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RICCI-PSEUDO-SYMMETRIC REAL HYPERSURFACES
IN COMPLEX SPACE FORMS

IN-BAE KIM, HYE JEONG PARK AND HYUNJUNG SONG

ABSTRACT. We characterize a Ricci-pseudo-symmetric real hypersurface $M$

with associated function $f$ in a complex space form $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ .
We show that $f$ is a constant on $M$ , and $M$ is locally congruent to a real
hypersurface of type $A_{2}$ if $c>0$ , and that of type $A0$ if $c<0$ .

1. Introduction

The nonexistence of semi-parallel and semi-symmetric real hypersurfaces
in a complex space form $M_{n}(c)$ has been established for $n\geq 3$ (see [1],
[2], [3], [4] and [6]). Thus it is natural to find a weaker condition than
the semi-parallelism or semi-symmetric one that allows to be classified the
real hypersurfaces. Recently, G. A. Lobos and M. Ortega ([3]) studied the
existence of pseudo-parallel real hypersurfaces in $M_{n}(c),$ $c\neq 0$ .

Let $M$ be real hypersurface in a complex space form, and let $R$ and $S$

be the curvature tensor and the Ricci operator of $M$ . Given tangent vector
fields $X$ and $Y$ on $M$ , let $X\wedge Y$ denote the operator of the tangent bundle of
$M$ given by $Z-+<Y,$ $Z>X-<X,$ $Z>Y$ , where $<,$ $>is$ the inner product.
It can be extended to act as a derivation on $S$ as follows:

$(X\wedge Y\cdot S)Z=(X\wedge Y)SZ-S(X\wedge Y)Z$ .
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The curvature operator $R(X, Y)$ can operate in the same way, that is,

$(R(X, Y)\cdot S)Z=R(X, Y)SZ-SR(X, Y)Z$ .

A real hypersurface $M$ in a complex space form $M_{n}(c)$ is called Ricci-
pseudo-symmetric with associated function $f$ if there is a real valued smooth
function $f$ on $M$ such that

(1.1) $R(X, Y)\cdot S=fX\wedge Y\cdot S$

for any tangent vector fields $X$ and $Y$ on $M$ . The condition (1.1) is weaker
than the semi-symmetric one, which is defined by $f=0$ , and stronger than
the cyclic Ryan one, which is defined by $6(R(X, Y)\cdot S)Z=0$ (see [1] and [5]).
Under the cyclic Ryan condition, U.-H. Ki, H. Nakagawa and Y. J. Suh ([1])
proved that the structure vector field $\xi$ of a cyclic Ryan real hypersurface $M$

in $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ , is principal, and $M$ is locally congruent to one of the
model spaces of type $A$ and $B$ .

The purpose of this paper is to investigate the existence of Ricci-pseudo-
symmetric real hypersurfaces. Namely, we shall prove the following.

Theorem. Let $M$ be a connected Ricci-pseudo- symmetric real hyper-
$s$urface with associated function $f$ in a complex space form $M_{n}(c),$ $c\neq 0$ ,
$n\geq 3$ , of constant holomorphic section $al$ curvature $c$ . Then $f=\frac{|c|}{4}$ and $M$

is locally congruent to one of the followings:
(1) If $c>0,$ $(A_{2})$ tubes over totally geodesic complex projective spaces

$P_{k}(\mathbb{C})(1\leq k\leq n-2)$ with principal $c$urvatures $0$ of multiplicity 1, $\frac{\sqrt{c}}{2}$ of
$n-1and-\frac{\sqrt{c}}{2}$ of $n-1$ .

(2) If $c<0,$ $(A_{0})$ horospheres with principal curvatures $\sqrt{-c}$ ofmultiplic-
ity 1 and $\frac{\sqrt{-c}}{2}$ of $2n-2$ .

2. Preliminaries

Let $M$ be a real hypersurface in an $n(\geq 3)$-dimensional complex space
form $(M_{n}(c), <, >, J)$ of constant holomorphic sectional curvature $c$ , and let
$N$ be a unit normal vector field on an open neighborhood in $M$ . For a local
tangent vector field $X$ on the neighborhood, the images of $X$ and $N$ under
the almost complex structure $J$ of $M_{n}(c)$ can be expressed by

$JX=\phi X+\eta(X)N$, $ JN=-\xi$ ,



where $\phi$ defines a linear transformation on the tangent space $T_{p}(M)$ of $M$ at
any point $p\in M$ , and $\eta$ and $\xi$ denote a l-form and a unit tangent vector field
on the neighborhood respectively. Then, denoting the Riemannian metric on
$M$ induced from the metric on $M_{n}(c)$ by the same symbol $<,$ $>$ , it is easy to
see that

$<\phi X,$ $Y>+<\phi Y,$ $X>=0$ , $<\xi,$ $X>=\eta(X)$

for any tangent vector field $X$ and $Y$ on $M$ . The collection $(\phi, <, >, \xi, \eta)$

is called an almost contact metric structure on $M$ , and satisfies

$\phi^{2}X=-X+\eta(X)\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,
(2.1)

$<\phi X,$ $\phi Y>=<X,$ $Y>-\eta(X)\eta(Y)$ .

Let V be the Riemannian connection with respect to the metric $<,$ $>$ on
$M$ , and $A$ be the shape operator in the direction of $N$ on $M$ . Then we have

(2.2) $\nabla_{X}\xi=\phi AX$ , $(\nabla_{X}\phi)Y=\eta(Y)AX-<AX,$ $Y>\xi$ .

Since the ambient space is of constant holomorphic sectional curvature $c$ , the
equations of Gauss and Codazzi are given by

$R(X, Y)Z=\frac{c}{4}\{<Y,$ $Z>X-<X,$ $Z>Y+<\phi Y,$ $Z>\phi X$

(2.3) $-<\phi X,$ $Z>\phi Y-2<\phi X,$ $Y>\phi Z$}
$+<AY,$ $Z>AX-<AX,$ $Z>AY$,

(2.4) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2<\phi X, Y>\xi\}$

for any tangent vector fields $X,$ $Y$ and $Z$ on $M$ , where $R$ is the Riemannian
curvature tensor of $M$ . If we denote the Ricci operator of $M$ by $S$ , then it
follows from (2.3) that

(2.5) $SX=\frac{c}{4}\{(2n+1)X-3\eta(X)\xi\}+mAX-A^{2}X$ ,

wherem $=trA=traceAisthemeancurvatureofM$ .



3. Ricci-pseudo-symmetric real hypersurfaces

Let $M$ be a Ricci-pseudo-symmetric real hypersurface in $M_{n}(c),$ $c\neq 0$ ,
$n\geq 3$ , with the associated function $f$ . Then it follows from (1.1) and (2.3)
that

$(\frac{c}{4}-f)\{<Y,$ $SZ>X-<X,$ $SZ>Y-<Y,$ $Z>SX$

$+<X,$ $Z>SY$} $+\frac{c}{4}\{<\phi Y,$ $SZ>\phi X-<\phi Y,$ $Z>S\phi X$

(3.1) $-<\phi X,$ $SZ>\phi Y+<\phi X,$ $Z>S\phi Y$

$-2<\phi X,$ $Y>(\phi S-S\phi)Z$}
$+<AY,$ $SZ>AX-<AX,$ $SZ>AY$
$-<AY,$ $Z>SAX+<AX,$ $Z>SAY=0$

for any tangent vector fields $X,$ $Y$ and $Z$ on $M$ . Since the cyclic sum of
$(X\wedge Y\cdot S)Z$ for the vectors $X,$ $Y$ and $Z$ vanishes identically, $M$ is a cyclic
Ryan-space. Thus we see from the result of [1] that the structure vector field
$\xi$ of $M$ is principal, that is,

(3.2) $ A\xi=\alpha\xi$ .

From (2.5) and (3.2), we have

(3.3) $ S\xi=k\xi$ , $k=\frac{n-1}{2}c+m\alpha-\alpha^{2}$ .

Putting $ X=Z=\xi$ into (3.1) and using (1.1), (3.2) and (3.3), we obtain

(3.4) $(\frac{c}{4}-f)(SY-kY)+\alpha(SAY-kAY)=0$

for any tangent vector field $Y$ on $M$ .
Now we take a local orthonormal frame field $\{E_{1}, E_{2}, \ldots, E_{2n-1}\}$ on $M$ .

If we put $Y=Z=E_{i}$ into (3.1) and take summation over $i=1,$
$\ldots,$

$2n-1$ ,
then we have

$\frac{3}{4}c\phi S\phi X+[(\frac{c}{4}-f)(2n-1)+\frac{3}{4}c]SX+ASAX-SA^{2}X$

(35)
$+mSAX-(trSA)AX-(\frac{c}{4}-f)(trS)X-\frac{3}{4}ck\eta(X)\xi$

$=0$



for any tangent vector field $X$ on $M$ .

Let $X_{\lambda}$ be a unit tangent vector field on $M$ orthogonal to $\xi$ such that
$AX_{\lambda}=\lambda X_{\lambda}$ . Then, from (2.5), we have $SX_{\lambda}=k_{\lambda}X_{\lambda}$ , where $k_{\lambda}=\frac{2n+1}{4}c+$

$m\lambda-\lambda^{2}$ . Putting $X=X_{\lambda}$ into (3.5) and using (2.1), we obtain

(3.6) $S\phi X_{\lambda}=\ell_{\lambda}\phi X_{\lambda}$ ,

where we have put

$\ell_{\lambda}=\frac{4}{3c}\{[(2n-1)(\frac{c}{4}-f)+m\lambda+\frac{3}{4}c]k_{\lambda}-(\frac{c}{4}-f)trS-\lambda trSA\}$ .

Since $AS=SA$ on $M$ , by putting $Y=\phi X_{\lambda}$ into (3.4) and using (3.6), we
get

(3.7) $(\ell_{\lambda}-k)[\alpha A\phi X_{\lambda}+(\frac{c}{4}-f)\phi X_{\lambda}]=0$ .

By putting $X=X_{\lambda}$ into (3.1) and using (3.6) yields

$(\frac{c}{4}-f)[<(S-k_{\lambda}I)Y, Z>X_{\lambda}+<X_{\lambda}, Z>(S-k_{\lambda}I)Y]$

$+\frac{c}{4}[<(S-\ell_{\lambda}I)\phi Y, Z>\phi X_{\lambda}+<\phi X_{\lambda}, Z>(S-\ell_{\lambda}I)\phi Y]$

(3.8)
$-\frac{c}{2}<\phi X_{\lambda},$ $Y>(\phi S-S\phi)Z+\lambda<(S-k_{\lambda}I)AY,$ $Z>X_{\lambda}$

$+\lambda<X_{\lambda},$ $Z>(S-k_{\lambda}I)AY=0$

for any tangent vector fields $Y$ and $Z$ on $M$ . Putting $Y=\phi X_{\lambda}$ and $Z=X$
into (3.8) and making use of (3.6), we get

$(\frac{c}{2}-f)(\ell_{\lambda}-k_{\lambda})(<\phi X_{\lambda}, X>X_{\lambda}+<X_{\lambda}, X>\phi X_{\lambda})$

(39) $-\frac{c}{2}(\phi S-S\phi)X+\lambda<(S-k_{\lambda}I)A\phi X_{\lambda},$ $X>X_{\lambda}$

$+\lambda<X_{\lambda},$ $X>(S-k_{\lambda}I)A\phi X_{\lambda}=0$

for any tangent vector field $X$ on $M$ . By taking inner product of the both
sides of (3.9) with $X_{\lambda}$ , we obtain

$\lambda(S-k_{\lambda}I)A\phi X_{\lambda}=(c-f)(k_{\lambda}-\ell_{\lambda})\phi X_{\lambda}$ .

Substituting this equation into (3.9), we have

(3.10) $(\phi S-S\phi)X=(k_{\lambda}-\ell_{\lambda})[<\phi X_{\lambda}, X>X_{\lambda}+<X_{\lambda}, X>\phi X_{\lambda}]$



for any tangent vector field $X$ on $M$ .

Since $n\geq 3$ , we can choose a unit tangent vector field $X_{\mu}$ on $M$ such that
$AX_{\mu}=\mu X_{\mu},$ $X_{\mu}$ is orthogonal to both $\xi$ and $X_{\lambda}$ and is linearly independent
to $\phi X_{\lambda}$ . For this vector field $X_{\mu}$ , we have

$SX_{\mu}=k_{\mu}X_{\mu}$ , $S\phi X_{\mu}=l_{\mu}\phi X_{\mu}$ ,

where we have put
$k_{\mu}=\frac{2n-1}{4}c+m\mu-\mu^{2}$

and

$\ell_{\mu}=\frac{4}{3c}\{[(2n-1)(\frac{c}{4}-f)+m\mu+\frac{3}{4}c]k_{\mu}-(\frac{c}{4}-f)trS-\mu trSA\}$ .

By a similar argument as in (3.10), we also have

$(\phi S-S\phi)X=(k_{\mu}-\ell_{\mu})(<\phi X_{\mu}, X>X_{\mu}+<X_{\mu}, X>\phi X_{\mu})$

for any tangent vector field $X$ on $M$ . If we compare this equation with (3.10),
then we see that

(3.11) $k_{\lambda}=\ell_{\lambda}$ , $k_{\mu}=\ell_{\mu}$ ,

since $\{\phi X_{\lambda}, X_{\mu}\}$ is linearly independent. From (3.10) and (3.11), we have

(3.12) $\phi S=S\phi$ on $M$ .

Putting $Y=X_{\mu}$ and $Z=\phi X_{\lambda}$ into (3.8) and making use of (3.5) and
(3.12), we obtain

$(k_{\mu}-k_{\lambda})[(\frac{c}{4}-f+\lambda\mu)<X_{\mu}, \phi X_{\lambda}>X_{\lambda}+\frac{c}{4}\phi X_{\mu}]=0$ .

Since $\{X_{\lambda}, \phi X_{\mu}\}$ is linearly independent, we get

(3.13) $k_{\lambda}=k_{\mu}$ .

Therefore it is easy to see $hom(3.11)$ and (3.13) that

(3.14) $SX=k_{\lambda}X$



for any tangent vector Peld $X$ orthogonal to $\xi$ . It is well-known ([5]) that a
complex space form $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ , does not admit an Einstein real
hypersurface. Thus we also see that

(3.15) $k_{\lambda}\neq k$ .

Let $X$ be a principal direction orthogonal to $\xi$ associated to $\lambda$ , that is,
$AX=\lambda X$ . Then, putting $Y=\phi X$ into (3.4) and using (3.14) and (3.15),
we have

(3.16) $\alpha A\phi X+(\frac{c}{4}-f)\phi X=0$ .

From (3.4), (3.14) and (3.15), we also obtain

(3.17) $\frac{c}{4}-f+\alpha\lambda=0$ .

4. Proof of Theorem

At first, we shall prove the following.

Lemma 4.1. Let $M$ be a Ricci-pseudo-symmetric real hypersurface with
the associat$ed$ function $f$ in $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ . Then

(1) for any non-zero tangen $t$ vector $X$ orthogon$al$ to $\xi$ such that $AX=\lambda X$ ,
we have $\lambda\neq 0$ and $A\phi X=f\lambda\phi X$ ,

(2) $Mh$as at $m$ost three distinct principal curvatures,
(3) if $Mh$as three distinct principal $c$urvatures, then the principal curva-

ture $\alpha$ vanishes identically,
(4) the multiplicity of $\alpha$ is $eq$ual to 1.

Proof. (1) Since $\xi$ is principal, it is well-known ([5]) that $M$ satisfies

$A\phi A-\frac{\alpha}{2}(\phi A+A\phi)-\frac{c}{4}\phi=0$ .

Applying $X$ to this equation, we have

(4.1) $2(2\lambda-\alpha)A\phi X=(2\alpha\lambda+c)\phi X$ .

If we compare (3.16) with (4.1) and make use of (3.17), then we obtain
$\lambda A\phi X=f\phi X$ , and this equation together with (3.17) gives rise to $\lambda\neq 0$ .



(2) Assume that $M$ has $r(\geq 3)$ distinct principal curvatures $\lambda_{1}$ , . . ., $\lambda_{r}$ ,
where $\lambda_{i}\neq\alpha$ for $i=1$ , . . ., $r$ . Since $k_{\lambda}=\frac{2n+1}{4}c+m\lambda_{i}-\lambda_{i}^{2}$ by (3.14), we
get $m=\lambda_{i}+\lambda_{j}$ for $1\leq i\neq j\leq r$ . Thus we obtain $\lambda_{2}=\lambda_{3}=\ldots=\lambda_{r}$ and
it contradicts.

(3) Let $\lambda(\neq\alpha)$ and $\mu(\neq\alpha)$ be the distinct principal curvatures. Then it
follows from (3.17) that $\frac{c}{4}-f+\alpha\lambda=\frac{c}{4}-f+\alpha\mu$ and hence $\alpha=0$ .

(4) Assume that the multiplicity of $\alpha$ is greater than 2. Then there is a
non-zero tangent vector $X$ orthogonal to $\xi$ such that $AX=\alpha X$ . By (1),
we have $\alpha\neq 0$ and $A\phi X=\angle\alpha\phi X$ . comparing this equation with (3.16), we
obtain $c=0$ and hence a contradiction. $\square $

Proof of Theorem. Since it is known ([5]) that there is no umbilical
real hypersurfaces in $M_{n}(c)$ , we can only consider two cases where $M$ has
two and three distinct principal curvatures because of (2) of Lemma 4.1.

(Case I) $M$ has two distinct principal curvatures $\alpha$ and $\lambda$ .
Since the multiplicity of $\alpha$ is equal to 1 by (4) of Lemma 4.1, we have

$AX=\lambda X$ for any non-zero tangent vector $X$ orthogonal to $\xi$ , and, by (1),
$\lambda\neq 0$ and $A\phi X=f\lambda\phi X$ . Since we see that $\lambda=\angle\lambda$

’ that is, $\lambda^{2}=f>0$ , it
follows from (3.17) that $\lambda$ is a solution of

$\lambda^{2}-\alpha\lambda-\frac{c}{4}=0$ .

By the discriminant of the above quadratic equation, we see that $c=-\alpha^{2}<0$

and $\lambda=\frac{\alpha}{2}$ and hence we have $f=-\frac{c}{4}(c<0),$ $\alpha=\sqrt{-c}$ and $\lambda=\frac{\sqrt{-c}}{2}$

(Case II) $M$ has three distinct principal curvatures $\alpha,$
$\lambda$ and $\mu$ .

Since $\alpha=0$ by (3) of Lemma 4.1, we see from (3.17) that $f=\frac{c}{4}$ For any
non-zero tangent vectors $X$ and $Y$ orthogonal to $\xi$ such that $AX=\lambda X$ and
$AY=\mu Y$ , we have $\lambda\mu\neq 0,$ $A\phi X=\angle\lambda\phi X$ and $A\phi Y=\angle\mu\phi Y$ by (1) of Lemma
4.1. It is easily seen that $\lambda=f\lambda$ if and only if $\mu=\angle\mu$

We consider the case where $\lambda\neq\angle\lambda$ that is, $\mu=f\lambda$ Then we see that
$\lambda\mu=f=\frac{c}{4}$ and the multiplicity of $\lambda$ (resp. $\mu$) is equal to $n-1$ . Since
$SX=k_{\lambda}X$ for any tangent vector $X$ orthogonal to $\xi$ by (3.14), it follows
from (2.5) that $ m=\lambda+\mu$ . Therefore we get $m=(n-1)(\lambda+\mu)$ and hence
$\lambda+\mu=0$ because of $n\geq 3$ . Since $f=-\lambda^{2}=\frac{c}{4}<0,$ $M$ must be locally
congruent to a real hypersurface of type $A_{2}$ or $B$ in a complex hyperbolic
space $H_{n}(\mathbb{C})$ , if it exists. It is known that the principal curvature $\alpha$ of real
hypersurfaces of type $A_{2}$ and $B$ in $H_{n}(\mathbb{C})$ is not equal to zero, and hence the
case where $\lambda\neq\angle\lambda$ does not occur.



Finally we see that $\lambda=\frac{f}{\lambda}$ that is, $\lambda^{2}=\mu^{2}=f=\frac{c}{4}$ Since we have
$\lambda=-\mu$ , it follows from (3.14) that $m=0$ and hence $M$ is minimal. It is
easy to see that the multiplicity of $\lambda$ is equal to2pand that of $\mu is2q$ , where
$p,$ $q\geq 1$ and $p+q=n-1$ . Since $\alpha=0$ and $ m=2p\lambda+2q\mu=2(p-q)\lambda$ , we
get $p=q=\frac{n-1}{2}$ Therefore $M$ has the principal curvatures $0$ of multiplicity
1, $\frac{\sqrt{c}}{2}$ of $n-1$ and $-\frac{\sqrt{c}}{2}$ of n–l in a complex projective space $P_{n}(\mathbb{C})$ . $\square $
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