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A syntactical study of the subminimal logic
with Nelson negation

*Mitio TAKANO

Abstract

Several properties, including disjunction property and Craig interpolation
property, of the subminimal logic with Nelson negation which has been intro-
duced by D. Vakarelov are shown syntactically via the cut-elimination theo-
rem. Some extensions of the logic are mentioned, too.

0 Introduction

The subminimal logic with Nelson negation, $SUBMIN^{N}$ , has been investigated
in Vakarelov [5]. It is a sub-logic of the intuitionistic logic with Nelson negation
(or strong negation), and was introduced with his intention of weakening as far as
possible the function of the intuitionistic negation. He gave several semantics for
$SUBMIN^{N}as$ well as some of its extensions, and showed completeness with respect
to each of his semantics and decidability of these logics.

This paper is devoted to a syntactical investigation into $SUBMIN^{N}as$ well as
some of its extensions. In the first section, $SUBMIN^{N}is$ reviewed. A sequent cal-
culus for $SUBMIN^{N}is$ introduced in Section 2, and the cut-elimination theorem
(Theorem 3.1) for the calculus is shown in the next section. In Section 4, corollaries
to the theorem including disjunction property (Theorem 4.1) and Craig interpola-
tion property (Theorem 4.4) of $SUBMIN^{N}are$ deduced. Among the extensions of
$SUBMIN^{N}which$ Vakarelov introduced, the “intuitionistic”ones are briefly men-
tioned in the last section. We don’t refer to the “classical”ones, since it suffices
for them to merely modify the notion of a sequent to those with plural succedent
formulas from those with single succedent formula.
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1Subminimal logic with Nelson negation

Formulas are constructed from propositional letters as well as the propositional con-
stants $T$ (truth) $and\perp$ (falsity) by the use of the propositional $connectives\wedge(con-$

junction), $\vee$ (disjunction), $\supset$ (implication), $\neg$ (negation) $and\sim(Nelson$ negation or
strong negation), and are denoted by $A,$ $B,$ $C,$ $A_{1},$ $\ldots.A\equiv B$ is an abbreviation for
$(A\supset B)\wedge(B\supset A)$ .

The subminimal logic with Nelson negation, $SUBMIN^{N}$ , which was introduced
in Vakarelov [5] is the following Hilbert style axiomatic system.

(I) Axioms for the positive logic with the constants $Tand\perp$ ;

Pl $A\supset(B\supset A)$ .

P2 $(A\supset(B\supset C))\supset((A\supset B)\supset(A\supset C))$ .

P3 $(A\wedge B)\supset A$ .

P4 $(A\wedge B)\supset B$ .

P5 $(C\supset A)\supset((C\supset B)\supset(C\supset(A\wedge B)))$ .

P6 $A\supset(A\vee B)$ .

P7 $B\supset(A\vee B)$ .

P8 $(A\supset C)\supset((B\supset C)\supset((A\vee B)\supset C))$ .

P9 $A\supset T$ .

P10 $\perp\supset A$ .

(II) Axioms for the Nelson $negation\sim$ :

$(\#)\sim A\supset(\neg B\supset\neg A)$ .

$(\sim\supset)\sim(A\supset B)\equiv(A\wedge\sim B)$ .

$(\sim\wedge)\sim(A\wedge B)\equiv(\sim A\vee\sim B)$ .

$(\sim\vee)\sim(A\vee B)\equiv(\sim A\wedge\sim B)$ .

$(\sim\neg)\sim\neg A\equiv A$ .



$(\sim\sim)\sim\sim A\equiv A$ .

$(\sim T)\sim T\supset A$ .

$(\sim\perp)A\supset\sim\perp$ .

(III) Rules of inference:

$(MP)\frac{AA\supset B}{B}$ . $(Ext-\neg)\frac{A\equiv B}{\neg A\equiv\neg B}$ .

In describing proofs in $SUBMIN^{N}$ , inferences in the positive logic will not be
referred to, for simplicity.

The following facts are shown in Vakarelov [5].

Fact 1.1. (Vakarelov [5, Proposition 2.1]) The following formulas are provable in
$SUBMIN^{N}$ :

Pll $(A\supset B)\supset(\neg B\supset\neg A)$ .

P12 $\neg A\supset\neg\neg T$ . $\square $

Fact 1.2. (Vakarelov [5, Corollary 5.3]) The axiomatic system

$P1+P2+\cdots+P10+P11+P12+(MP)$ ,

namely, the one which has PI-P12 as the axioms, and (MP) as the sole rule of
inference, constitutes the $\{\sim\}$ -less fragment of $SUBMIN^{N}$ . $\square $

An axiomatic system for the $\{T, \perp, \sim\}$-less fragment of $SUBMIN^{N}wil1$ be given
afterward (Theorem 4.3).

The following lemma will be used in the proof of Lemma 2.3.

Lemma 1.3. The following formulas are provable in SUBMIN:

Ql $\neg A\supset(A\supset\neg C)$ .

Q2 $\neg D\supset((A\supset\neg A)\supset\neg A)$ .

$Q3\neg D\supset(\sim A\supset(A\supset\neg C))$ .



Proof. Ql: $A\supset(\neg A\supset\neg C)$ follows from $A\supset(C\supset A)$ by Pll; and so $\neg A\supset(A\supset$

$\neg C)$ .

Q2: By Ql, $\neg A\supset(A\supset\neg T)$ , and hence $(A\supset\neg A)\supset(A\supset\neg T)$ ; so by Pll,
$(A\supset\neg A)\supset(\neg\neg T\supset\neg A)$ , and hence $\neg\neg T\supset((A\supset\neg A)\supset\neg A)$ ; and so by P12,
$\neg D\supset((A\supset\neg A)\supset\neg A)$ .

Q3: By Ql, $\neg A\supset(A\supset\neg D)$ . On the other hand, by $(\#),$ $\neg C\supset(\sim A\supset\neg A)$ .
Hence $\neg C\supset(\sim A\supset(A\supset\neg D))$ . $\square $

2 Sequent calculus for $SUBMIN^{N}$

Sequents are expressions of the form $A_{1},$ $A_{2},$
$\ldots,$

$A_{n}\rightarrow C$ , where $n\geq 0$ . Possibly
empty finite sequences of formulas separated by commas are denoted by $\Gamma,$ $\Pi,$ $\Gamma_{1},$

$\ldots$ .
For sequent calculi, see Takeuti [4].

Our sequent calculus $G-SUBMIN^{N}consists$ of the following initial sequents and
rules of inference.

(i) Initial sequents:

$A\rightarrow A$ ; $\rightarrow T$ ; $\perp\rightarrow C$ ; $\sim T\rightarrow C$ ; $\rightarrow\sim\perp$ .

(ii) Structural rules of inference:

Weakening $\frac{\Gamma\rightarrow C}{A,\Gamma\rightarrow C}$ Exchange $\frac{\Gamma,A,B,\Pi\rightarrow C}{\Gamma,B,A,\Pi\rightarrow C}$ .

Contmction $\frac{A,A,\Gamma\rightarrow C}{A,\Gamma\rightarrow C}$ Cut $\frac{\Gamma\rightarrow AA,\Pi\rightarrow C}{\Gamma,\Pi\rightarrow C}$ .

(iii) Logical rules of inference for the positive logic:

$(\wedge\rightarrow)\frac{A,\Gamma\rightarrow C}{A\wedge B,\Gamma\rightarrow C}$ , $\frac{B,\Gamma\rightarrow C}{A\wedge B,\Gamma\rightarrow C}$ $(\rightarrow\wedge)\frac{\Gamma\rightarrow A\Gamma\rightarrow B}{\Gamma\rightarrow A\wedge B}$ .

$(\vee\rightarrow)\frac{A,\Gamma\rightarrow CB,\Gamma\rightarrow C}{A\vee B,\Gamma\rightarrow C}$ . $(\rightarrow\vee)\frac{\Gamma\rightarrow A}{\Gamma\rightarrow A\vee B}$ , $\frac{\Gamma\rightarrow B}{\Gamma\rightarrow A\vee B}$

$(\supset\rightarrow)\frac{\Gamma\rightarrow AB,\Pi\rightarrow C}{A\supset B,\Gamma,\Pi\rightarrow C}$ . $(\rightarrow\supset)\frac{A,\Gamma\rightarrow B}{\Gamma\rightarrow A\supset B}$ .



(iv) Logical rules of inference for $\neg$ :

$(\neg\rightarrow)\frac{\Gamma\rightarrow A}{\neg A,\Gamma\rightarrow\neg C}$ .

(v) Logical rule of inference $(\sim\rightarrow)$ :

$(\rightarrow\neg)\frac{A,\Gamma\rightarrow\neg A}{\neg D,\Gamma\rightarrow\neg A}$ .

$(\sim\rightarrow)\frac{\Gamma\rightarrow A}{\sim A,\neg D,\Gamma\rightarrow\neg C}$ .

(vi) Other logical rules of inference $for\sim$ :

$(\sim\wedge\rightarrow)\frac{\sim A,\Gamma\rightarrow C\sim B,\Gamma\rightarrow C}{\sim(A\wedge B),\Gamma\rightarrow C}$ . $(\rightarrow\sim\wedge)\frac{\Gamma\rightarrow\sim A}{\Gamma\rightarrow\sim(A\wedge B)},$ $\frac{\Gamma\rightarrow\sim B}{\Gamma\rightarrow\sim(A\wedge B)}$

$(\sim\vee\rightarrow)\frac{\sim A,\Gamma\rightarrow C}{\sim(A\vee B),\Gamma\rightarrow C},$ $\frac{\sim B,\Gamma\rightarrow C}{\sim(A\vee B),\Gamma\rightarrow C}$ $(\rightarrow\sim\vee)\frac{\Gamma\rightarrow\sim A\Gamma\rightarrow\sim B}{\Gamma\rightarrow\sim(A\vee B)}$ .

$(\sim\supset\rightarrow)\frac{A,\Gamma\rightarrow C}{\sim(A\supset B),\Gamma\rightarrow C},$ $\frac{\sim B,\Gamma\rightarrow C}{\sim(A\supset B),\Gamma\rightarrow C}$ $(\rightarrow\sim\supset)\frac{\Gamma\rightarrow A\Gamma\rightarrow\sim B}{\Gamma\rightarrow\sim(A\supset B)}$ .

$(\sim\neg\rightarrow)\frac{A,\Gamma\rightarrow C}{\sim\neg A,\Gamma\rightarrow C}$ .

$(\sim\sim\rightarrow)\frac{A,\Gamma\rightarrow C}{\sim\sim A,\Gamma\rightarrow C}$ .

$(\rightarrow\sim\neg)\frac{\Gamma\rightarrow A}{\Gamma\rightarrow\sim\neg A}$ .

$(\rightarrow\sim\sim)\frac{\Gamma\rightarrow A}{\Gamma\rightarrow\sim\sim A}$ .

In describing proofs in $G-SUBMIN^{N}$ , applications of the structural rules except
cut will not be referred to, for simplicity.

By the following theorem, $G-SUBMIN^{N}f_{J}orms$ a sequent calculus for $SUBMIN^{N}$ .
Theorem 2.1. A formula $C$ is provable in $SUBMIN^{N}$ , iff the $sequent\rightarrow C$ is
provable in $G-SUBMIN^{N}$ .

This follows from the following two lemmas.

Lemma 2.2. If a formula $C$ is provable in $SUBMIN^{N}$ , then the $sequent\rightarrow C$ is
provable in $G-SUBMIN^{N}$ .

Proof. By easy induction on the length of the proof in $SUBMIN^{N}$ . We will only
mention the axiom $(\#)$ and the rule $(Ext-\neg)$ .



For the axiom $(\#)$ , the following proof in $G- SUBMIN^{N}suffices$ .

$\frac{\frac{A\rightarrow A}{\frac{\sim A,\neg B,A\rightarrow\neg A}{\frac{\sim A,\neg B\rightarrow\neg A}{\sim A\rightarrow\neg B\supset\neg A}}}((}{\rightarrow\sim A\supset(\neg B\supset\neg A)}\rightarrow\neg)\sim\rightarrow)$

On the other hand, the proof which follows serves for the rule $(Ext-\neg)$ .

$\frac{B\rightarrow BA\rightarrow A}{B\supset A,B\rightarrow A}$

$\frac{\rightarrow A\equiv BA\equiv B,B\rightarrow A}{\frac{B\rightarrow A}{\frac{\neg A,B\rightarrow\neg B}{\neg A\rightarrow\neg B}}(\neg\rightarrow),(\rightarrow\neg)}$

$\overline{\rightarrow\neg A\supset\neg B}$

$\frac{A\rightarrow AB\rightarrow B}{A\supset B,A\rightarrow B}$

$\frac{\rightarrow A\equiv BA\equiv B,A\rightarrow B}{\frac{A\rightarrow B}{\frac{\neg B,A\rightarrow\neg A}{\neg B\rightarrow\neg A}}(\neg\rightarrow),(\rightarrow\neg)}$

$\overline{\rightarrow\neg B\supset\neg A}$

$\rightarrow\neg A\equiv\neg B$

$\square $

Lemma 2.3. If a sequent $\Gamma\rightarrow C$ is pmvable in $G-SUBMIN^{N}$ , then the formula
$C$ or $(\wedge\Gamma)\supset C$ is provable in $SUBMIN^{N}$ , according as $\Gamma$ is empty or not.

Proof. By induction on the length of the proof in $G-SUBMIN^{N}$ . The rules $(\neg\rightarrow)$ ,
$(\rightarrow\neg)$ and $(\sim\rightarrow)$ are justified by Lemma 1.3, and other rules and initial sequents
are easy to check. $\square $

3 Cut-elimination for $G-SUBMIN^{N}$

This section is devoted to the proof of the following cut-elimination theorem for
$G-SUBMIN^{N}$ .
Theorem 3.1. Every pmof in $G-SUBMIN^{N}$ can be tmnsformed into another proof
in $G-SUBMIN^{N}$ such that the endsequent of the latter is the same as that of the
former, cut is not applied in the latter, and every logical rule applied in the latter is
applied in the former as well.

As usual, this theorem is proved by showing the following lemma for the calcu-
lus $G^{*}-SUBMIN^{N}that$ is obtained from $G-SUBMIN^{N}by$ replacing cut with the



following mix rule, where $A$ , the mix formula of this inference, occurs in $\Pi$ at least
once, and $\Pi_{A}$ denotes the result of deleting all the occurrences of $A$ in $\Pi$ .

Mix $\frac{\Gamma\rightarrow A\Pi\rightarrow C}{\Gamma,\Pi_{A}\rightarrow C}$

Lemma 3.2. Every proof in $G^{*}-SUBMIN^{N}$ in which mix is applied as the last
inference only can be transformed into another proof in $G^{*}- SUBMIN^{N}such$ that
the endsequent of the latter is the same as that of the former, mix is not applied in
the latter, and every logical rule applied in the latter is applied in the former as well.

This lemma is shown by double induction on the grade and rank of the given
proof, as usual. The course of proof is to reduce first the right rank of the given
proof, secondly the left rank, and lastly the grade. Only a few typical cases of
$G^{*}- SUBMIN^{N}wil1$ be mentioned. Let $M$ denote the sole application of mix in the
given proof, while $S_{L}$ and $S_{R}$ the left and right upper sequents of $M$ , respectively.

(A) First, suppose that the right rank of the proof is greater than 1. Only the
cases where $S_{R}$ is the lower sequent of $(\neg\rightarrow),$ $(\rightarrow\neg)$ or $(\sim\rightarrow)$ are problematic;
among them, the case where $S_{R}$ is the lower sequent $\sim A,$ $\neg D,$ $\Pi\rightarrow\neg C$ of $(\sim\rightarrow)$

and the mix formula of $Mis\sim A$ is exemplified. The proof has the following form,
$where\sim A$ occurs in $\Pi$ .

$\frac{\Gamma\rightarrow\sim A\frac{\Pi\rightarrow A}{\sim A,\neg D,\Pi\rightarrow\neg C}}{\Gamma,\neg D,\Pi_{\sim A}\rightarrow\neg C}M(\sim\rightarrow)$

Only the case where $\sim A$ does not occur in $\Gamma$ is problematic. In this case,
transform the proof into the following one.

$\frac{\Gamma\rightarrow\sim A\frac{\frac{\Gamma\rightarrow\sim A\Pi\rightarrow A}{\Gamma,\Pi\sim A\rightarrow A}}{\sim A,\neg D,\Gamma,\Pi_{\sim A}\rightarrow\neg C}}{\Gamma,\neg D,\Pi\sim A\rightarrow\neg C}M_{2}M_{1,(\sim\rightarrow)}$

The mixes $M_{1}$ and $M_{2}$ are eliminable by the hypothesis of induction on rank.

(B) Secondly, suppose that the right rank of the proof is equal to 1, while the
left one is greater than 1. The only problematic cases are the ones where $S_{L}$ is the
lower sequent of $(\rightarrow\neg)$ , while $S_{R}$ is the lower sequent of $(\neg\rightarrow),$ $(\rightarrow\neg)$ or $(\sim\rightarrow)$ .
As an example, suppose that $S_{R}$ is the lower sequent of $(\neg\rightarrow)$ . The proof has the
following form, where $\neg A$ does not occur in $\Pi$ .

$\frac{\frac{A,\Gamma\rightarrow\neg A}{\neg D,\Gamma\rightarrow\neg A\neg D}(\rightarrow\neg)\frac{\Pi\rightarrow A}{\neg C\neg A,\Pi\rightarrow\neg C}}{\Gamma,\Pi\rightarrow}M(\neg\rightarrow)$



Transform this into the following one.
$A\rightarrow A$

$\frac{\Pi\rightarrow A\frac{A,\Gamma\rightarrow\neg A\overline{\neg A,A\rightarrow\neg C}}{A,\Gamma\rightarrow\neg CM}}{\neg D,\Gamma,\Pi\rightarrow\neg C}2M_{1}(\neg\rightarrow)$

The mixes $M_{1}$ and $M_{2}$ are eliminable by the hypothesis of induction on rank and
grade, respectively.

(C) Lastly, suppose that the rank of the proof is equal to 2. The characteristic
cases of $G^{*}- SUBMIN^{N}are$ the ones where the outermost logical symbol of the mix
formula is $\neg or\sim$ .

Case 1: The outermost logical symbol of the mix formula is $\neg$ . Suppose, for
example, that $S_{L}$ and $S_{R}$ are the lower sequents of $(\neg\rightarrow)$ and $(\rightarrow\neg)$ , respectively.
The proof has the following form, where $\urcorner Cdoesnotoccurin\Pi$ .

$\frac{\frac{\Gamma\rightarrow A}{\neg A,\Gamma\rightarrow\neg C\neg A}(\neg\rightarrow)\frac{\Pi\rightarrow C}{\neg D\neg C,\Pi\rightarrow\neg D}}{\Gamma,\Pi\rightarrow}M(\rightarrow\neg)$

Transform this into the following mix-free one.

$\frac{\Gamma\rightarrow A}{\neg A,\Gamma,\Pi\rightarrow\neg D}(\neg\rightarrow)$

Case 2: The outermost logical symbol of the mix formula $is\sim$ . The problematic
cases are the ones where $S_{R}$ is the lower sequent of $(\sim\rightarrow)$ , while $S_{L}$ is the initial
$sequent\rightarrow\sim\perp$ or the lower sequent of $(\rightarrow\sim\wedge),$ $(\rightarrow\sim\vee),$ $(\rightarrow\sim\supset),$ $(\rightarrow\sim\neg)$ or
$(\rightarrow\sim\sim)$ . Among them, the case where $S_{L}$ is the lower sequent of $(\rightarrow\sim\supset)$ is
exemplified. In this case, the proof has the following form, $where\sim(A\supset B)$ does
not occur in $\Pi$ .

$\frac{\frac{\Gamma}{}(\rightarrow\sim\supset)\frac{\Pi\rightarrow A\supset B}{\rightarrow\neg C\sim(A\supset B),\neg D,\Pi\rightarrow\neg C}\Gamma\rightarrow\sim(A\supset B)\rightarrow A\Gamma\rightarrow\sim B}{\Gamma,\neg D,\Pi}M(\sim\rightarrow)$

Transform this into the following one.

$\frac{\Gamma\rightarrow A\frac{\Gamma\rightarrow\sim B\frac{B\rightarrow B}{\sim B,\neg D,B\rightarrow\neg C}}{\Gamma,\neg D,B\rightarrow\neg C}}{\frac{\Pi\rightarrow A\supset B}{\Gamma}M_{2},\neg D,\Pi\rightarrow\neg CA\supset B,\Gamma,\neg D\rightarrow\neg C}M_{1}(\sim\rightarrow)$



The mixes $M_{1}$ and $M_{2}$ are eliminable by the hypothesis of induction on grade.

This concludes the proof of Lemma 3.2, and so ends that of our cut-elimination
theorem.

4 Some corollaries

In this section, corollaries to the cut-elimination theorem (Theorem 3.1) are shown.

Since cut-free proofs in $G-SUBMIN^{N}enjoy$ a kind of subformula property, de-
cidability of $SUBMIN^{N}immediately$ follows; while, by inspection of the rules of
inference of $SUBMIN^{N}except$ for cut, the following theorems are evident.

Theorem 4.1. If $A\vee B$ is provable in $SUBMIN^{N}$ , then either $A$ or $B$ is provable
in $SUBMIN^{N}$ . $\square $

Theorem 4.2. There is no formula $A$ such that $\neg A$ is provable in $SUBMIN^{N}$ . $\square $

As another corollary to the cut-elimination theorem, an axiomatic system for
the $\{T, \perp, \sim\}$-less fragment of $SUBMIN^{N}can$ be obtained. Recall that Ql and
Q2 are introduced in Lemma 1.3.
Theorem 4.3. The axiomatic system

$P1+P2+\cdots+P8+Q1+Q2+(MP)$

constitutes the $\{T, \perp, \sim\}$ -less fragment of $SUBMIN^{N}$ .

Proof. Suppose that a $\{T, \perp, \sim\}$-less formula $C$ is provable in $SUBMIN^{N}$ . Then,
the $sequent\rightarrow C$ has a cut-free proof in $G-SUBMIN^{N}$ , and only the initial sequents
of the form $A\rightarrow A$ and the rules of the classes (ii), (iii) and (iv) are applied in it.
So, by reviewing the proof of Lemma 2.3, $C$ can be obtained by using the axioms
PI-P8, QI-Q2 and the rule (MP). $\square $

Note that Vakarelov’s proof of Fact 1.2 is semantical, but our proof of the above
theorem is completely syntactical.

The next by-product of the cut-elimination theorem is a SUBMIN-version of
Craig’s interpolation theorem. It is what is called the Maehara method to deduce
the latter theorem from the former (cf. Takeuti [4, Lemma 6.5]).

Theorem 4.4. (1) If $A\supset B$ is pmvable in $SUBMIN^{N}$ , then there exists a for-
mula I such that $A\supset I$ and $I\supset B$ are pmvable in SUBMIN and I contains
only those propositional letters which occur in both $A$ and $B$ .



(2) If $A$ and $B$ are $\{\sim\}$ -less, in addition, then I can be taken from among the
$\{\sim\}$ -less formulas.

(3) If $A$ and $B$ are $\{T, \perp, \sim\}$ -less, and some propositional letters are contained in
both $A$ and $B$ , in addition, then I can be taken from among the $\{T, \perp, \sim\}$ -less
formulas.

This theorem follows immediately from the following lemma; where with regard
to (3), let $p$ be a propositional letter which is contained in both $A$ and $B$ .

Lemma 4.5. (1) Let $\Gamma\rightarrow C$ be pmvable in $G-SUBMIN^{N}$ , and let $(\Gamma_{1}; \Gamma_{2})$ be
an arbitmry partition of $\Gamma$ . Then there exists a formula I such that $\Gamma_{1}\rightarrow I$

and $I,$ $\Gamma_{2}\rightarrow C$ are pmvable in $G-SUBMIN^{N}$ , and satisfies the following
property $(*1)$ :

$(*1)$ I contains only those propositional letters which occur in both $\Gamma_{1}$ and
$\Gamma_{2},$ $C$ .

(2) If $\Gamma$ is a sequence of $\{\sim\}$ -less formulas, and $C$ is also $\{\sim\}$ -less, an addition,
then I can be taken to satisfy $(*2)$ below instead of $(*1)$ :

$(*2)$ I is $\{\sim\}$ -less, and contains only those propositional letters which occur
in both $\Gamma_{1}$ and $\Gamma_{2},$ $C$ .

(3) If $\Gamma$ is a sequence of $\{T, \perp, \sim\}$ -less formulas, $C$ is also $\{T, \perp, \sim\}$ -less, and if
a propositional letter $p$ is given, in addition, then I can be taken to satisfy $(*3)$

below instead of $(*1)$ and $(*2)$ :

$(*3)$ I is $\{T, \perp, \sim\}$ -less, and contains only those propositional letters which
occur in both $\Gamma_{1}$ and $\Gamma_{2},$ $C$ or are $p$ .

Pmof. The proof of (1) is sketched below; the $\{\sim\}$-less part of the proof forms that
of (2), while just take $p\supset p$ instead of $T$ in Case 1 below for the proof of (3).

The proof is by induction on the number of inferences applied in a cut-free proof
of $\Gamma\rightarrow C$ . The demanded formula $I$ will be called an interpolant of $(\Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow C)$ .
Only the characteristic cases of $G-SUBMIN^{N}are$ dealt with.

Case 1: $\Gamma\rightarrow C$ is an initial sequent $A\rightarrow A$ . In this case, $A$ and $T$ form
interpolants of $(A\rightarrow/\rightarrow A)$ and $(\rightarrow/A\rightarrow A)$ , respectively.

Case 2: The last inference is $(\neg\rightarrow)$ with $\Gamma\rightarrow A$ and $\neg A,$ $\Gamma\rightarrow\neg C$ as the upper
and lower sequents, respectively. By the hypothesis of induction, let $I$ and $J$ be
interpolants of $(\Gamma_{2}\rightarrow/\Gamma_{1}\rightarrow A)$ and $(\Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow A)$ , respectively. Then $\neg I$

and $J$ form interpolants of $(\neg A, \Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow\neg C)$ and $(\Gamma_{1}\rightarrow/\neg A, \Gamma_{2}\rightarrow\neg C)$ ,
respectively.



Case 3: The last inference is $(\rightarrow\neg)$ with $A,$ $\Gamma\rightarrow\neg A$ and $\neg D,$ $\Gamma\rightarrow\neg A$ as
the upper and lower sequents, respectively. By the hypothesis of induction, let $I$

be an interpolant of $(\Gamma_{1}\rightarrow/A, \Gamma_{2}\rightarrow\neg A)$ . Then $\neg\neg I$ and $I$ form interpolants of
$(\neg D, \Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow\neg A)$ and $(\Gamma_{1}\rightarrow/\neg D, \Gamma_{2}\rightarrow\neg A)$ , respectively.

Case 4: The last inference is $(\sim\rightarrow)$ with $\Gamma\rightarrow A$ and $\sim A,$ $\neg D,$ $\Gamma\rightarrow\neg C$ as
the upper and lower sequents, respectively. By the hypothesis of induction, let $I$

and $J$ be interpolants of $(\Gamma_{2}\rightarrow/\Gamma_{1}\rightarrow A)$ and $(\Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow A)$ , respectively.
Then $\neg I,$ $\neg\perp\supset\neg I,$ $\neg\perp\wedge J$ and $J$ form interpolants of $(\sim A, \neg D, \Gamma_{1}\rightarrow/\Gamma_{2}\rightarrow\neg C)$ ,
$(\sim A, \Gamma_{1}\rightarrow/\neg D, \Gamma_{2}\rightarrow\neg C),$ $(\neg D, \Gamma_{1}\rightarrow/\sim A, \Gamma_{2}\rightarrow\neg C)$ and $(\Gamma_{1}\rightarrow/\sim A,$ $\urcorner D,$ $\Gamma_{2}\rightarrow$

$\neg C)$ , respectively. $\square $

A logic $L$ is called normalizable, iff there is a finite set $\{A_{1}, A_{2}, \ldots, A_{n}\}$ of for-
mulas such that

$L=A_{1}+A_{2}+\cdots+A_{n}+(MP)$ ,

and the propositional connectives which occur in each of $A_{1},$ $A_{2},$
$\ldots$ , and $A_{n}$ are the

$implication\supset and$ at most one of the others; where in the above equation, $A_{1},$ $A_{2},$
$\ldots$ ,

and $A_{n}$ work as the axiom schemes rather than axioms (cf. Hosoi-Ono [1]). It is
well-known that the classical and intuitionistic logics are normalizable.

Theorem 4.6. The logic SUBMIN is not normalizable.

Proof. Suppose that $SUBMIN^{N}were$ normalizable, and $\{A_{1}, A_{2}, \ldots, A_{n}\}$ the set
of formulas in question. Then, $since\sim p\supset(\neg q\supset\neg p)$ is an instance of the axiom
$(\#)$ and so is provable in $SUBMIN^{N}$ , it must be obtained from some substitution
instances $B_{1},$ $B_{2},$

$\ldots,$
$B_{m}$ of $A_{1},$ $A_{2},$

$\ldots,$
$A_{n}$ by applications of (MP). So, the sequent

$\sim p,$ $\neg q,$ $B_{1},$ $B_{2},$
$\ldots,$

$B_{m}\rightarrow\neg p$ has a proof in $G- SUBMIN^{N}in$ which $(\sim\rightarrow)$ is not
applied. On the other hand, since $A_{i}$ is provable in $SUBMIN^{N}$ , the $sequent\rightarrow A_{i}$

has a cut-free proof $(i=1,2, \ldots, n)$ . Since it is not the case that both $\neg$ and $\sim$

occur in $A_{i},$ $(\sim\rightarrow)$ is not applied in the cut-free proof, too. It follows $that\rightarrow B_{j}$

also has a proof in which $(\sim\rightarrow)$ is not applied $(j=1,2, \ldots, m)$ . So, $\sim p,$ $\neg q\rightarrow\neg p$

has a proof in which $(\sim\rightarrow)$ is not applied. By the cut-elimination theorem, it has
a cut-free proof in which $(\sim\rightarrow)$ is not applied. But this is impossible. $\square $

Consider the following property for a logic $L$ :

$(\#)$ If $A\supset B$ is provable in $L$ , and if $A$ and $B$ contain no propositional letter in
common, then either $\neg A$ or $B$ is provable in $L$ .

The classical and intuitionisitic logics enjoy this property.

Theorem 4.7. The logic SUBMIN lacks the property $(\#)$ .

Proof. $(p\wedge\neg p)\supset\neg q$ forms a counterexample. $\square $



5 Extensions of $SUBMIN^{N}$

Let (Nor) and $(Nor^{*})$ be the following candidates for additional axioms:

(Nor) $\neg\neg T$ .

$(Nor^{*})\neg T\supset A$ .

The extensions $MIN^{N},$ $CO-MIN^{N}andINT^{N}ofSUBMIN^{N}are$ defined as fol-
lows:

$MIN^{N}$ $=$ SUBMIN $+(Nor)$ ,
$CO-MIN^{N}$ $=$ SUBMIN $+(Nor^{*})$ ,

$INT^{N}$ $=$ SUBMIN $+(Nor)+(Nor^{*})$ ,

namely, $MIN^{N}isSUBMIN^{N}added$ by (Nor) as an additional axiom, and so on.

For the corresponding sequent calculi, consider the following rules:

$(\neg\rightarrow)_{R}\frac{\Gamma\rightarrow A}{\neg A,\Gamma\rightarrow C}$ . $(\rightarrow\neg)_{L}\frac{A,\Gamma\rightarrow\neg A}{\Gamma\rightarrow\neg A}$ .

$(\sim\rightarrow)_{L}\frac{\Gamma\rightarrow A}{\sim A,\Gamma\rightarrow\neg C}$ . $(\sim\rightarrow)_{R}\frac{\Gamma\rightarrow A}{\sim A,\neg D,\Gamma\rightarrow C}$ . $(\sim\rightarrow)_{LR}\frac{\Gamma\rightarrow A}{\sim A,\Gamma\rightarrow C}$ .

Note that $\sim$ as well as $\neg$ is introduced in the lower sequents of $(\sim\rightarrow)_{L}$ and
$(\sim\rightarrow)_{R}$ , while $only\sim is$ introduced in that of $(\sim\rightarrow)_{LR}$ .

The sequent calculi $G-MIN^{N},$ $G-CO-MIN^{N}andG-INT^{N}are$ defined as fol-
lows:

$G- MIN^{N}$ $=$ $(i)+(ii)$ +(iii) $+(\neg\rightarrow)+(\rightarrow\neg)_{L}+(\sim\rightarrow)_{L}+(vi)$ ,
$G-CO-MIN^{N}$ $=$ $(i)+(ii)$ +(iii) $+(\neg\rightarrow)_{R}+(\rightarrow\neg)+(\sim\rightarrow)_{R}+(vi)$ ,

$G-INT^{N}$ $=$ $(i)+(ii)$ +(iii) $+(\neg\rightarrow)_{R}+(\rightarrow\neg)_{L}+(\sim\rightarrow)_{LR}+(vi)$ ,

namely, $G-MIN^{N}is$ obtained from $G-SUBMIN^{N}by$ replacing $(\rightarrow\neg)$ and $(\sim\rightarrow)$

with $(\rightarrow\neg)_{L}$ and $(\sim\rightarrow)_{L}$ , and so on. Remember that the $\{T, \perp\}$-less fragment of
$G-INT^{N}is$ essentially the same as the calculus introduced in Ishimoto [2], [3] for
the intuitionistic logic with strong negation.

Decidability as well as the subsequent theorems are proved similarly to Theo-
rems 2.1, 3.1, 4.1, 4.2 $(CO-MIN^{N}alone),$ $4.3,4.4,4.6(MIN^{N}andCO- MIN^{N}alone)$ ,
and 4.7 $(CO-MIN^{N}alone)$ , respectively.



Theorem 5.1. Let $ L\in$ { $MIN^{N},$ $CO-MIN^{N},$ INT} $’$ A formula $C$ is provable
in $L$ , iff the $sequent\rightarrow C$ is provable in G-L. $\square $

Theorem 5.2. Let $ L\in$ { $MIN^{N},$ $CO-MIN^{N},$ INT}. Every pmof in G-L can
be transformed into another proof in G-L such that the endsequent of the latter is
the same as that of the former, cut is not applied in the latter, and every logical rule
applied in the latter is applied in the former as well. $\square $

Theorem 5.3. Let $L\in\{MIN^{N}, CO-MIN^{N}, INT^{N}\}$ . If $A\vee B$ is provable in $L$ ,
then either $A$ or $B$ is provable in L. $\square $

Theorem 5.4. There is no formula $A$ such that $\neg A$ is provable in $CO-MIN^{N}$ . $\square $

Recall that $\neg\neg T$ is an axiom and so is a theorem of $MIN^{N}andINT^{N}$ .

Theorem 5.5. The axiomatic systems

$P1+P2+\cdots+P8+Q1+Q2_{L}+$ (MP),

$P1+P2+\cdots+P8+Q1_{R}+Q2+(MP)$ , and

$P1+P2+\cdots+P8+Q1_{R}+Q2_{L}+$ (MP)

constitute the $\{T, \perp, \sim\}$ -less fragments of $MIN^{N},$ $CO-MIN^{N}$ , and $INT^{N}$ , respec-
tively, where $Q1_{R}$ and $Q2_{L}$ are as below:

$Q1_{R}\neg A\supset(A\supset C)$ .

$Q2_{L}(A\supset\neg A)\supset\neg A$ . $\square $

Theorem 5.6. Let $L\in\{MIN^{N}, CO-MIN^{N}, INT^{N}\}$ .

(1) If $A\supset B$ is provable in $L$ , then there exists a formula I such that I contains
only those propositional letters which occur in both $A$ and $B$ , and such that
$A\supset I$ and $I\supset B$ are pmvable in $L$ .

(2) If $A$ and $B$ are $\{\sim\}$ -less, in addition, then I can be taken from among the
$\{\sim\}$ -less formulas.

(3) If $A$ and $B$ are $\{T, \perp, \sim\}$ -less, and some propositional letters are contained in
both $A$ and $B$ , in addition, then I can be taken from among the $\{T, \perp, \sim\}$ -less
formulas. $\square $

Theorem 5.7. The logics MIN and $CO-MIN^{N}$ are not normalizable. $\square $

In contrast to $MIN^{N}andCO-MIN^{N}$ , the logic $INT^{N}is$ normalizable.



Theorem 5.8. The logic INT is normalizable.

Pmof.

INT $=P1+P2+\cdots+P8+Q1_{R}+Q2_{L}+(\sim A\supset(A\supset C))+(MP)$ .

$\square $

Theorem 5.9. The logic $CO-MIN^{N}$ lacks the property $(\#)$ . $\square $

In contrast to $CO-MIN^{N}$ , the logics $MIN^{N}andINT^{N}enjoy$ the property $(\#)$

(Theorem 5.12).

Lemma 5.10. Let $L\in\{MIN^{N}, INT^{N}\}$ . If the sequent $A,$ $\Gamma\rightarrow\neg T$ is pmvable in
G-L, then so too is $\Gamma\rightarrow\neg A$ .

Proof. By the following proof.

$\rightarrow T$

$\frac{A,\Gamma\rightarrow\neg T\overline{\neg T\rightarrow\neg A}}{\frac{A,\Gamma\rightarrow\neg A}{\Gamma\rightarrow\neg A}(\rightarrow}\neg)_{L}(\neg\rightarrow)$

[or $(\neg\rightarrow)_{R}$]

$\square $

Lemma 5.11. Let $L\in\{MIN^{N}, INT^{N}\}$ . If $C$ contains no propositional letter,
then either $C$ or $\neg C$ is pmvable in $L$ .

Pmof. It suffices to show that $either\rightarrow C$ or $C\rightarrow\neg T$ is provable in G-L; for, in
the latter case, $\rightarrow\neg C$ is provable by Lemma 5.10. We prove the above claim by
induction on the grade of $C$ . Only some typical cases are mentioned.

Case 1: $C$ is a constant or its Nelson negation. The sequents

$\rightarrow T$ , $\perp\rightarrow\neg T$ , $\sim T\rightarrow\neg T$ , and $\rightarrow\sim\perp$

are initial sequents, and so are provable.

Case 2: $C$ is $\neg A$ . $Either\rightarrow A$ or $A\rightarrow\neg T$ is provable by the hypothesis of
induction. Hence, either $\neg A\rightarrow\neg Tor\rightarrow\neg A$ is provable by $(\neg\rightarrow)$ [or $(\neg\rightarrow)_{R}$] or
Lemma 5.10, respectively.

Case 3: $Cis\sim(A\supset B)$ . $Either\rightarrow A$ or $A\rightarrow\neg T$ is provable, and $either\rightarrow\sim B$

$or\sim B\rightarrow\neg T$ is provable by the hypothesis of induction. $If\rightarrow Aand\rightarrow\sim B$ are
provable, $\rightarrow\sim(A\supset B)$ is provable by $(\rightarrow\sim\supset)$ ; otherwise, $\sim(A\supset B)\rightarrow\neg T$ is
provable by $(\sim\supset\rightarrow)$ . $\square $



Theorem 5.12. Let $L\in\{MIN^{N}, INT^{N}\}$ . The logic $L$ enjoys the property $(\#)$ .

Proof. Suppose that $A\supset B$ is provable in $L$ , and $A$ and $B$ contain no propositional
letter in common. By Theorem 5.6 (1), there exists a formula $I$ such that $I$ contains
only those propositional letters which occur in both $A$ and $B$ , and such that $A\supset I$

and $I\supset B$ are provable. It follows by the assumption that $I$ contains no proposi-
tional letter; so by Lemma 5.11, either $I$ or $\neg I$ is provable; and so either $B$ or $\neg A$

is provable. $\square $
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