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Abstract. We define two spaces of holomorphic function taking values in a
quotient bornological space, and we establish a sufficient condition under which these
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1. Introduction and notations

To establish a version of Bartle and Graves Theorem for approximatively surjec-
tive mappings between b-spaces, we introduced in [2], what we called the class of
Fr\’echet b-spaces. In fact, we observed that the boundedness of a Fr\’echet space has
a property that a general bornology does not have and we said that a b-space $E$ is
a Fr\’echet b-space if for all sequences of bounded subsets $(B_{n})_{n}$ of $E$ , there exists a
sequence of positive real numbers $(\lambda_{n})_{n}$ such that $\bigcup_{n}\lambda_{n}B_{n}$ is bounded in $E$ .

If $U$ is an open connected subset of $\mathbb{C}^{1}$ and $E|F$ is a quotient bornological space,
we let $O(U, E|F)\simeq O(U, E)|O(U, F)$ be a space of holomorphic function taking
values in a quotient bornological space $E|F$ . We define a space of holomorphic
function taking values in a quotient bornological space $E|F$ as the space $O_{1}(U,$ $E|$

$F)=\kappa m_{V}O(V, E|F)$ where $V$ ranges over the relatively compact open subsets of $U$ .
The objective of this paper is to show that if $E|F$ is a quotient bornological space
such that $E$ and $F$ are Fr\’echet b-spaces, then $O_{1}(U, E|F)\simeq O(U, E)|O(U, F)$ .

Also, we consider the space of holomorphic functions near to a compact set $X$

defined by $O$ ([X]) $\simeq\underline{\lim}_{U}O(U)$ where $U$ is a neigbourhood of $X$ (see for example



Gunning and Rossi [4]) and we define the space $O_{1}$ ([X], $E|F$ ) $\simeq\underline{\lim}_{U}O_{1}(U,$$E’|$
$F)$ where $U$ is a neighbourhood of $X$ . We will show that if $E|F$ is a quotient
bornological space and $X$ is a compact space, then the quotient bornological spaces
$O_{1}$ ([X], $E|F$ ) and $O([X], E|F)$ are isomorphic.

Let us fix some notations and recall some definitions that will be used in this
paper. Let EV be the category of vector spaces and linear mappings over the sca-
lar field IR or $\mathbb{C}$ , and Ban the subcategory of Banach spaces and bounded linear
mappings.

1- Let $(E, \Vert\Vert_{E})$ be a Banach space. A Banach subspace $F$ of $E$ is a vec-
tor subspace endowing with a Banach norm $||\Vert_{F}$ such that the inclusion map
$(F, \Vert||_{F})\rightarrow(E, \Vert\Vert_{E})$ is bounded. Observe that the norm $||||_{F}$ of $F$ is not necessary
the same as the norm induced by $||\Vert_{E}$ on $F$ , and then the Banach subspace $F$ is
not necessary closed in $E$ . A quotient Banach space $E|F$ is a vector space $E/F$ ,
where $E$ is a Banach space and $F$ a Banach subspace. It is clear that $E|F$ is
not necessary an object of the category of Banach spaces Ban, but is one if $F$ is
closed in $E$ . If $E|F$ and $E_{1}|F_{1}$ are two quotient Banach spaces, a strict mor-
phism $u$ : E $F\rightarrow E_{1}1F_{1}$ is a linear mapping $u$ : $x+F\leftrightarrow u_{1}(x)+F_{1}$ , where
$u_{1}$ : $E\rightarrow E_{1}$ is a bounded linear mapping such that $u_{1}(F)\subseteq F_{1}$ . We shall say that
$u_{1}$ induces $u$ . Two bounded linear mappings $u_{1},$ $u_{2}$ : $E\rightarrow E_{1}$ both inducing a strict
morphism, induce the same strict morphism iff the linear mapping $u_{1}-u_{2}$ : $E\rightarrow F_{1}$

is bounded. For more information about quotient Banach spaces we refer the reader
to [8] and [9].

2- Let $E$ be a real or complex vector space, and let $B$ be an absolutely convex set
of $E$ . Let $E_{B}$ be the vector space generated by $B$ i.e. $E_{B}=\bigcup_{\lambda>0}\lambda B$ . The Minkowski
functional of $B,$ $\Vert x\Vert_{B}=\inf\{\lambda>0 : x\in\lambda B\}$ is a semi-norm on $E_{B}$ . It is a norm if
and only if $B$ does not contain any nonzero subspace of $E$ . The set $B$ is completant
if its Minkowski functional is a Banach norm.

A bounded structure $\beta$ on a vector space $E$ is defined by a set of “bounded”
subsets of $E$ with the following properties :

Every finite subset of $E$ is bounded; 2) every union of two bounded subsets is
bounded; 3) every subset of a bounded subset is bounded; 4) a set homothetic to
a bounded subset is bounded; 5) each bounded subset is contained in a completant
bounded subset.

A b-space $(E, \beta)$ is a vector space $E$ with a boundedness $\beta$ . A subspace $F$ of a
b-space $E$ is bornologically closed if the subspace $F\cap E_{B}$ is closed in $E_{B}$ for every
completant bounded subset $B$ of $E$ .



Given two b-spaces $(E, \beta_{E})$ and $(F, \beta_{F})$ , a linear mapping $u:E\rightarrow F$ is boun-
ded, if it maps bounded subsets of $E$ into bounded subsets of $F$. The mapping $u$ :
$E\rightarrow F$ is bornologically surjective if for every $B‘\in\beta_{F}$ , there exists $B\in\beta_{E}$ such
that $u(B)=B^{\prime}$ . Let $(E, \beta_{E})$ be a b-space. A b-subspace of $E$ is a subspace $F$ with a
boundedness $\beta_{F}$ such that $(F, \beta_{F})$ is a b-space and $\beta_{F}\subseteq\beta_{E}$ . We denote by $b(E_{1}, E_{2})$

the space of all bounded linear mappings $E_{1}\rightarrow E_{2}$ and by $b$ the category of b-
spaces and bounded linear mappings. For more information about b-spaces we refer
the reader to [3] and [7].

3-Let $(E, \beta_{E})$ be a b-space. A b-subspace of $E$ is a subspace $F$ with a bounded-
ness $\beta_{F}$ such that $(F, \beta_{F})$ is a b-space and $\beta_{F}\subseteq\beta_{E}$ . We note that the boundedness
$\beta_{F}$ of $F$ is not necessary the same as the boundedness induced by $\beta_{E}$ on $F$ , and then
the b-subspace $F$ is not necessary bornologically closed in $E$ . A quotient bornolo-
gical space $E|F$ is a vector space $E/F$ , where $E$ is a b-space and $F$ a b-subspace
of $E$ . Observe that $E|F$ is not necessary an object of the category of b-spaces $b$ ,
but is one if $F$ is bornologically closed in $E$ . If $E|F$ and $E_{1}|F_{1}$ are quotient bor-
nological spaces, a strict morphism $u:E|F\rightarrow E_{1}|F_{1}$ is induced by a bounded
linear mapping $u_{1}$ : $E\rightarrow E_{1}$ whose restriction to $F$ is a bounded linear mapping
$F\rightarrow F_{1}$ . Two bounded linear mappings $u_{1},v_{1}$ : $E\rightarrow E_{1}$ , both inducing a strict
morphism, induce the same strict morphism $E|F\rightarrow E_{1}|F_{1}$ iff the linear mapping
$u_{1}-v_{1}$ : $E\rightarrow F_{1}$ is bounded.

We call $\overline{q}$ the category of quotient bornological spaces and strict morphisms. A
pseudo-isomorphism $u$ : $E|F\rightarrow E_{1}|F_{1}$ is a strict morphism induced by a
bounded linear mapping $u_{1}$ : $E\rightarrow E_{1}$ which is bornologically surjective and such
that $u_{1}^{-1}(F_{1})=F$ i.e. $B\in\beta_{F}$ if $B\in\beta_{E}$ and $u_{1}(B)\in\beta_{F_{1}}$ .

The category $\tilde{q}$ is not abelian. In fact, if $E$ is a Banach space and $F$ a closed
subspace of $E$ , it would be very nice if the quotient Banach space $E|F$ where
isomorphic to the quotient $(E/F)|\{0\}$ . This is not the case in $\tilde{q}Ban$ unless $F$ is
complemented in $E$ . In [10], Waelbroeck introduced an abelian category $q$ generated
by $\overline{q}$ and inverses of pseudo-isomorphims i.e. has the same objects as $\tilde{q}$ and every
morphism $u$ of $q$ can be expressed as $u=vos^{-1}$ , where $s$ is a pseudo-isomorphism
and $v$ is a strict morphism.

4. The $\epsilon$-product of two Banach spaces $E$ and $F$ is the Banach space EeF
of linear mappings $E^{\prime}\rightarrow F$ whose restrictions to the closed unit ball $B_{E^{l}}$ of $E^{\prime}$

are continuous for the topology $\sigma(E^{\prime}, E)$ . It follows from Proposition 2 of [6] that
the $\epsilon$-product is symmetric i.e. the Banach spaces EeF and FeE are isometrically
isomorphic. If $E_{i}$ et $F_{i}$ are Banach spaces and $u_{i}$ : $E_{i}\rightarrow F_{i}$ are bounded linear
mappings, $i=1,2$ , the $\epsilon$-product of $u_{1}$ and $u_{2}$ is the bounded linear mapping
$u_{1}\epsilon u_{2}$ : $E_{1}\epsilon E_{2}\rightarrow F_{1}\epsilon F_{2},$ $f\mapsto u_{2}ofou_{1}^{\prime}$ , where $u_{1}^{\prime}$ is the dual mapping of $u_{1}$ . It is
clear that $u_{1}\epsilon u_{2}$ is injective whenever $u_{1}$ and $u_{2}$ are injectives. If $G$ is a Banach space
and $F$ is a Banach subspace of a Banach space $E$ , then $G\epsilon F$ is a Banach subspace



of $G\epsilon E$ . For more information about the e-product the reader is refered to [6].

5. A b-space $G$ is nuclear if all bounded completant subset $B$ of $G$ is included in
a bounded completant subset $A$ of $G$ such that the inclusion $i_{AB}$ : $G_{B}\rightarrow G_{A}$ is a
nuclear mapping. For more information about nuclear b-spaces we refer the reader
to [3].

2. Main result.

IfE isab-space, thenE $=\bigcup_{B}E_{B}$ whereB ranges over the bounded completant
subsets of $E$ . The $\epsilon$-product of a nuclear b-space $N$ by $E$ is a b-space (is bornologi-
cally isomorphic to a b-space), and is isomorphic to $\bigcup_{i,B}N_{i}(E_{B})\simeq N\epsilon E$ where $i\in I$

and $B$ ranges over the bounded completant subsets of $E$ (we let $N_{i}(E_{B})\simeq l^{p}(E_{B})$

or $c_{o}(E_{B})[3])$ .

We remember that $O(U)$ is a nuclear Fr\’echet space. If we put on $O(U)$ its von
Neumann boundedness (i.e. a subset $B$ is bounded in the von Neumann boundedness
of $O(U)$ if it is absorbed by all neighbourhoods of the origin for the Fr\’echet topology
of $O(U))$ , this space can also be seen as a nuclear b-space.

It is clear that $O(U)\epsilon E=\bigcup_{B}O(U, E_{B})$ when $E$ is a b-space. And when $E$ is a
Fr\’echet space, then $O(U)\epsilon E=O(U, E)$ where $\epsilon$ is the e-product in the category
of locally convex spaces [5].

On the other hand, recall that the boundedness of a Fr\’echet space has a property
that a general bornology does not have. The b-spaces whose boundedness have this
property were called [2] “Fr\’echet b-spaces”.

Recall from [2] that a b-space $E$ is a Fr\’echet b-space if for all sequences of
bounded subsets $(B_{n})_{n}$ of $E$ , there exists a sequence of positive real numbers $(\lambda_{n})_{n}$

such that $\bigcup_{n}\lambda_{n}B_{n}$ is bounded in $E$ .

If $E$ is a Fr\’echet b-space and $(B_{n})_{n}$ is a sequence of bounded subsets of $E$ , there
exists a completant bounded subset $B^{\prime}$ of $E$ which absorbs all the $B_{n}$ . In fact, let
$(B_{n})_{n}$ be a sequence of bounded subsets of $E$ , there exists a sequence $(\lambda_{n})_{n}$ such
that, for all $n\in \mathbb{N},$ $\lambda_{n}\in 1R^{+},$ $\lambda_{n}\neq 0$ , and the subset $\bigcup_{n}\lambda_{n}B_{n}$ is bounded in $E$ . The
subset $\sum_{n}2^{-n-1}\lambda_{n}B_{n}$ is completant, contained in the completant hull of $\bigcup_{n}\lambda_{n}B_{n}$

and absorbs all the the bounded subsets $B_{n}$ .



For examples of Fr\’echet b-spaces.

i- Let $E$ be a Fr\’echet space, we design by $E_{b}$ , the space $E$ with its von Neumann
boundedness (i.e. a subset $B$ is bounded in the von Neumann boundedness of $E$ if
it is absorbed by all neighbourhoods of the origin). The b-space $E_{b}$ is a Fr\’echet
b-space.

ii- If we consider the b-space of all operators on a Fr\’echet space, its boundedness
is not of type Fr\’echet.

Let $U$ be an open connected subset of $\alpha$ and $E|F$ be a quotient bornological
space. We define a space of holomorphic function taking values in a quotient bor-

$rangesovertherelativelycompactopensubsetsofnologicalspaceE|FasthespaceO_{1}(U,E|F)=km_{V}(O(V)e(E|F))$
where $V$

Also, recall from [2] that if $(E, \beta_{E})$ and $(F, \beta_{F})$ are b-spaces, a bounded linear
mapping $u:E\rightarrow F$ is approximatively surjective if for every $B\in\beta_{F}$ , completant,
there exist $B_{1}\in\beta_{F}$ and $C\in\beta_{E}$ , both $B_{1}$ and $C$ are completant such that $B\subset B_{1}$ ,
$u(C)\subset B_{1}$ and for every $\epsilon>0$ we have $B_{1}\subset\epsilon B_{1}+\bigcup_{M\in IR}Mu(C)$ .

We observe that in the Banach case it is clear that a mapping is approximatively
surjective if and only if it has a dense range.

In [2], we proved the following result which is a bornological version of Mittag-
Leffler Lemma in the category $b$ .

Theorem 2.1. [2] For each $n\in \mathbb{N}$ , let $E_{n}$ be a b-space and let $F_{n}$ be a closed
subspace of $E_{n}$ with a Fr\’echet boundedness. For all $ n\in$ IN, let $u_{n+1}$ : $ E_{n+1}\rightarrow$

$E_{n}$ be a bounded linear mapping whose restriction $v_{n+1}=u_{n+1_{1_{F_{n+1}}}}$ : $ F_{n+1}\rightarrow$

$F_{n}$ is an approximatively surjective bounded linear mapping. Then $ km_{n}(E_{n}/F_{n})\simeq$

$(li\leftarrow m_{n}E_{n})/(k^{m_{n}F_{n}})$ .

As consequence, we obtain the following result which is a bornological version of
Mittag-LefHer Lemma in the category $q$ .



Corollary 2.2. For each $n\in \mathbb{N}$ , let $E_{n}$ be a b-space and let $F_{n}$ be a b-subspace of
$E_{n}$ with a Fr\’echet boundedness. For all $n\in 1N$ , let $u_{n+1}$ : $E_{n+1}\rightarrow E_{n}$ be a bounded
linear mapping whose restriction $v_{n+1}=u_{n+1_{1_{F_{n+1}}}}$

: $F_{n+1}\rightarrow F_{n}$ is an approximati-
vely surjective bounded linear mapping. Then $Lm_{n}(E_{n}|F_{n})\simeq(\leftarrow\lim_{n}E_{n})|(km_{n}F_{n})$ .

Proof. It follows from Theorem 2.1 that the functor $ lim_{n}\leftarrow$
$($ . $)$ : $b\rightarrow b$ is exact.

Hence, Theorem 4.1 of [10] implies that this functor admits an unique and exact
extension to the category $q$ that we design also by $ lim_{n}\leftarrow$

$($ . $)$ : $q\rightarrow q$ . As consequence
from ([1], Theorem...), we obtain

$k^{m_{n}(E_{n}}|F_{n})\simeq(li\leftarrow m_{n}E_{n})|(k^{m_{n}F_{n}})$ .

Our first result is the following:

Theorem 2.3. Let $E|F$ be a quotient bornological space such that $E$ and $F$

are Fr\’echet b-spaces. Then $O_{1}$ $(., E|F)\simeq O$ $($ . $)$ $\epsilon(E|F)$ .

Proof. If $E$ is a Fr\’echet b-space and $U$ is a manifold, then $ O(U, E)\simeq$

$\bigcup_{B}O(U, E_{B})$ where $B$ ranges over the bounded completant subsets of $E$ . If $E$ is
a b-space, then $O(U, E)=Lm_{V}(\bigcup_{B}O(V, E_{B}))$ where $B$ ranges over the bounded
completant subsets of $E$ and $V$ ranges over the relatively compact subsets of $U$ .

To end the proof, we shall use the Mittag Leffler Lemma and Runge’s Theorem.
Let us state the Runge Theorem. Let $U$ be a complex Stein manifold, let $V$ be a
holomorphically convex of $U$ , and let $E$ be a Banach space. Then the restriction
$O(U, E)\rightarrow O(V, E)$ has a dense range. If $E$ is a b-space, then the restriction
mapping $O(U, E)\rightarrow O(V, E)$ is approximatively surjective.

Let $U$ be a complex manifold and $\tilde{U}$ be its associated domain of holomorphy, $\tilde{U}$

is the union of a sequence of $V_{n}$ where each $V_{n}$ is relatively compact in the interior of
$V_{n+1}$ and is holomorphically convex in $\tilde{U}$ . The Mittag Leffler Lemma uses an infinite
commutative diagram part of which is



: : :
: : :

$0$ $\rightarrow$

$\downarrow O(V_{n+1})\epsilon F$

$\rightarrow$

$\downarrow O(V_{n+1})\epsilon E$

$\rightarrow$

$\downarrow(O(V_{n+1})\epsilon E)|(O(V_{n+1})\epsilon F)$
$\rightarrow$ $0$

$\downarrow$ $\downarrow$ $\downarrow$

$0$ $\rightarrow$

$\downarrow O:(V_{n})\epsilon F$

$\rightarrow$

$\downarrow O:(V_{n})\epsilon E$

$\rightarrow$

$\downarrow:(O(V_{n})eE)|(O(V_{n})\epsilon F)$

$\rightarrow$ $0$

:

The mapping $O(V_{n+1}, F)\rightarrow O(V_{n}, F)$ is approximatively surjective and the
spaces $E$ and $F$ are Fr\’echet b-spaces. Therefore at the projective limit, it follows
from Corollary 2.2, that

$L^{m_{n}O(V_{n},E)}|L^{mO(V_{n},F)\simeq}k^{m(O(V_{n},E|F))}$

We see then that $O(U, E)|O(U, F)\simeq O_{1}(U, E|F)$ . This shows the Theorem.

Authors working in complex variables, for example Gunning and Rossi [4], consi-
der holomorphic functions near to a compact set $Xi.e$ they define the following space

$O([X])\simeq\underline{1i_{0_{r}U}}O(U)$

where $U$ is a neigbourhood of $X$ . Since the category $q$ is stable under the induc-
tive limits and the projective limits, we consider the quotient bornological space
$O_{1}$ ([X], $E|F$). It is an inductive limit of the inductive system of quotient borno-
logical spaces $(O_{1}(U, E|F))_{U}$ i.e. $O_{1}$ ([X], $E|F$) $\simeq\underline{1i0_{t}}uO_{1}(U, E|F)$ where $U$ is a
neighbourhood of $X$ .

Theorem 2.4. Let $E|F$ be a quotient bornological space and $X$ a compact
space. The quotient bornological spaces $O_{1}$ ([X], $E|F$) and $O$ ([X]) $e(E|F)$ are
isomorphic.

Proof. Consider $Y$ compact, with $Y\subset U$ and $X\subset Y^{o}$ where $Y^{o}$ is the interior of
Y. We have the following morphisms



$O_{1}(U, E|F)\rightarrow O([Y])\epsilon(E|F)\rightarrow O$ ([X]) $\epsilon(E|F)$ .

At the inductive limit, we obtain a morphism

$O_{1}$ ([X], $E|F$) $\rightarrow O$ ([X]) $\epsilon(E|F)$ .

On the other hand, we have a morphism

$O_{1}$ ([Y], $E|F$) $\rightarrow O$ ([Y]) $\epsilon(E|F)$ .

But right exact functors resist to inductive limits in $q$ , and the $\epsilon$-product $Ne$ . is a
right exact functor whenever $N$ is a nuclear b-space. Therefore we have a morphism

$O$ ([X]) $e(E|F)\rightarrow O_{1}$ ([X], $E|F$).

The two morphisms so defined are clearly inverse one of the other. This proves the
Theorem.
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