RICCI-PSEUDO-SYMMETRIC REAL HYPERSURFACES IN COMPLEX SPACE FORMS

In-Bae Kim, Hye Jeong Park and Hyunjung Song

Abstract

We characterize a Ricci-pseudo-symmetric real hypersurface M with associated function f in a complex space form $M_{n}(c), c \neq 0, n \geq 3$. We show that f is a constant on M, and M is locally congruent to a real hypersurface of type A_{2} if $c>0$, and that of type A_{0} if $c<0$.

1. Introduction

The nonexistence of semi-parallel and semi-symmetric real hypersurfaces in a complex space form $M_{n}(c)$ has been established for $n \geq 3$ (see [1], [2], [3], [4] and [6]). Thus it is natural to find a weaker condition than the semi-parallelism or semi-symmetric one that allows to be classified the real hypersurfaces. Recently, G. A. Lobos and M. Ortega ([3]) studied the existence of pseudo-parallel real hypersurfaces in $M_{n}(c), c \neq 0$.

Let M be real hypersurface in a complex space form, and let R and S be the curvature tensor and the Ricci operator of M. Given tangent vector fields X and Y on M, let $X \wedge Y$ denote the operator of the tangent bundle of M given by $Z \mapsto<Y, Z>X-<X, Z>Y$, where $<,>$ is the inner product. It can be extended to act as a derivation on S as follows:

$$
(X \wedge Y \cdot S) Z=(X \wedge Y) S Z-S(X \wedge Y) Z
$$

[^0]The curvature operator $R(X, Y)$ can operate in the same way, that is,

$$
(R(X, Y) \cdot S) Z=R(X, Y) S Z-S R(X, Y) Z
$$

A real hypersurface M in a complex space form $M_{n}(c)$ is called Ricci-pseudo-symmetric with associated function f if there is a real valued smooth function f on M such that

$$
\begin{equation*}
R(X, Y) \cdot S=f X \wedge Y \cdot S \tag{1.1}
\end{equation*}
$$

for any tangent vector fields X and Y on M. The condition (1.1) is weaker than the semi-symmetric one, which is defined by $f=0$, and stronger than the cyclic Ryan one, which is defined by $\mathfrak{S}(R(X, Y) \cdot S) Z=0$ (see [1] and [5]). Under the cyclic Ryan condition, U.-H. Ki, H. Nakagawa and Y. J. Suh ([1]) proved that the structure vector field ξ of a cyclic Ryan real hypersurface M in $M_{n}(c), c \neq 0, n \geq 3$, is principal, and M is locally congruent to one of the model spaces of type A and B.

The purpose of this paper is to investigate the existence of Ricci-pseudosymmetric real hypersurfaces. Namely, we shall prove the following.

Theorem. Let M be a connected Ricci-pseudo- symmetric real hypersurface with associated function f in a complex space form $M_{n}(c), c \neq 0$, $n \geq 3$, of constant holomorphic sectional curvature c. Then $f=\frac{|c|}{4}$, and M is locally congruent to one of the followings:
(1) If $c>0$, $\left(A_{2}\right)$ tubes over totally geodesic complex projective spaces $P_{k}(\mathbb{C})(1 \leq k \leq n-2)$ with principal curvatures 0 of multiplicity $1, \frac{\sqrt{c}}{2}$ of $n-1$ and $-\frac{\sqrt{c}}{2}$ of $n-1$.
(2) If $c<0,\left(A_{0}\right)$ horospheres with principal curvatures $\sqrt{-c}$ of multiplicity 1 and $\frac{\sqrt{-c}}{2}$ of $2 n-2$.

2. Preliminaries

Let M be a real hypersurface in an $n(\geq 3)$-dimensional complex space form ($\left.M_{n}(c),<,>, J\right)$ of constant holomorphic sectional curvature c, and let N be a unit normal vector field on an open neighborhood in M. For a local tangent vector field X on the neighborhood, the images of X and N under the almost complex structure J of $M_{n}(c)$ can be expressed by

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi,
$$

where ϕ defines a linear transformation on the tangent space $T_{p}(M)$ of M at any point $p \in M$, and η and ξ denote a 1 -form and a unit tangent vector field on the neighborhood respectively. Then, denoting the Riemannian metric on M induced from the metric on $M_{n}(c)$ by the same symbol $<,>$, it is easy to see that

$$
<\phi X, Y>+<\phi Y, X>=0, \quad<\xi, X>=\eta(X)
$$

for any tangent vector field X and Y on M. The collection ($\phi,<,>, \xi, \eta$) is called an almost contact metric structure on M, and satisfies

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1 \\
& <\phi X, \phi Y>=<X, Y>-\eta(X) \eta(Y) \tag{2.1}
\end{align*}
$$

Let ∇ be the Riemannian connection with respect to the metric $<,>$ on M, and A be the shape operator in the direction of N on M. Then we have

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X, \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-<A X, Y>\xi \tag{2.2}
\end{equation*}
$$

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are given by

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2<\phi X, Y>\xi\} \tag{2.4}
\end{equation*}
$$

for any tangent vector fields X, Y and Z on M, where R is the Riemannian curvature tensor of M. If we denote the Ricci operator of M by S, then it follows from (2.3) that

$$
\begin{equation*}
S X=\frac{c}{4}\{(2 n+1) X-3 \eta(X) \xi\}+m A X-A^{2} X \tag{2.5}
\end{equation*}
$$

where $m=\operatorname{tr} A=\operatorname{trace} A$ is the mean curvature of M.

3. Ricci-pseudo-symmetric real hypersurfaces

Let M be a Ricci-pseudo-symmetric real hypersurface in $M_{n}(c), c \neq 0$, $n \geq 3$, with the associated function f. Then it follows from (1.1) and (2.3) that

$$
\begin{align*}
& \left(\frac{c}{4}-f\right)\{<Y, S Z>X-<X, S Z>Y-<Y, Z>S X \\
+ & <X, Z>S Y\}+\frac{c}{4}\{<\phi Y, S Z>\phi X-<\phi Y, Z>S \phi X \\
- & <\phi X, S Z>\phi Y+<\phi X, Z>S \phi Y \tag{3.1}\\
- & <\phi X, Y>(\phi S-S \phi) Z\} \\
+ & <A Y, S Z>A X-<A X, S Z>A Y \\
- & <A Y, Z>S A X+<A X, Z>S A Y=0
\end{align*}
$$

for any tangent vector fields X, Y and Z on M. Since the cyclic sum of $(X \wedge Y \cdot S) Z$ for the vectors X, Y and Z vanishes identically, M is a cyclic Ryan-space. Thus we see from the result of [1] that the structure vector field ξ of M is principal, that is,

$$
\begin{equation*}
A \xi=\alpha \xi \tag{3.2}
\end{equation*}
$$

From (2.5) and (3.2), we have

$$
\begin{equation*}
S \xi=k \xi, \quad k=\frac{n-1}{2} c+m \alpha-\alpha^{2} \tag{3.3}
\end{equation*}
$$

Putting $X=Z=\xi$ into (3.1) and using (1.1), (3.2) and (3.3), we obtain

$$
\begin{equation*}
\left(\frac{c}{4}-f\right)(S Y-k Y)+\alpha(S A Y-k A Y)=0 \tag{3.4}
\end{equation*}
$$

for any tangent vector field Y on M.
Now we take a local orthonormal frame field $\left\{E_{1}, E_{2}, \ldots, E_{2 n-1}\right\}$ on M. If we put $Y=Z=E_{i}$ into (3.1) and take summation over $i=1, \ldots, 2 n-1$, then we have

$$
\begin{align*}
& \frac{3}{4} c \phi S \phi X+\left[\left(\frac{c}{4}-f\right)(2 n-1)+\frac{3}{4} c\right] S X+A S A X-S A^{2} X \\
+ & m S A X-(\operatorname{trS} S A) A X-\left(\frac{c}{4}-f\right)(\operatorname{tr} S) X-\frac{3}{4} c k \eta(X) \xi \tag{3.5}\\
= & 0
\end{align*}
$$

for any tangent vector field X on M.
Let X_{λ} be a unit tangent vector field on M orthogonal to ξ such that $A X_{\lambda}=\lambda X_{\lambda}$. Then, from (2.5), we have $S X_{\lambda}=k_{\lambda} X_{\lambda}$, where $k_{\lambda}=\frac{2 n+1}{4} c+$ $m \lambda-\lambda^{2}$. Putting $X=X_{\lambda}$ into (3.5) and using (2.1), we obtain

$$
\begin{equation*}
S \phi X_{\lambda}=\ell_{\lambda} \phi X_{\lambda} \tag{3.6}
\end{equation*}
$$

where we have put

$$
\ell_{\lambda}=\frac{4}{3 c}\left\{\left[(2 n-1)\left(\frac{c}{4}-f\right)+m \lambda+\frac{3}{4} c\right] k_{\lambda}-\left(\frac{c}{4}-f\right) \operatorname{tr} S-\lambda t r S A\right\}
$$

Since $A S=S A$ on M, by putting $Y=\phi X_{\lambda}$ into (3.4) and using (3.6), we get

$$
\begin{equation*}
\left(\ell_{\lambda}-k\right)\left[\alpha A \phi X_{\lambda}+\left(\frac{c}{4}-f\right) \phi X_{\lambda}\right]=0 \tag{3.7}
\end{equation*}
$$

By putting $X=X_{\lambda}$ into (3.1) and using (3.6) yields

$$
\begin{align*}
& \left(\frac{c}{4}-f\right)\left[<\left(S-k_{\lambda} I\right) Y, Z>X_{\lambda}+<X_{\lambda}, Z>\left(S-k_{\lambda} I\right) Y\right] \\
+ & \frac{c}{4}\left[<\left(S-\ell_{\lambda} I\right) \phi Y, Z>\phi X_{\lambda}+<\phi X_{\lambda}, Z>\left(S-\ell_{\lambda} I\right) \phi Y\right] \tag{3.8}\\
- & \frac{c}{2}<\phi X_{\lambda}, Y>(\phi S-S \phi) Z+\lambda<\left(S-k_{\lambda} I\right) A Y, Z>X_{\lambda} \\
+ & <X_{\lambda}, Z>\left(S-k_{\lambda} I\right) A Y=0
\end{align*}
$$

for any tangent vector fields Y and Z on M. Putting $Y=\phi X_{\lambda}$ and $Z=X$ into (3.8) and making use of (3.6), we get

$$
\begin{align*}
& \left(\frac{c}{2}-f\right)\left(\ell_{\lambda}-k_{\lambda}\right)\left(<\phi X_{\lambda}, X>X_{\lambda}+<X_{\lambda}, X>\phi X_{\lambda}\right) \\
- & \frac{c}{2}(\phi S-S \phi) X+\lambda<\left(S-k_{\lambda} I\right) A \phi X_{\lambda}, X>X_{\lambda} \tag{3.9}\\
+ & \lambda<X_{\lambda}, X>\left(S-k_{\lambda} I\right) A \phi X_{\lambda}=0
\end{align*}
$$

for any tangent vector field X on M. By taking inner product of the both sides of (3.9) with X_{λ}, we obtain

$$
\lambda\left(S-k_{\lambda} I\right) A \phi X_{\lambda}=(c-f)\left(k_{\lambda}-\ell_{\lambda}\right) \phi X_{\lambda}
$$

Substituting this equation into (3.9), we have

$$
\begin{equation*}
(\phi S-S \phi) X=\left(k_{\lambda}-\ell_{\lambda}\right)\left[<\phi X_{\lambda}, X>X_{\lambda}+<X_{\lambda}, X>\phi X_{\lambda}\right] \tag{3.10}
\end{equation*}
$$

for any tangent vector field X on M.
Since $n \geq 3$, we can choose a unit tangent vector field X_{μ} on M such that $A X_{\mu}=\mu X_{\mu}, X_{\mu}$ is orthogonal to both ξ and X_{λ} and is linearly independent to ϕX_{λ}. For this vector field X_{μ}, we have

$$
S X_{\mu}=k_{\mu} X_{\mu}, \quad S \phi X_{\mu}=\ell_{\mu} \phi X_{\mu}
$$

where we have put

$$
k_{\mu}=\frac{2 n-1}{4} c+m \mu-\mu^{2}
$$

and

$$
\ell_{\mu}=\frac{4}{3 c}\left\{\left[(2 n-1)\left(\frac{c}{4}-f\right)+m \mu+\frac{3}{4} c\right] k_{\mu}-\left(\frac{c}{4}-f\right) t r S-\mu t r S A\right\}
$$

By a similar argument as in (3.10), we also have

$$
(\phi S-S \phi) X=\left(k_{\mu}-\ell_{\mu}\right)\left(<\phi X_{\mu}, X>X_{\mu}+<X_{\mu}, X>\phi X_{\mu}\right)
$$

for any tangent vector field X on M. If we compare this equation with (3.10), then we see that

$$
\begin{equation*}
k_{\lambda}=\ell_{\lambda}, \quad k_{\mu}=\ell_{\mu}, \tag{3.11}
\end{equation*}
$$

since $\left\{\phi X_{\lambda}, X_{\mu}\right\}$ is linearly independent. From (3.10) and (3.11), we have

$$
\begin{equation*}
\phi S=S \phi \quad \text { on } M \tag{3.12}
\end{equation*}
$$

Putting $Y=X_{\mu}$ and $Z=\phi X_{\lambda}$ into (3.8) and making use of (3.5) and (3.12), we obtain

$$
\left(k_{\mu}-k_{\lambda}\right)\left[\left(\frac{c}{4}-f+\lambda \mu\right)<X_{\mu}, \phi X_{\lambda}>X_{\lambda}+\frac{c}{4} \phi X_{\mu}\right]=0 .
$$

Since $\left\{X_{\lambda}, \phi X_{\mu}\right\}$ is linearly independent, we get

$$
\begin{equation*}
k_{\lambda}=k_{\mu} \tag{3.13}
\end{equation*}
$$

Therefore it is easy to see from (3.11) and (3.13) that

$$
\begin{equation*}
S X=k_{\lambda} X \tag{3.14}
\end{equation*}
$$

for any tangent vector field X orthogonal to ξ. It is well-known ([5]) that a complex space form $M_{n}(c), c \neq 0, n \geq 3$, does not admit an Einstein real hypersurface. Thus we also see that

$$
\begin{equation*}
k_{\lambda} \neq k \tag{3.15}
\end{equation*}
$$

Let X be a principal direction orthogonal to ξ associated to λ, that is, $A X=\lambda X$. Then, putting $Y=\phi X$ into (3.4) and using (3.14) and (3.15), we have

$$
\begin{equation*}
\alpha A \phi X+\left(\frac{c}{4}-f\right) \phi X=0 \tag{3.16}
\end{equation*}
$$

From (3.4), (3.14) and (3.15), we also obtain

$$
\begin{equation*}
\frac{c}{4}-f+\alpha \lambda=0 \tag{3.17}
\end{equation*}
$$

4. Proof of Theorem

At first, we shall prove the following.
Lemma 4.1. Let M be a Ricci-pseudo-symmetric real hypersurface with the associated function f in $M_{n}(c), c \neq 0, n \geq 3$. Then
(1) for any non-zero tangent vector X orthogonal to ξ such that $A X=\lambda X$, we have $\lambda \neq 0$ and $A \phi X=\frac{f}{\lambda} \phi X$,
(2) M has at most three distinct principal curvatures,
(3) if M has three distinct principal curvatures, then the principal curvature α vanishes identically,
(4) the multiplicity of α is equal to 1 .

Proof. (1) Since ξ is principal, it is well-known ([5]) that M satisfies

$$
A \phi A-\frac{\alpha}{2}(\phi A+A \phi)-\frac{c}{4} \phi=0
$$

Applying X to this equation, we have

$$
\begin{equation*}
2(2 \lambda-\alpha) A \phi X=(2 \alpha \lambda+c) \phi X \tag{4.1}
\end{equation*}
$$

If we compare (3.16) with (4.1) and make use of (3.17), then we obtain $\lambda A \phi X=f \phi X$, and this equation together with (3.17) gives rise to $\lambda \neq 0$.
(2) Assume that M has $r(\geq 3)$ distinct principal curvatures $\lambda_{1}, \ldots, \lambda_{r}$, where $\lambda_{i} \neq \alpha$ for $i=1, \ldots, r$. Since $k_{\lambda}=\frac{2 n+1}{4} c+m \lambda_{i}-\lambda_{i}^{2}$ by (3.14), we get $m=\lambda_{i}+\lambda_{j}$ for $1 \leq i \neq j \leq r$. Thus we obtain $\lambda_{2}=\lambda_{3}=\ldots=\lambda_{r}$ and it contradicts.
(3) Let $\lambda(\neq \alpha)$ and $\mu(\neq \alpha)$ be the distinct principal curvatures. Then it follows from (3.17) that $\frac{c}{4}-f+\alpha \lambda=\frac{c}{4}-f+\alpha \mu$ and hence $\alpha=0$.
(4) Assume that the multiplicity of α is greater than 2 . Then there is a non-zero tangent vector X orthogonal to ξ such that $A X=\alpha X$. By (1), we have $\alpha \neq 0$ and $A \phi X=\frac{f}{\alpha} \phi X$. comparing this equation with (3.16), we obtain $c=0$ and hence a contradiction.

Proof of Theorem. Since it is known ([5]) that there is no umbilical real hypersurfaces in $M_{n}(c)$, we can only consider two cases where M has two and three distinct principal curvatures because of (2) of Lemma 4.1.
(Case I) M has two distinct principal curvatures α and λ.
Since the multiplicity of α is equal to 1 by (4) of Lemma 4.1 , we have $A X=\lambda X$ for any non-zero tangent vector X orthogonal to ξ, and, by (1), $\lambda \neq 0$ and $A \phi X=\frac{f}{\lambda} \phi X$. Since we see that $\lambda=\frac{f}{\lambda}$, that is, $\lambda^{2}=f>0$, it follows from (3.17) that λ is a solution of

$$
\lambda^{2}-\alpha \lambda-\frac{c}{4}=0
$$

By the discriminant of the above quadratic equation, we see that $c=-\alpha^{2}<0$ and $\lambda=\frac{\alpha}{2}$, and hence we have $f=-\frac{c}{4}(c<0), \alpha=\sqrt{-c}$ and $\lambda=\frac{\sqrt{-c}}{2}$.
(Case II) M has three distinct principal curvatures α, λ and μ.
Since $\alpha=0$ by (3) of Lemma 4.1, we see from (3.17) that $f=\frac{c}{4}$. For any non-zero tangent vectors X and Y orthogonal to ξ such that $A X=\lambda X$ and $A Y=\mu Y$, we have $\lambda \mu \neq 0, A \phi X=\frac{f}{\lambda} \phi X$ and $A \phi Y=\frac{f}{\mu} \phi Y$ by (1) of Lemma 4.1. It is easily seen that $\lambda=\frac{f}{\lambda}$ if and only if $\mu=\frac{f}{\mu}$.

We consider the case where $\lambda \neq \frac{f}{\lambda}$, that is, $\mu=\frac{f}{\lambda}$. Then we see that $\lambda \mu=f=\frac{c}{4}$ and the multiplicity of λ (resp. μ) is equal to $n-1$. Since $S X=k_{\lambda} X$ for any tangent vector X orthogonal to ξ by (3.14), it follows from (2.5) that $m=\lambda+\mu$. Therefore we get $m=(n-1)(\lambda+\mu)$ and hence $\lambda+\mu=0$ because of $n \geq 3$. Since $f=-\lambda^{2}=\frac{c}{4}<0, M$ must be locally congruent to a real hypersurface of type A_{2} or B in a complex hyperbolic space $H_{n}(\mathbb{C})$, if it exists. It is known that the principal curvature α of real hypersurfaces of type A_{2} and B in $H_{n}(\mathbb{C})$ is not equal to zero, and hence the case where $\lambda \neq \frac{f}{\lambda}$ does not occur.

Finally we see that $\lambda=\frac{f}{\lambda}$, that is, $\lambda^{2}=\mu^{2}=f=\frac{c}{4}$. Since we have $\lambda=-\mu$, it follows from (3.14) that $m=0$ and hence M is minimal. It is easy to see that the multiplicity of λ is equal to $2 p$ and that of μ is $2 q$, where $p, q \geq 1$ and $p+q=n-1$. Since $\alpha=0$ and $m=2 p \lambda+2 q \mu=2(p-q) \lambda$, we get $p=q=\frac{n-1}{2}$. Therefore M has the principal curvatures 0 of multiplicity $1, \frac{\sqrt{c}}{2}$ of $n-1$ and $-\frac{\sqrt{c}}{2}$ of $n-1$ in a complex projective space $P_{n}(\mathbb{C})$.

References

1. U.-H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J., 20(1990), 93102
2. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z., 202(1989), 299-311
3. G. A. Lobos and M. Ortega, Pseudo-parallel real hypersurfaces in complex space forms, Bull. Korean Math. Soc., 41(2004), 609-618
4. S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann., 263(1983), 473-478
5. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and taut submanifolds, Math. Sci. Res. Publ., 32(1997), Cambridge Univ. Press, Cambridge
6. R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J., 38(1998), 227234

Department of Mathematics
Hankuk University of Foreign Studies
Seoul 130-791
Korea
E-mail address:
In-Bae Kim, ibkim@hufs.ac.kr
Hye Jeong Park, chang@kangnung.ac.kr
Hyunjung Song, hsong@hufs.ac.kr

Received January 26, 2007
Revised May 7, 2007

[^0]: 2000 AMS Subject Classification: Primary 53C40; Secondary 53C15.
 This research was supported by the research fund of Hankuk University of Foreign Studies.

 The third author was supported by Korea Research Foundation Grant.(KRF-2003-037C00009)

 Keywords and phrases : pseudo-symmetric real hypersurface, Ricci operator, model spaces of type A.

