The C-numerical range of a 3×3 normal matrix

Hiroshi NAKAZATO

Abstract

In this note we study the shape of the C-numerical range of a 3×3 normal matrix.

1. Introduction and Results

In this decade many authors obtained new results in numerical ranges, numerical radii of linear operators and their related topics (cf. [2, 3, 6, 7, 9, 11]). In the paper [5] the author studied a special case of the C-numerical ranges. Recent work [4] provides us a new method to treat the C-numerical ranges. We will prove "weak convexity" of the C-numerical ranges in some sense.

Suppose that $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right)$ and $T=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are complex 3×3 diagonal matrices. We consider a compact subset $W_{C}(T)$ of the Gaussian plane \mathbf{C} defined by

$$
\begin{equation*}
W_{C}(T)=\left\{\operatorname{tr}\left(C U T U^{*}\right): U \in M_{3}(\mathbf{C}), U^{*} U=U U^{*}=I_{3}\right\} \tag{1.1}
\end{equation*}
$$

However this range is not necessarily convex, this range is star-shaped with respect to the point

$$
\begin{equation*}
(1 / 3)\left(c_{1}+c_{2}+c_{3}\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \in W_{C}(T) \tag{1.2}
\end{equation*}
$$

We consider the following 6 special points of $W_{C}(T)$:

$$
\begin{align*}
& \sigma_{1}=c_{1} \alpha_{1}+c_{2} \alpha_{2}+c_{3} \alpha_{3}, \sigma_{2}=c_{1} \alpha_{2}+c_{2} \alpha_{3}+c_{3} \alpha_{1}, \sigma_{3}=c_{1} \alpha_{3}+c_{2} \alpha_{1}+c_{3} \alpha_{2} \tag{1.3}\\
& \sigma_{4}=c_{1} \alpha_{1}+c_{2} \alpha_{3}+c_{3} \alpha_{2}, \sigma_{5}=c_{1} \alpha_{3}+c_{2} \alpha_{2}+c_{3} \alpha_{1}, \sigma_{6}=c_{1} \alpha_{2}+c_{2} \alpha_{1}+c_{3} \alpha_{3} \tag{1.4}
\end{align*}
$$

These are called σ-points of the range $W_{C}(T)$. The 9 line segments

$$
\begin{equation*}
\left[\sigma_{j}, \sigma_{k}\right]=\left\{(1-t) \sigma_{j}+t \sigma_{k}: 0 \leq t \leq 1\right\} \tag{1.5}
\end{equation*}
$$

($j=1,2,3, k=4,5,6$) are contained in the range $W_{C}(T)$. Au-Yeung and Poon gave these results in [1]. We remark that the direction of these line segments :

$$
\begin{aligned}
\sigma_{6}-\sigma_{1} & =\left(c_{1}-c_{2}\right)\left(\alpha_{2}-\alpha_{1}\right), \sigma_{4}-\sigma_{3}=\left(c_{1}-c_{2}\right)\left(\alpha_{1}-\alpha_{3}\right), \\
\sigma_{5}-\sigma_{2} & =\left(c_{1}-c_{2}\right)\left(\alpha_{3}-\alpha_{2}\right), \sigma_{4}-\sigma_{2}=\left(c_{1}-c_{3}\right)\left(\alpha_{1}-\alpha_{2}\right), \\
\sigma_{5}-\sigma_{1} & =\left(c_{1}-c_{3}\right)\left(\alpha_{3}-\alpha_{1}\right), \sigma_{6}-\sigma_{3}=\left(c_{1}-c_{3}\right)\left(\alpha_{2}-\alpha_{3}\right), \\
\sigma_{5}-\sigma_{3} & =\left(c_{2}-c_{3}\right)\left(\alpha_{2}-\alpha_{1}\right), \sigma_{6}-\sigma_{2}=\left(c_{2}-c_{3}\right)\left(\alpha_{1}-\alpha_{3}\right), \\
\sigma_{4}-\sigma_{1} & =\left(c_{2}-c_{3}\right)\left(\alpha_{3}-\alpha_{2}\right) .
\end{aligned}
$$

The following is our new result.

Theorem 1. 1Suppose that $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right)$ and $T=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ are complex 3×3 diagonal matrices. Suppose that two elements z_{1}, z_{2} of $W_{C}(T)$ satisfy the equation

$$
\begin{equation*}
z_{2}-z_{1}=s\left(c_{i}-c_{j}\right)\left(\alpha_{p}-\alpha_{q}\right) \tag{1.6}
\end{equation*}
$$

for some $s \in \mathbf{R}$ with $s \neq 0$ and $1 \leq i \neq j \leq 3,1 \leq p \neq q \leq 3$. Then the line segment $\left[z_{1}, z_{2}\right]$ is contained in the range $W_{C}(T)$.

In the case the range $W_{C}(T)$ is convex, the assertion of the above theorem follows immediately from the convexity of the range $W_{C}(T)$. If c_{1}, c_{2}, c_{3} are colinear, then the range $W_{C}(T)$ is convex by Westwick's theorem ([10]). If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are colinear, then the range $W_{C}(T)=W_{T}(C)$ is convex. So we may assume that $\left(c_{i}-c_{j}\right)\left(\alpha_{i}-\alpha_{j}\right) \neq 0$ for $1 \leq i<j \leq 3$ and c_{i} 's lie on a circle and α_{j} 's lie on a circle. A 3×3 real matrix $A=\left(a_{i j}\right)$ is called doubly stochastic if $\left(a_{i j}\right)$ satisfies

$$
\begin{equation*}
a_{i j} \geq 0 \tag{1.7}
\end{equation*}
$$

for $i, j=1,2,3$ and

$$
\begin{equation*}
\sum_{i=1}^{3} a_{i q}=1, \quad \sum_{j=1}^{3} a_{p j}=1 \tag{1.8}
\end{equation*}
$$

for $p, q=1,2,3$. A 3×3 doubly stochastic matrix A is called orthostochastic if there exists a 3×3 unitary matrix $U=\left(u_{i j}\right)$ with $a_{i j}=\left|u_{i j}\right|^{2}(i, j=1,2,3)$. In [5] it was shown that if $A=\left(a_{i j}\right)$ is a boundary point of the set of 3×3 orthostochastic matrices, then the point ($a_{i j}$) satisfies the equation

$$
F\left(a_{i j}: i, j=1,2,3\right)
$$

$$
\begin{aligned}
& =a_{11}^{2} a_{12}^{2}+a_{21}^{2} a_{22}^{2}+a_{31}^{2} a_{32}^{2}-2 a_{11} a_{12} a_{21} a_{22}-2 a_{11} a_{12} a_{31} a_{32}-2 a_{21} a_{22} a_{31} a_{32} \\
& =a_{11}^{2} a_{13}^{2}+a_{21}^{2} a_{23}^{2}+a_{31}^{2} a_{33}^{2}-2 a_{11} a_{13} a_{21} a_{23}-2 a_{11} a_{13} a_{31} a_{33}-2 a_{21} a_{23} a_{31} a_{33} \\
& =a_{12}^{2} a_{13}^{2}+a_{22}^{2} a_{23}^{2}+a_{32}^{2} a_{33}^{2}-2 a_{12} a_{13} a_{22} a_{23}-2 a_{12} a_{13} a_{32} a_{33}-2 a_{22} a_{23} a_{32} a_{33} \\
& \quad=0 .
\end{aligned}
$$

We call that a general point z of $W_{C}(T)$ is represented by

$$
\begin{equation*}
z=\sum_{i=1}^{3} \sum_{j=1}^{3} c_{i} \alpha_{j} a_{i j} \tag{1.9}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is a boundary point of the set of all 3×3 orthostochastic matrices, and hence the polynomial F vanishes at $\left(a_{i j}\right)$. Conversely the point z with the expression (1.9) by an orthostochastic matrix $\left(a_{i j}\right)$ belongs to $W_{C}(T)$. We prove Theorem 1.1 by using this relation.

We define a subset K of the unit circle by

$$
\begin{gather*}
K=\left\{z \in \mathbf{C}:|z|=1, z_{1}, z_{2} \in W_{C}(T) \text { and } z_{2}-z_{1}=t z \text { for some } t \in \mathbf{R}\right. \\
\left.\operatorname{imply}\left[z_{1}, z_{2}\right] \in W_{C}(T)\right\} . \tag{1.10}
\end{gather*}
$$

This set K is symmetric with respect to the origin. Theorem 1.1 implies that this set contains a set

$$
\begin{equation*}
\left\{\epsilon \frac{\sigma_{j}-\sigma_{k}}{\left|\sigma_{j}-\sigma_{k}\right|}: j=1,2,3, k=4,5,6, \epsilon= \pm 1\right\} \tag{1.11}
\end{equation*}
$$

Under the condition that neither the points c_{1}, c_{2}, c_{3} nor the points $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are colinear, the range $W_{C}(A)$ contains an interior point. Under this condition the range $W_{C}(T)$ is convex if and only if K coincides with the unit circle. We can show that the set K coincides with the set (1.11) in a case. So we may assert that Theorem 1.1 is best possible in some sense. In the case $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right), T=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ with $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\left|\alpha_{3}\right|=1,\left|c_{1}\right|=\left|c_{2}\right|=\left|c_{3}\right|=1, \alpha_{1} \alpha_{2} \alpha_{3}=c_{1} c_{2} c_{3}=1$, the boundary of the range $W_{C}(A)$ consists of some line segments $\ell_{j, k} \subset\left[\sigma_{j}, \sigma_{k}\right](j=$ $1,2,3, k=4,5,6)$ and $\operatorname{arcs} \Gamma_{j}$ of the deltoid

$$
\begin{equation*}
\Gamma=\{2 \exp (i \theta)+\exp (-2 i \theta): 0 \leq \theta \leq 2 \pi\} \tag{1.12}
\end{equation*}
$$

(cf. [5]). If $C=T=\operatorname{diag}(1,-1 / 2+\sqrt{3} i / 2,-1 / 2-\sqrt{3} i / 2)$, then the boundary of $W_{C}(T)$ coincides with the deltoid Γ. In this case $\sigma_{1}=\sigma_{2}=\sigma_{3}=0$ and $\sigma_{4}=3$, $\sigma_{5}=3(-1 / 2-\sqrt{3} i / 2), \sigma_{6}=3(-1 / 2+\sqrt{3} i / 2)$ and the set K coincides with

$$
\left\{\exp \left(i \frac{2 k \pi}{6}\right): k=0,1,2,3,4,5\right\}
$$

This follows from Theorem 1.1 and the strict concaveness of the arc:

$$
\left\{2 \exp (i \theta)+\exp (-2 i \theta): 0 \leq \theta \leq \frac{2 \pi}{3}\right\}
$$

2. Proof of the theorem

In this section we shall prove Theorem 1.1. By using the relations

$$
\begin{aligned}
& a_{13}=1-a_{11}-a_{12}, \quad a_{23}=1-a_{21}-a_{22} \\
& a_{31}=1-a_{11}-a_{21}, \quad a_{32}=1-a_{12}-a_{22} \\
& a_{33}=a_{11}+a_{12}+a_{21}+a_{22}-1,
\end{aligned}
$$

We rewrite the equation of a boubdary point of the set of the 3×3 orthostochastic matrices as the following :

$$
\begin{gather*}
F\left(a_{11}, a_{12}, a_{21}, a_{22}\right)=a_{11}^{2} a_{22}^{2}+a_{12}^{2} a_{21}^{2}-2 a_{11} a_{12} a_{21} a_{22} \\
-2 a_{11} a_{22}\left(a_{11}+a_{22}\right)-2 a_{12} a_{21}\left(a_{12}+a_{21}\right)-2\left(a_{11} a_{12} a_{21}+a_{11} a_{12} a_{22}+a_{11} a_{21} a_{22}\right. \\
\left.+a_{12} a_{21} a_{22}\right)+a_{11}^{2}+a_{12}^{2}+a_{21}^{2}+a_{22}^{2}+2\left(a_{11} a_{12}+a_{11} a_{21}+a_{12} a_{22}+a_{21} a_{22}\right. \\
\left.+2 a_{11} a_{22}+2 a_{12} a_{21}\right)-2\left(a_{11}+a_{12}+a_{21}+a_{22}\right)+1=0 \tag{2.1}
\end{gather*}
$$

This equation is solved with respect to a_{11} as the following :

$$
\begin{align*}
& \left(a_{22}-1\right)^{2} a_{11}=a_{12} a_{21} a_{22}+\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \\
& \quad+2 \epsilon \sqrt{a_{12} a_{21} a_{22}} \sqrt{\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right)} \tag{2.2}
\end{align*}
$$

$(\epsilon= \pm 1)$ on the set

$$
\begin{gather*}
\left\{\left(a_{12}, a_{21}, a_{22}\right): 0 \leq a_{12}, 0 \leq a_{21}, 0 \leq a_{22}, a_{22} \neq 1\right. \\
\left.a_{12}+a_{22} \leq 1, a_{21}+a_{22} \leq 1\right\} \tag{2.3}
\end{gather*}
$$

If $a_{22} \rightarrow 1$, and hence $a_{12} \rightarrow 0, a_{21} \rightarrow 0$, then a_{11} may converges to an arbitrary point of $[0,1]$.

The equation (2.2) implies that the solution a_{11} satisfies

$$
\begin{equation*}
a_{11} \geq 0 \tag{2.4}
\end{equation*}
$$

on the set (2.3). In fact we have

$$
\begin{aligned}
& \left\{a_{11} a_{12} a_{21}+\left(a_{12}+a_{22}-1\right)\left(a_{21}+a_{22}-1\right)\right\}^{2} \\
& \quad-4 a_{12} a_{21} a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \\
& =\left(a_{22}-1\right)^{2}\left(a_{12} a_{21}-a_{12}-a_{21}-a_{22}+1\right)^{2}
\end{aligned}
$$

The solution (2.2) on (2.3) satisfies

$$
\begin{equation*}
1-a_{11}-a_{12} \geq 0 \tag{2.5}
\end{equation*}
$$

In fact we have

$$
\begin{gathered}
\left(a_{22}-1\right)^{2}\left(1-a_{11}-a_{12}\right) \geq a_{21}\left(1-a_{12}-a_{22}\right)+a_{12} a_{22}\left(1-a_{21}-a_{22}\right) \\
-2 \sqrt{a_{12} a_{21} a_{22}} \sqrt{\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right)}
\end{gathered}
$$

where

$$
a_{21}\left(1-a_{12}-a_{22}\right)+a_{12} a_{22}\left(1-a_{21}-a_{22}\right) \geq 0
$$

and

$$
\begin{gathered}
\left\{a_{21}\left(1-a_{12}-a_{22}\right)+a_{12} a_{22}\left(1-a_{21}-a_{22}\right)\right\}^{2}-4 a_{12} a_{21} a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \\
=\left(1-a_{22}\right)^{2}\left(a_{12} a_{21}+a_{12} a_{22}-a_{21}\right)^{2} \geq 0
\end{gathered}
$$

Similarly the solution (2.2) on (2.3) satisfies

$$
\begin{equation*}
1-a_{11}-a_{21} \geq 0 \tag{2.6}
\end{equation*}
$$

The solution (2.2) on (2.3) satisfies

$$
\begin{equation*}
a_{11}+a_{12}+a_{21}+a_{22}-1 \geq 0 \tag{2.7}
\end{equation*}
$$

In fact we have

$$
\begin{gathered}
\left(a_{22}-1\right)^{2}\left(a_{11}+a_{12}+a_{21}+a_{22}-1\right) \geq a_{12} a_{21}+a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \\
-2 \sqrt{a_{12} a_{21} a_{22}} \sqrt{\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right)},
\end{gathered}
$$

where

$$
a_{12} a_{21}+a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \geq 0
$$

and

$$
\begin{gathered}
\left\{a_{12} a_{21}+a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right)\right\}^{2} \\
-4 a_{12} a_{21} a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \\
=\left(a_{22}-1\right)^{2}\left(-a_{22}+a_{12} a_{21}+a_{12} a_{22}+a_{21} a_{22}+a_{22}^{2}\right)^{2} \geq 0 .
\end{gathered}
$$

We also remark that the content of the radical in (2.2) satisfies

$$
\begin{equation*}
a_{12} a_{21} a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right) \geq 0 \tag{2.8}
\end{equation*}
$$

The restriction of the 2 -valued function a_{11} to sub convex domain of (2.3) also satisfies automatically the linear inequalities (2.4), (2.5), (2.6), (2.7) and the inequality (2.8). We shall prove the following lemma.

Lemma 2.1Suppose that $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right), T=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$ where the diagonal entries a_{j} 's and c_{j} 's are arbitrary complex numbers. Suppose that $\sigma_{j}(j=$ $1,2,3,4,5,6)$ are points of the range $W_{C}(T)$ defined by (1.3), (1.4) and $\phi \in[0,2 \pi]$ is an arbitrary angle. Then the equation

$$
\begin{gather*}
\left\{\Re(z \exp (-i \phi)): z \in W_{C}(T)\right\}=\left\{\Re(z \exp (-i \phi)): z \in\left[\sigma_{j}, \sigma_{k}\right]\right. \\
(j=1,2,3, k=4,5,6)\} \tag{2.9}
\end{gather*}
$$

holds.

Proof of Lemma 2.1. We consider even permutation matrices:

$$
P_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and odd permutation matrices:

$$
P_{4}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad P_{5}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad P_{6}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The point σ_{j} corresponds to P_{j} by the relation

$$
\left(c_{1}, c_{2}, c_{3}\right) P_{j}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}=\sigma_{j}
$$

$(1 \leq j \leq 6)$. The above 6 matrices are orthostochastic matrices : $P_{j}=P_{j} \circ P_{j}($ $1 \leq j \leq 6$) where \circ denotes the Hadamard product. By Birkhoff's theorem ([8], p.
200), the convex hull of these 6 matrices coincides the convex set of all 3×3 doubly stochastic matrices. We call representation (1.9) of a general point of $W_{C}(T)$ and the fact that the 9 line segments (1.5) is contained in $W_{C}(T)$. By using these facts, we obtain the inclusion

$$
\begin{aligned}
& \cup\left\{\left[\sigma_{j}, \sigma_{k}\right]: j=1,2,3, k=4,5,6\right\} \subset W_{C}(T) \subset \operatorname{conv}\left(W_{C}(T)\right) \\
& =\left\{\left(c_{1}, c_{2}, c_{3}\right) S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}: S \text { is a doubly stochastic matrix }\right\} \\
& =\operatorname{conv}\left(\left[\sigma_{j}, \sigma_{k}\right]: j=1,2,3, k=1,2,3\right) .
\end{aligned}
$$

The projection $\pi: z(\in \mathbf{C}) \rightarrow \Re(z \exp (-i \phi))(\in \mathbf{R})$ satisfies $\pi(\Gamma)=\pi(\operatorname{conv}(\Gamma))$ for every compact connected set $\Gamma \subset \mathbf{C}$. Thus the relation (2.9) follows from the above inclusion.

Proof of Theorem 1.1. We assume that two points z_{1}, z_{2} of the range $W_{C}(T)$ satisfy the equation

$$
z_{2}-z_{1}=s\left(c_{1}-c_{3}\right)\left(\alpha_{1}-\alpha_{3}\right)
$$

for some $s \in \mathbf{R}, s \neq 0$ with $c_{1} \neq c_{3}, \alpha_{1} \neq \alpha_{3}$. By using a translation, we may assume that $c_{3}=\alpha_{3}=0$. Under this assumption, a general point z of $W_{C}(T)$ is represented by

$$
z=c_{1} \alpha_{1} a_{11}+c_{1} \alpha_{2} a_{12}+c_{2} \alpha_{1} a_{21}+c_{2} \alpha_{2} a_{22}
$$

where $\left(a_{i j}\right)$ is a doubly stochastic matrix satisfying the equation $F\left(a_{11}, a_{12}, a_{21}\right.$, $\left.a_{22}\right)=0$. We choose angle $\phi \in[0,2 \pi]$ so that

$$
\Re\left(c_{1} \alpha_{1} \exp (-i \phi)\right)=0
$$

We consider an affine constraint

$$
\begin{equation*}
\Re\left(\left[c_{1} \alpha_{2} a_{12}+c_{2} \alpha_{1} a_{21}+c_{2} \alpha_{2} a_{22}\right] \exp (-i \phi)\right)=\Re\left(z_{1} \exp (-i \phi)\right), \tag{2.10}
\end{equation*}
$$

on the hypersurface $F\left(a_{11}, a_{12}, a_{21}, a_{22}\right)=0$ under the condition

$$
0 \leq a_{12}, 0 \leq a_{21}, 0 \leq a_{22}, a_{12}+a_{22} \leq 1, a_{21}+a_{22} \leq 1
$$

The affine constrant is reduced to a trivial condition if and only if the equations

$$
\Re\left(c_{1} \alpha_{2} \exp (-i \phi)\right)=0, \quad \Re\left(c_{2} \alpha_{1} \exp (-i \phi)\right)=0, \quad \Re\left(c_{2} \alpha_{2} \exp (-i \phi)\right)=0
$$

hold. If these equations hold, then the range $W_{C}(T)$ lies on a straight line, and the connectedness of the group $U(3)$ guarantees that $\left[z_{1}, z_{2}\right] \subset W_{C}(T)$. So we assume that at least one of

$$
\Re\left(c_{1} a_{2} \exp (-i \phi)\right), \quad \Re\left(c_{2} a_{1} \exp (-i \phi)\right), \quad \Re\left(c_{2} a_{2} \exp (-i \phi)\right)
$$

is non-zero. By Lemma 2.1 there exists a point $z_{0} \in\left[\sigma_{j}, \sigma_{k}\right]$ satisfying

$$
\Re\left(z_{0} \exp (-i \phi)\right)=\Re\left(z_{1} \exp (-i \phi)\right)
$$

for some $j \in\{1,2,3\}, k \in\{4,5,6\}$. This implies that there exists a point ($a_{11}, a_{12}, a_{21}, a_{22}$) satisfying the affine constraint and

$$
a_{12} a_{21} a_{22}\left(1-a_{12}-a_{22}\right)\left(1-a_{21}-a_{22}\right)=0
$$

Thus the two parts of the graph of 2 -valued function a_{11} on the domain (2.3) with the constraint (2.10) is connected. As a continuous image of this connected set, the set

$$
\begin{align*}
& \left\{z \in W_{C}(T): \Re(z \exp (-i \phi))=\Re\left(z_{1} \exp (-i \phi)\right)\right\} \\
& =\left\{z \in W_{C}(T): z=z_{1}+s c_{1} \alpha_{1} \text { for some } s \in \mathbf{R}\right\} \tag{2.11}
\end{align*}
$$

is connected. The assertion of Theorem 1.1 for the case

$$
\left(c_{i}-c_{j}\right)\left(\alpha_{p}-\alpha_{q}\right)=\left(c_{1}-c_{3}\right)\left(\alpha_{1}-\alpha_{3}\right)
$$

follows from (2.11). By changing the roles of $\left(c_{1}, c_{2}, c_{3}\right)$ or ($\alpha_{1}, \alpha_{2}, \alpha_{3}$), we can prove the assertion of Theorem 1.1 for the other cases.

3. Example

We give an example to illustrate Theorem 1.1. Let

$$
\begin{gathered}
c_{1}=\frac{63}{65}-\frac{16}{65} i, \quad c_{2}=-\frac{3}{5}+\frac{4}{5} i, \quad c_{3}=-\frac{5}{13}-\frac{12}{13} i, \\
\alpha_{1}=\frac{40}{41}+\frac{9}{41} i, \quad \alpha_{2}=-\frac{528}{697}+\frac{455}{697} i, \quad \alpha_{3}=-\frac{15}{17}-\frac{8}{17} i .
\end{gathered}
$$

Then the numbers c_{j} 's and α_{j} 's lie on the unit circle $|z|=1$ and satisfy the condition $c_{1} c_{2} c_{3}=1, \alpha_{1} \alpha_{2} \alpha_{3}=1$. Set $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}\right), T=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. The 6σ points of this system are given by

$$
\sigma_{1}=\frac{7583}{9061}-\frac{1342}{45305} i, \sigma_{2}=\frac{7237}{45305}-\frac{5340}{9061} i, \sigma_{3}=-\frac{37969}{45305}+\frac{38874}{45305} i
$$

$$
\sigma_{4}=\frac{126829}{45305}-\frac{124}{45305} i, \sigma_{5}=-\frac{54881}{45305}-\frac{20130}{9061} i, \sigma_{6}=-\frac{12953}{9061}+\frac{11606}{45305} i .
$$

Figure 1:
In this example 6 points of the boundary of $W_{C}(T)$ appear as the point of tangency of the deltoid Γ defined by (1.13) and some line segement $\left[\sigma_{j}, \sigma_{k}\right]$. Those are given by the following:

$$
\begin{gathered}
P_{1}=\frac{17723}{7225}-\frac{576}{7225} i, \quad P_{2}=\frac{195906479}{82101721}+\frac{7805242}{82101721} i \\
P_{3}=-\frac{57241}{48841}+\frac{106480}{48841} i, \quad P_{4}=-\frac{57313}{42025}+\frac{96026}{42025} i \\
P_{5}=-\frac{1289697}{1221025}-\frac{1149984}{1221025} i, \quad P_{6}=\frac{17723}{7225}-5767225 i
\end{gathered}
$$

where P_{1}, \ldots, P_{6} lie on respective line segments $\left[\sigma_{2}, \sigma_{4}\right],\left[\sigma_{3}, \sigma_{4}\right],\left[\sigma_{1}, \sigma_{6}\right],\left[\sigma_{3}, \sigma_{6}\right]$, $\left[\sigma_{3}, \sigma_{5}\right],\left[\sigma_{1}, \sigma_{5}\right]$. Figure 1 shows the boundary of the range $W_{C}(T)$ and the σ-points and the points P_{j} 's. We consider the set K defined by (1.11). In this situation, a unit complex number $z=\exp (i \theta)$ with $-\pi / 2 \leq \theta \leq \pi / 2$ belongs to K if and only if the slope $m=\tan \theta$ satisfies one of the inequalities

$$
m_{1}=-\frac{19}{7} \leq m \leq m_{2}=-\frac{11}{10}, m_{3}=-\frac{31}{131} \leq m \leq m_{4}=\frac{2}{9}
$$

Figure 2:

$$
m_{5}=\frac{61}{57} \leq m \leq m_{6}=\frac{33}{4}
$$

where m_{1}, \ldots, m_{6} are respeective slopes of the line segments $\left[\sigma_{3}, \sigma_{6}\right],\left[\sigma_{1}, \sigma_{6}\right],\left[\sigma_{3}, \sigma_{4}\right]$, $\left[\sigma_{2}, \sigma_{4}\right],\left[\sigma_{1}, \sigma_{5}\right],\left[\sigma_{3}, \sigma_{5}\right]$. Figure 2 shows $6 / 5$-times K.

Acknowledgement The author would like to express his thanks to the refree for his (or her) careful reading of the manuscript and some useful suggestions.

References

[1] Y. H. Au-Yeung and Y. T. Poon, 3×3 orthostochastic matrices and the numerical ranges, Linear Algebra Appl. 27 (1979), 69-79.
[2] T. Ando and T. Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Algebra Appl. 375 (2003), 299-309.
[3] T. Ito and M. Nagisa, Numerical radius norm for bounded module maps and Schur multipliers, Acta Sci. Math. (Szeged) 70 (2004), 195-211.
[4] H. Nakazato, N. Bebiano and J. da Providência, J-orthostochastic matrices of size 3×3 and numerical ranges of Krein space operators, Linear Algebra Appl. 407(2005), 211-232.
[5] H. Nakazato, Set of 3×3 orthostochastic matrices, Nihonkai Math. J. 7(1996), 83-100.
[6] M. Nagisa and S. Wada, Averages of operators and their positivity, Proc. Amer. Math. Soc. 126 (1998), 499-506.
[7] K. Okubo, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl. 371 (2003), 369-375.
[8] A. W. Roberts and D. E. Varberg, "Convex Functions", Academic Press, 1973, New York, San Francisco, London.
[9] H. Takemoto and A. Uchiyama, A remark of the numerical ranges of operators on Hilbert spaces, Nihonkai Math. J. 13 (2002), 1-7.
[10] R. Westwick, A theorem on numerical range, Linear and Multilinear Algebra, 2(1975), 311-315.
[11] T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341 (2002), 111-117.

Department of Mathematical System Sciences,
Faculty of Science and Technology, Hirosaki University 036-8561 Hirosaki, Japan

Received September 1, 2005
Revised October 21, 2006

