac{X_{1}}{\lambda})+(\frac{X_{1}}{\lambda})A_{1}||\geq|\lambda|$ .
$\square $

Proposition 2.1. [5, Berberian technique] Let $H$ be a complex Hilbert space. Then
there exists a Hilbert space $H^{\sim}\supset H$ and $\varphi$ : $\mathcal{L}(H)\mapsto \mathcal{L}(H)(A\mapsto A^{\sim})$ satisfying: $\varphi$

is an $*$-isometric isomo$7p$hism preserving the order such that
(i) $\varphi(A^{*})=\varphi(A)^{*},$ $\varphi(I)=I^{\sim},$ $\varphi(\alpha A+\beta B)=\alpha\varphi(A)+\beta\varphi(B),$ $\varphi(AB)=$

$\mathbb{C}\varphi(A)\varphi(B),$

$||\varphi(A)||=||A||,$ $\varphi(A)\leq\varphi(B),$ $ifA\leq B$ for allA, $B\in \mathcal{L}(H)$ and for alla, $\beta\in$

(ii) $\sigma(A)=\sigma(A^{\sim})=\sigma_{a}(A)=\sigma_{a}(A^{\sim})=\sigma_{p}(A^{\sim})$ , where $\sigma_{a}(A)$ is the approximate
spectreum of $A$ and $\sigma_{p}(A)$ is the point spectrum of $A$ .

Theorem 2.2. If $A$ is paranormal, then for every normal operator $T$ such that
$AT=TA$ , we have

$||T-(AX-XA)||\geq||T||$ , for $allX\in \mathcal{L}(H)$ (2.1).

Proof. Let $\lambda\in\sigma(T)=\sigma_{a}(T)[8]$ , then it follows from Proposition 2.1 that $\tau\sim$ is
normal, $A^{\sim}$ is paranormal, $T^{\sim}A^{\sim}=A^{\sim}T^{\sim}$ and $\lambda\in\sigma_{p}(A^{\sim})$ . By applying Lemma
2.2, we get

$|\lambda\leq||T^{\sim}-(A^{\sim}X^{\sim}-X^{\sim}A^{\sim})||=||T-(AX-XA)||$ ,

for all $X\in \mathcal{L}(H)$ . Hence

$\sup_{\lambda\in\sigma(T^{\sim})}|\lambda|=||T^{\sim}||=||T||=r(T)\leq||T-(AX-XA)||$ ,

for all $X\in \mathcal{L}(H)$ . $\square $

Recall that a paranormal operator on a $C^{*}$-algebra $\mathcal{A}$ may be defined as an oper-
ator $a\in \mathcal{A}$ satisfying $a^{2*}a^{2}-2ka^{*}a+k^{2}\geq 0$ , for all $k>0$ .

Theorem 2.3. Let $\mathcal{A}$ be a $C^{*}$ -algebra and let $a\in \mathcal{A}$ be a paranormal operator. Then
$a$ is finite.

Proof. It is known ([9], p.97) that there exists $a^{*}$-isometric homomorphism $\varphi$ and
a Hilbert space $H$ $(\varphi : \mathcal{A}\mapsto \mathcal{L}(H))$ . Then $\varphi(a)$ is paranormal. Since $\varphi$ is isometric
it results from Theorem 2.1 that $a$ is finite. $\square $



Corollary 2.2. Let $A\in \mathcal{L}(H)$ be paranormal. Then $T=A+K$ is finite, where $K$

is a compact operator.

Proof. Since the Calkin algebra $\mathcal{L}(H)/K(H)$ is a $C^{*}$-algebra, $[A]\in \mathcal{L}(H)/K(H)$ is
paranormal. Hence it follows from Theorem 2.3. that $[A]=A+K$ is finite and we
have

$||I-(TX-XT)||\geq||[I]-[A][X]-[X][A]||\geq||[I]||=1$ .
$\square $

In the following theorem we will extend Inequality 2.1 to a more general classes
of operators.

Theorem 2.4. If $A$ is p-hyponormal (resp. log-hyponormal) and if $B^{*}is$ p-hyponormal
(resp. log-hyponormal), then

$||T-(AX-XB)||\geq||T||$ ,

for all $X\in \mathcal{L}(H)$ and for all $T\in ker\delta_{A,B}$ .

Proof. Let $T\in ker\delta_{A,B}$ . Then [15, Theorem 8] implies that $T\in ker\delta_{A^{*},B^{*}}$ . There-
fore, ATT* $=$ TBT* $=TT^{*}A$ . Since by Corollary 2.1 p-hyponormal or log-
hyponormal are finite, Theorem 2.2 implies that

$||TT^{*}||=||T||^{2}\leq||TT^{*}-(AXT^{*}-XT^{*}A)||\leq||TT^{*}-(AXT^{*}-XBT^{*})||$

$\leq||T^{*}||||T-(AX-XB)||$ .

Thus
$||T||\leq||T-(AX-XB)||$ .

$\square $

In [10] the author initiates the study of a more general class of finite operators
defined by

$\mathcal{G}F(H)=$ { $(A,$ $B)\in \mathcal{L}(H)\times \mathcal{L}(H)$ : $||I-(AX-XB)||\geq 1$ , for each $X\in \mathcal{L}(H)$ }.

Such operators are called generalized finite operators. In the following theorems
we recall some properties of these operators. Let $\mathcal{A}$ be a Banach algebra.

Theorem 2.5. [10] $\mathcal{G}F(A)$ is closed in $\mathcal{A}\times \mathcal{A}$ .

Theorem 2.6. [10] For $a,$
$b\in \mathcal{A}$ the following statements are equivalent

(i) 1 $ax-xb-e\Vert\geq 1$ for all $x\in \mathcal{A}$ .
(ii) There exists a state $f$ such that $f(ax)=f(xb)$ , for all $x\in \mathcal{A}$ .
(iii) $0\in W_{0}(ax-xb),$ $\forall x\in \mathcal{A}$ .



Now we are ready to give a new classes of generalized finite operators. Let $\mathcal{R}_{n}$

be the set of all $(A, B)\in \mathcal{L}(H)\times \mathcal{L}(H)$ such that $A$ and $B$ have an n-dimensional
reducing subspace $\mathcal{M}$ satisfying $A|\mathcal{M}=B|\mathcal{M}$ .

By a slight modification in the proof of [17, Theorem 6] we prove the following
theorem which is a generalization of Theorem 6 in [17].

Theorem 2.7. Let $(A, B)\in \mathcal{R}_{n}$ . Then

11$AX-XB-I||\geq 1$ ,

that is, $(A, B)$ is generalized finite.

Proof. Let $(e_{i})_{i=1}^{n}$ be an orthonormal basis of $H_{1}=\mathcal{M}$ . Define the linear form $f$ on
$\mathcal{L}(H)$ by $ f(X)=\frac{1}{n}\sum_{i=1}^{n}\langle Xe_{i}, e_{i}\rangle$ . It is clear that $f(I)=$ lfll $=1$ . According to
the decomposition of $H=H_{1}\oplus H_{1}^{\perp}$ , we have

$A=\left\{\begin{array}{ll}A_{l} & 0\\0 & A_{2}\end{array}\right\}$ $B=[_{0}A_{1}$

An easy calculation shows that

$0B_{2}]$ and $X=\left\{\begin{array}{ll}X_{l} & X_{2}\\X_{3} & X_{4}\end{array}\right\}$ .

$\square $

$ f(AX-XB)=\frac{1}{n}\sum_{i=1}^{n}\langle(A_{1}X_{1}-X_{1}A_{1})e_{i}, e_{i}\rangle$

$=\frac{1}{n}tr(A_{1}X_{1}-X_{1}A_{1})=0$ ,

where $tr(A_{1}X_{1}-X_{1}A_{1})$ is the trace of $A_{1}X_{1}-X_{1}A_{1}$ . Then Theorem 2.6 implies
that $||AX-XB-I||\geq 1$ .

Remark 2.1. It is known [13] that there exists a compact opemtor $C$ such that
$\overline{R(\delta_{C})}=K(H)$ . As a consequence we deduce that dist(I, $K(H)$ ) $=1$ , where
dist(I, $K(H)$ ) is the distance from I to $K(H)$ . Therefore if $A,$ $B$ are compact oper-
ators, then dist(I, $R(\delta_{A,B})$ ) $=1$ .

The previous theorem shows that $\mathcal{R}_{n}\subset \mathcal{G}F(H)$ . Hence it is interesting to ask the
following question.

Question. Does $\mathcal{G}F(H)\subset \mathcal{R}_{n}$?
In the following example we will show that the answer to this question is negative.

Example 2.1. Let

$A=\left\{\begin{array}{ll}1 & 0\\0 & 0\end{array}\right\}$ $B=\left\{\begin{array}{ll}1 & 1\\0 & 0\end{array}\right\}$



on $H\oplus H$ . Then for every

$X=\left\{\begin{array}{ll}X_{1} & X_{2}\\X_{3} & X_{4}\end{array}\right\}\in \mathcal{L}(H\oplus H)$

we have

$AX-XB-1=\left\{\begin{array}{ll}-1 & X_{2}-X_{1}\\X_{3} & -X_{3}-1\end{array}\right\}$ .

Hence 1$AX-XB-1||\geq 1$ . Thus $(A, B)$ is genemlized finite. Clearly $(A, B)$ does
not belong to the class $\mathcal{R}_{n}$ .

Remark 2.2. As I have already mentioned Theorem 2.7 is a genemlization of The-
orem 6 in [17]. By a simple and different technique we will show in the following
theorem that the assumption of $\mathcal{R}_{n}$ that there is a closed subspace $\mathcal{M}$ which reduces
$A$ and $B$ such that $A|_{\mathcal{M}}=B|_{\mathcal{M}}$ is rather strong condition for genemlized finiteness.
Theorem 2.8. Let $\mathcal{R}\mathcal{G}F(H)$ be the set of all $(A, B)\in \mathcal{L}(H)\times \mathcal{L}(H)$ such that there
is a reducing subspace $\mathcal{M}$ of $A$ such as $\mathcal{M}$ is invariant under $B$ and $(A|_{\mathcal{M}}, B|_{\mathcal{M}})\in$

$\mathcal{G}F(\mathcal{M})$ . Then $\mathcal{R}\mathcal{G}F(H)\subset \mathcal{G}F(H)$ .

Proof. Let

$A=\left\{\begin{array}{ll}A_{1} & 0\\0 & A_{2}\end{array}\right\}$ $B=\left\{\begin{array}{ll}B_{1} & B_{2}\\0 & B_{3}\end{array}\right\}$

on $\mathcal{M}\oplus \mathcal{M}^{\perp}$ . Then for every

$X=\left\{\begin{array}{ll}X_{1} & X_{2}\\X_{3} & X_{4}\end{array}\right\}\in \mathcal{L}(H\oplus H)$

we have

$AX-XB-1=[_{*}A_{1}X_{1}-X_{1}B_{1}-1$ $**]$ .

Hence 1 $AX-XB-1||\geq||A_{1}X_{1}-X_{1}B_{1}-1||\geq 1$ since $(A_{1}, B_{1})$ is generalized
finite. Thus $\mathcal{R}\mathcal{G}F(H)\subset \mathcal{G}F(H)$ . $\square $
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