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1. Introduction

A Carnot-Caratheodory space, roughly speaking, is a manifold associated with
a distribution and an fibre inner product on the distribution. Carnot-Caratheodory
spaces, are also called Sub-Riemannian Manifolds, or Non-holonomic Riemannian
spaces.

The study of geometric analysis of sub-Riemannian manifolds has been an ac-
tive field over the past several decades. In particular, round about 1993, since the
formidable papers [1,2,4,15,17,19] were published in succession, these works stim-
ulate such research fields to present a scene of prosperity, and demonstrate the
abnormal importance of this topic.

Sub-Riemannian manifolds, on the one hand, are the natural development of
Riemannian manifolds, and are the basic metric spaces on which one can consider
the geometric analysis problem; On the other hand, Sub-Riemannian manifolds have
been found useful in the study of theories and applications of Control theory, PDEs,
the calculus of variations, Mechanic, Gauge fields, etc.

The study of geometric analysis of Sub-Riemannian manifolds is carrying on
the following two folds. The first fold is describing the geometric properties of
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Sub-Riemannian manifolds [2,5,7,8,9,15]; The second fold is devoted to the analysis
problem of Sub-Riemannian manifolds [4,10,11,12,13,14,16].

In this paper we will take the liberty of considering the geometries of Sub-
Riemannian manifolds via a point of view of transform groups, our final purpose
is to establish the relevant geometries in the sense of transformative theories. As we
know that the study of transformative theories over Carnot-Caratheodory spaces is
still a gap.

The organization of this paper is as follows. Section 2 is devoted to introducing
some Definitions of Sub-riemannian manifolds, and states some interesting results
of Sub-Riemannian manifolds; Section 3 studies the corresponding invariants under
the conformal transformation and projective transformation.

2. Preliminaries

Definition 2.1 Let M™ be an n—dimensional smooth manifold. For each point
p € M™, there assigns a k(k < n)—dimensional subspace D*(p) of the tangent space

T,M, then D* = |J D¥(p) forms a tangent sub-bundle of tangent bundles TM =
peM

U T,M, D* is called a k—dimensional distribution over M™. For every point p, if
pEM
there exists a neighbourhood U and k linearly independent vector fields X;, -+ , Xi

in U such that for each point ¢ € U, X;(q),- -+ , Xx(q) is a basis of subspace D*(q),
then we call Distribution D* the k—dimensional smooth distribution (called also
horizontal bundle), and Xy, -- , X} are called a local basis of D* in U, or we say
that X1, , X generate D* in U. We denote by D*|; = Span{Xj,---, X}

Definition 2.2 Let ¢ : M — M be a diffeomorphic mapping. Let M be a
Riemannian space with metric g,. We call ®(gp) the induced Riemannian metric

via ¢, where ®(go)(X,Y) = Go(¢.(X),0.(Y)), X,Y € T,M. If go = ®(go), then ¢

is called an isometric mapping, M and M are called isometric homeomorphic. In
particular, if M = M, ¢ is said to be an isometric transformation.

Definition 2.3 We call {M,Q, g} a Sub-Riemannian manifold with the sub-
Riemannian structure (Q, g), if @ is a k—dimensional smooth Distribution over M™,
and g is a fibre inner product in Q. Here g is called a Sub-Riemannian metric. In
general, g is regarded as some Riemannian metric G, defined on tangent bundle T'M,
restricted to Q. We also denote by I'(Q) the C*°(M)—module of smooth sections

on Q.

Definition 2.4 A non-holonomic connection on sub-bundle @ C T M is a binary




mapping V : I'(Q) x I'(Q) — I'(Q) satisfying the following:
1) Vx(Y+2)=VxY +VxZ
2) Vx(fY)=X(f)Y + fVxY
3) VixievZ = fVxZ +gVyvZ
where X,Y, Z € T'(Q), f,g € C*(M).
Let po : TM — @ be a vector bundle homeomorphic generated by the projec-

tion from T'M onto Q, go = lrm — po be a projection from T'M onto the adjoint
distribution Q. Then, there holds QP Q = T M.

Let m: TM — M be a canonical projection mapping of tangent bundles. Inclu-
sion mapping i : @ — T'M is a vector bundle homomorphism and satisfies tom = .
We now define the pull-back bundle of Q) as follows

™Q={(X,Y)€QxQ: m(X) =n(Y)}

Assume that 7; : 7*Q — Q, j = 1,2 are projection mappings, which project the
pull-back bundle onto the j-th component; «, : TQ — TM is the induced tangent
mapping via .

Definition 2.5 A smooth bundle mapping A : 7*Q — T'Q is called a generalized
connection over @) if it satisfies the following conditions:

1) h is linear with respect to the second component;

2) h satisfies: Toh =7, myoh =1io07s.

Definition 2.6 Let {¢;} be a canonical dilation vector field over @, i.e., for
the natural coordinate system (z?,y“) in @, there holds (z¢,y*) = (z¢, ely?). If the

generalized connection h satisfies V(e,n) € 7*Q, (¢).(h(e,n)) = h(¢:(e),n), then A
is called a generalized linear connection, briefly speaking, i—connection.

For the existence of non-holonomic connections on (), we have the following

Theorem 2.18! There exists a non-holonomic connection on a k—dimensional
smooth distribution ) over M™.

Assume that {ex}a=1,.. x is a basis of Q, then formulae Ve, =T% e, A, p,v =
1,--- ,k define k* functions as {I'f,}, we call {T’f,} the connection coefficients of
the non-holomonic connection V.
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Lemma 2.1 Let {e)}a=1, %, {€r}r=1,.x be two orthogonal bases of Q, re-
spectively, smooth functions {I'j;} over M be the connection coefficients of a non-
holomonic connection V if and only if there holds the following

¥, = XiX3VPTL — Xie(XL)Y) (2.1)

Proof. It is well known that smooth functions {I';;} over M are the connection
coefficients of an non-holomonic connection V if and only if VU,V € I'(Q) there
holds '

U(V#)e, + UM% &, = U(VP)e; + U'VITL ¢ (2.2)
Since the following formulas are tenable
U(V*)E, = U(YEV")Xle, = U(VY)e; + U(YF) X Ve,

UMVHTY 8, = DMVH(XEXIYTY, — Xie(XL)YH)e, = U'VIT e — UYF)XiVie;.
Thus we know that formula (2.2) is equivalent to
UVITY, Y)Y X e + U(Y)) X! Viey = UVITL e,
That is to say, (2.1) is follows. This completes the proof of Lemma, 2.1. D

It is well known that the Lie bracket [-,-] on M is a Lie algebra structure of
smooth tangent vector fields x(M). Since distribution @ is not integrable, then Lie
bracket [, -] is not a Lie algebra structure on Q. We now project the Lie bracket of
tangent vector fields over M onto Q via projection mapping pg : TM — @, then, in
the sense of basis, polex, e,] = Q5 e, determine k° functions Q,,.

Remark 2.1 Let {€)}=1,.. x be an new basis of Q, €\ = X{e,, where (X{)kxk

are non-degenerate, then, for (2} ,, there holds

¥, = Xfeo(X2)YY — X2eu(X5)YY + XXV, (2.3)

Definition 2.7 Tensor fields, defined by Tv(X,Y) = VxY -Vy X—po[ X, Y], VX,Y €

I'(Q), are called Torsion tensors of the connection V on Distribution Q.

Similar to the case of Riemannian manifolds, we have the following interesting
Theorem

Theorem 2.2%8 Given a Sub-Riemannian manifold { M, Q, g} and a projection
po : TM — @), then there exists an unique non-holonomic connection V satisfying

1) Vxg(Y,2) = X(9(Y, 2)) — 9(VxY,Z) — g(Y,VxZ) = 0;
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2) To(X,Y) = VxY — Vy X — po[X, Y] = 0.

Remark 2.2 For the use latter in Section 3, we give a simplificative proof of
Theorem 2.2 here.

Proof. Uniqueness. Let V be an admissible non-holonomic connection with
torsion-free on M. Without loss of generality, takeing {e)} =1,. x to be a basis of

Q, then Ve, =T7% 60, A\, p,v =1,---,k; let go = 1rm — Po be a projection onto
conjugate distribution Q over TM, where Q@Q = TM. Let poler,e,] = Q5 6.5
Qolex, eu] = MY, eq; Polea, eu] = Ay e.; where a =k +1,--- ,n. Then we conclude,

by using the properties of admissible connections, that

ex(g(e,‘, e)) = g(Veseu, €v) + 9(Veyeu, eu) (2.4)
eu(gler,en)) = 9(Ve,en,€x) +9(Ve,er €0) (2.5)
—e,(g(er, ep,)) = —g(Veen, eu) - g(veueu’ ex) (2.6)

Finding the summation of three formulas above, and considering the properties of
torsion-free tensors of nonholonomic connections, then we get, by a direct compu-
tation, that

29(Veren,e0) = ealglen,e.)) +eu(glen, en)) — en(glen en))
+ g(ev, polex, eu]) + g(eu, polev, er]) — g(ex, poley, €v])-

Furthermore, we know that

1 VR
K,u = 59 {e)\(g(eua en)) + e,u.(g(e)\a en)) - en(g(eA, eu))
+g(en)p0[e)n eu]) + g(euapO[ena 6,\}) - g(e)\apﬂ[e/u en])}
1
= 597 {en(gux) + €u(9rn) = exl9ru) + g8 + Guoflin — grollic}

Thus, the admissible connection with torsion-free is determined uniquely by the
metric tensor g and the projection py : TM — Q.

Conversely, the non-holonomic connection V with connection coeflicients defined
by (2.7) is independent of the choice of basis. In fact, we might as well assume that
{ex}a=1, k is an unit orthogonal basis of Q, then (2.7) turns into T, = 3(€%, +

sz\ - Q;);V)

Let {€\}»=1,.. x be an new unit orthogonal basis of Q. Then we have e\ = X lej,

where matrix (X3)ixx is non-degenerate, (Y*)rxx is the inverse matrix of (X3)exk,
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so one arrives, by using (2.3), at the following
~, 1,~, =~ ~
A T E(Q/\p + Ql:,\ - Q::V)

1 .. . . . .
+ S(XAXEYPRL + XXLYPOL - XLXIY0l)

1 1 j v j i v 1 i 1
+ SOe(XDY) - Xie; (XY + S [Xa(X)Y - Xiei(X, )Y
1
2 .
By virtue of ex(X}Y*) = 0 and X! = Y again, we find T, = X{XJYT}; —

Xie;(X)Y}. In addition, by using Lemma 2.1, we get that the connection coeffi-
cients defined by (2.7) determine uniquely an admissible non-holonomic connection

V with torsion-free. This ends the proof of Theorem 2.2. O

[Xie; (XY — Xoe(X)Y)].

Remark 2.3 Similar to Riemannian manifolds, we also say that the non-holonomic
connections with property 1), respectively, 2) are metric, respectively, torsion-free.
The non-holonomic connections satisfying 1) and 2) are called Sub-Riemannian con-
nections. For Theorem 2.2, [18] gives a proof with a approach of projecting Rieman-
nian connection onto the distribution. The method proposed here is a direct proof
for the existence of Sub-Riemannian connections.

We now give some properties of nonholonomic connections as follows. The proofs
are simple. We omit them here.

Properties 2.1 If I}, is a non-holonomic connection of {M, @, g}, T is a (1,2)-
tensor field, then LY, = I'§, + T, is also a non-holonomic connection of {M, Q, g}.

Properties 2.2 Every non-holonomic connection can be decomposed into the
following two parts. The first part is a multiplier of torsion tensors. The second
part is a connection with vanishing torsion tensor.

Properties 2.3 The non-holonomic connections and the corresponding connec-
tions with vanishing torsion tensors have the same self-parallel vector fields.

Theorem 2.3 Under the basis {ex}»=1,.. kx, the connection coefficients of non-
holonomic connections with vanishing torsion tensor are symmetric with respect to
the subscript if and only if [e),e,] € @, ie., O3, =0, A\, p,v=1,--- k.

Proof. Since I'{, — I'};, = Q3. This ends the proof of Theorem 2.3. a

For Sub-Riemannian manifolds, Shouten first considered the curvature problem
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of non-holonomic connections (see [3,6]), he defined the curvature tensors as follows:

Definition 2.8 A Shouten tensor is a mapping K : I'(Q) xI'(Q) — I'(Q) defined
by
K(X,Y)Z =VxVyZ —VyVxZ — Vpx,v1Z — Polao[X, Y], Z]

where X,Y, Z € T'(Q).

Remark 2.4 It is easy to check that Definition 2.8 is well defined. In fact, we
know that the following formulas are tenable.

K(fX,Y)Z = fK(X,Y)Z,
K(X,fY)Z = fK(X,Y)Z;
K(X,Y)(fZ) = fK(X,Y)Z.

For Shouten tensors, we have:
Properties 2.4 K(X,Y)Z = -K(Y,X)Z.

Proof. Since [X,Y] = —[Y, X], so there holds po[X, Y] = —po[Y, X], po[a0[X, Y], Z] =
—polqo[Y; X], Z]. Then we get, by a direct computation, that

KX,Y)Z+K(Y,X)Z = VxVyZ—VyVxZVpx,v1Z — Polao]X,Y), Z]
+ VyVxZ —VxVyZVpvx1Z — polgolY; X1, Z]
=0

By using Jacobi identity of Poisson bracket and Definition 2.8, we also have
Properties 2.5 K(X,Y)Z+ K(Y,Z)X + K(Z,X)Y = 0.

We now denote by K(X,Y;Z,W) = g(K(Z,W)Y, X). Then, for the arbitrary
X =X?e\, Y =Yte,, Z = Z%,, W = Wre,, K(ex, eu)e, = K* n,ex, We get
K(X,Y;Z,W) = Kx\u X YHZ'W*.

In particular,
K)\,u.wc = K(6A7 €u; €v, en)-

Take a basis of distribution @ as {ex}a=1,. k, by using Properties 2.4 and 2.5 of
Shouten tensors, one can write down

Proposition 2.6 1) K, = —K*,,.; 2) K’\M + K2 ep + K2 = 0.
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It is well known that there hold the following formulas for the curvature tensor
R over Riemannian manifolds:

*3) R(X,Y;Z,W) = —-R(Y,X;Z,W) = —R(X,Y; W, Z);
*4) R(X,Y; Z,W) = R(Z,W; X, Y).

Since Distribution @ is not involutive, so the curvature tensor K does not satisfy
the properties *3) * 4). We only obtain:

K(XaY)Z>W) = _K(KX;Z')W)_g(pO[QO[Z’W],XLY)
—9(polgo[Z, W], Y], X) + qo[Z, W]g(X,Y).

Of course, when Q is involutive, go[Z, W] = 0. In this setting, we have the analogue
similar to Riemannian curvature tensors.

Remark 2.5 Since the curvature tensor K does not satisfy properties *3) * 4),
so we can not give out the second Bianchi identity of Shouten curvature tensors
similar to Riemannian curvature tensors.

Let K (ex, eu)es = K™, puex, by using Ve e, =T} e, polex, e,] = Q5 .ev, qoler, eu] =
M3 eq, polea, €u] = Af en, A, v=1,--- k;a=k+1,--- ,n, then we know that

KKV)\;,L = eA(FZu) - eu(rgu) + Fgw]-_‘:u - F:w :‘\)u - Q8.5 — MG AG (28)

Apt wy prtav

According to Proposition 2.6, we get
vaw;l, - Kw/.uuu = waup. (29)

Thus, ¢"*(K“,uu — K u) = 0. Similar to the case of Riemannian manifolds, We
call
K = g™ K", (2.10)

the scalar curvature of Shouten curvature tensors.

3. The Invariants of Some Transformations

For the transformative theories on Riemannian manifolds, there are many inter-
esting research results. The authors had been studied this class problems and ob-
tained some conclusions (see [21, 22, 23]). But, as we know, there is not any research
results related to transformative theories over Sub-Riemannian manifolds. In view
of this fact, we will consider the transformative theories over Carnot-Caratheodory
spaces.
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3.1 Conformal Transformations

Definition 3.1.1 Let 9,5 be two bundle metrics on an non-integrable smooth
distribution @ over M™. If there exists a function p such that

*

g=e*g (3.1.1)

then we say that g and g are conformal (briefly, 5 is conformal to g). In particular,

if p=constant, we say that !} and g are similitude (briefly, 5 is similar to g).

Since the Sub-Riemannian metric is positive definite, so the fact 5 is conformal
to g is equivalent to that there exists a positive function o such that 9= og. It is

*
obvious that if ¢ is conformal to g, then g is conformal to 9. In addition, if g is
conformal to ¢’, then g is conformal to ¢’.

Let {ex} =1, x be a basis of @, then (3.1.1) can be written as

Iau= € g, (3.1.2)

Denote by || X]||, || X||*, &, 6* the length of X € I'(Q)) and the included angle of
X,Y € I'(Q) corresponding to g and 5, respectively, then we have || X || = e?|| X]|,0 =
0*.

Assume that g is conformal to g and dim(@) > 2. We will study the relationships
of Sub-Riemannian connection coefficients, curvature tensors corresponding to g and
* *

g. At first, it is easy to see that g ** = e~2°g*. By a direct computation in terms

of (2.7), we find the Sub-Riemannian connection corresponding to :(;‘ can be written
as

* 14 1 bl VK
D{u = T+ 50700 {guer(e) + guacu(”) — gauen(e®)}
qu + gun{gpme)\(p) + gn)\eu(p) - gz\uen(p)}

I)/\p. + 6;:6)\(/)) + 6K€M(P) - g)\ugynen(p)

that is .
5, =T%, +6iea(p) + 85eu(p) — grug” ex(p) (3.1.3)
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Substituting (3.1.3) into (2.8), we have

*

K o = e,\(f’ ) — eu([‘ w)t I% Aw re ™ I o f“:\)u =5, f wv — MZAG,
= K+ e,\(é;je,,(p) + 6yeu(p) — 9w g™ eu(p))
- eu(éfe,,(p) + dpex(p) — gng™en(p))
+ (0Xew(p) + 85ex(p) — grug™e(p)) (S e.(p) + 6, en(p) — gug“ e.(p))
— (drew(p) +05eun(p) — guwg™e.(p))(85en(p) + 8 er(p) — grng“e.(p))
- c)‘\);4((5¢:§er/(p) + e, (p) - gw,,g'“eb(p))

Mu(8e(p) + 8 en(p) — gug“e.(p))

Ty, (05ew(p) + 05ex(p) — grug™e.(p))

— TL.(85e(p) + & ex(p) — grng“elp))

— TS (pen(p) + 85en(p) — guwg™e(p))

By using '}, — 'y, = %, [ex, eu] — Q5 ,ex = M}, eq, and putting formula above
in order, then one arrives at

*

K" = Ko+ i{eroe,(o) +ex(p)en(p) + 5ongeu(p)es) ~ T eulp))
— {eno (o) + eu(P)en(p) + 50w eu(p)eu(o) ~ Toneu(o))

+ gnfeun(g™en(p)) + T}, en(p) — g" eL(P)%(P)E 6.9 eu(p)e.(p)}
= gw{ea(g™es(p)) + 19" eu(p) —g”‘eb(p)ex(p) 659 ew(p)e(p)}

+ SEMSeq (3.1.4)

Denote by V., e,(p) = exoe,(p) —T¥,e.(p). By virtue of the admissible charac-
teristics of Sub-Riemannian connections and g9’ = 8%, we get

ex(g™) = —g™I¥, — ¢g*“T%, (3.1.5)
Thus we conclude

ex(9™eu(p)) + T5.9"e.(p)
= ex(9™e.(p)) — eu(p)er(g™) — g™ T, e.(p)
= g™ (ex o eu(p) — T e(p)).

That is to say
Ve, (gwew'(p)) = nge)‘ (ew(p)) : (3.1.6)
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For convenience, we let

1

P = Vesen(p) —ex(p)es(p) + 59Aug“"ew(p)eL(p),

From (3.1.6), we know

A kW Kw Kw 1o w
p';\:g Prw = vex (g ew(p)) —9g eu(p)e)\(p) + 56)\9 ew(p)eb(p)a

Pxv — Pvr = M)?yea(p)a
Thus

K 5)\“ = an\p + sz)\u - 5;)0;1.1/ + g/\l/pz - gy,up§ + (SSM)?#EQ(,O)
Considering the retraction with x and v, we have

K Ee)\p, = Kee)\u + kM;\Xp,ea(p)‘

S0
M5jea(p) = £ (K ‘o = K'ou)
Put 1
S =K " — EJZKEeAw
then

S nu)\u = Snw\,u =+ 550)\1/ - 6')?p;u/ + QAVPZ - g;wp',{-
Considering the retraction again with x and A, then we arrive at
S euep, = Seuey, + (k - 2)pp,u - guup:
takeing the action with g,, on (3.1.9), one has
e 5= 5 = 2(k - 1),

where S = g"#S¢,,. Thus we obtain

pi= 2@ sE= S-S

Substituting (3.1.10) into (3.1.9), one gets

* . 1 *
S “veu = Svep — (k- 2)puu — 2(k — l)gvp(s —e* S),

or

. S x S
S “veu m o= S%eu 20k = 1)gm (k —2)pup.
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Put

S
Lup, = Sx/p - Q(Tl_)—gl/u’
then 1
pu,u = k____z—(Lup.—' Luy) (3111)
1 *
Py = 9" puu = m(Lﬁ —e* Lk (3.1.12)

Finally, substituting (3.1.11), (3.1.12) and (3.1.8) into (3.1.7), we know

*

K K 1 5 x ® ol
K vap — K VAL + m[dy,(L)\u'“’ L/\u) - 5,\ (L;w_ L;w)
+ gz\u(Lz - 62PL)‘,, L Z) - g;w(L')\c - esz)w )‘)] + (K e — Ee)\/,l.)-
Denote by
K K 1 K K [7€
C vip = K vap + m[ép[//\u 6)\L;w + g)\u — Guv ] —6uK e (3113)

The formula (3.1.13) is equivalent to the following

C"y)\,, = KRV)‘” — 2(614.K ey — 6:K€p.eu + gque,ue” _ g;wKe,\en)
S . .
- (k — 1)(k — 2) (g;wé)‘ - g)u/(s#)
1
+ k(k — 2) (6§Ke€‘“’ - JZKEGAV + gllrl/KEE/\n - g/\uKee/J.n) (3114)
Then

C "uan = C%au (3.1.15)

Similar to the case of Riemannian manifolds, we also call C = (C®,au) defined by

(3.1.14) the Weyl conformally curvature tensors. This implies the following

Theorem 3.1.1 The Weyl conformally curvature tensors are invariants under
the sub-conformal transformation.

Remark 3.1.1

(1) If @ is integrable, then (3.1.14) is exactly the analogue of Riemannian man-
ifolds.

(2) For a flat metric g, it is obvious that C*,,, = 0. If g is conformal to a flat
metric g, then C “uauw = 0.
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Proposition 3.1.1 The Conformal curvature tensors C' = (Crn), Cavrp =
k%, satisfy

1 CKVA;L —CRV/,LA;

2 w\u. + cr Auv + cr BUA %(6KK e T 6; Eelzu + 65K€ep)\);

4) C¢y = 0;

)
) €
3) Crwan = —Coup;
) C
)

k-2 . —
5 Ceueu Keeuu, Ceuey - _Cepeu

|

| Proof. It is not hard to derive that the properties above are tenable. We omit
| it here. m]
| .

Definition 3.1.2 Let ¢ : M™ — M™ be a diffeomorphic mapping, and {M, Q, g}
and {M, @, g} be two k—dimensional Sub-Riemannian manifolds. If the mapping ¢
satisfies ¢.(Q) = Q, g = €*®(3g), we say that ¢ is a Sub-conformal transformation.
In this setting we say that Sub-Riemannian manifolds { M, @, g} and Sub-riemannian
manifolds {M, @, g} are the Sub-Riemannian isometric homoeomorphic.

conformal transformations over Sub-Riemannian manifolds M™(n > 3) with k& (k >

|
|
|
\
| Theorem 3.1.2 Conformal curvature tensors are invariants under the Sub-
|
| 3) dimensional smooth distribution.

Definition 3.1.3 For all ¢, {¢,} are sub-conformal transformations, then {¢;}
is called the sub-conformal transformative group. Let X be the horizontal vector
fields induced by {¢:}. If {¢:} is the sub-conformal transformative group, then there
exists a scalar function p; such that

®4(95) = exp(2p¢)9ps D = &¢(p)-
Since ¢g is an identical map, i.e., pg = 0. Thus, one arrives at

0 0
[ggq)t(gﬁ)]tzo = 2[5%GXP(2Pt)]t=0 " 9p
Let %%t-hzo = p, then we have
| Lxg = 2pg
Conversely, if there exists a scalar function p such that Lxg = 2pg.
Put p = ¢s(p), considering the deformation of the left side of the following
formula 5
[5; P4(94:(9))]t=0 = 2p(P) 95
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and getting the following

0 o _1;0
5 24(960)li=0 = [ @elGs1su)=0 = @5 [P 901)li=s

Thus, by a direct computation, we have

®,(95) = exp(2p5)9p
This implies that there holds the following

Theorem 3.1.3 The transformative group {¢:} is the sub-conformal transfor-
mative group if and only if there exists a scalar function p such that the vector fields
X induced by {¢;} satisfies

Lxg = 2pg (3.1.16)

Similarly, we also call the vector fields X = X?e, satisfying (3.1.16) the sub-
conformal Killing vector fields.

We now consider the geometric characteristics for conformal curvature tensor
C*uxu- Let C*,y, =0, by a direct computation, one has K*,5, = 0 for k£ # 2. This
says that the distribution Q is involutive. In other words, we obtain the following

Theorem 3.1.4 The Sub-Riemannian manifold {M, @, g} is conformal flat if
and only if the distribution @ is involutive.

3.2 Projection Transformations

In this section, we assume that there exists a basis satisfying (e, e,] € @, A=

1,--- , k over distribution @), then the connection coefficients of non-holonomic con-
nections are symmetric with respect to subscripts, ie., I';, = T';,.

Deﬁnitign 3.2.1 Assume that there exist two classes of non-holonomic con-
nections I',T" with symmetry with respect to subscripts on {M,Q}. If the paths

corresponding to I' coincides always with that corresponding to I', then we say that
I' is projective correspondence to I.
Let curve v : ¥(t) = r*(t)e, be a path associated with I", then
r*(tex(r”) + T¥,rr* = a(t) (3.2.1)

where a(t) is a function on v, t is a arbitrary parameter. Since 7 is also a path

*
associated with I", so we know

r(t)exa(r”) + Fipr)‘r“ = B(t) (3.2.2)
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v

*
v —_— v
Define a tensor LY, =I" 5, — I'§,, then
VoA v KTV A VoK
Ly, r'rt = (B8 —a)r”, rL} rrt = (8- a)'r

Since the right hand of this equality is symmetric with respect to x and v, so one
can interchange x, v and consider the subtraction between these equalities, then

OFLY  — 6V L5 Yrer*rt =0 3.2.3
w™Ap wH A

Considering the symmetric part of (3.2.3), it is not hard to see that
6oLiy — 0o L5, + 05X Ly, — 05 LG, + 6, L5y — 6, L5 = 0.
Let k = w, and find the summation for this equality above, we have
= 0xpu + 0 0n,

I | €
where ¢, = =7 L¢,.

Conversely, if there exist the covariant vector fields ¢, such that for non-holonomic
connections over {M, @} there holds

T 5 =T+ 0,08+ 050p

Then we obtain that (3.2.1) and (3.2.2) are satisfied simultaneously. Thus we have

Theorem 3.2.1 The non-holonomic connections ' and T on {M,Q} are pro-
jective correspondence if and only if there exists a horizontal vector field ¢, such
that .

I, =T%, +50x + 050, (3.2.4)

Since [ex, e,) € @, Au=1,---,k, s0Qf, = 0. Considering the following formula
K 1':)\;1 = 8,\(F Z,u) - el-b(F ’;V)+ r gw r ‘;l,)l/_ f‘ Zw f-‘ ‘XV - M)C\X;LAZV'
Substituting (3.2.4) into this formula we get

L5, = Ko +di(ealen) —T3ew — orpn)
—5§(€u((p,,) - qu‘/’w - ‘P;LSOV) + 55(@\(90;1) - eu(‘PA))

Definition 3.2.2 Let {M,Q} be a Sub-riemannian space with bundle metrics

g,é, and denote by Sub-Riemannian connections F,f‘ determined by g,&, respec-
tively. If there exists a horizontal vector field ¢, such that (3.2.4) is tenable, then

we say that g is projective correspondence to !3
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Let P = Veﬁpu — PP, by using (27)7 then

€

1 .. 1
de = 59 ex(ger) = 56,\(10gg),

where g = det(g,)
By virtue of (3.2.4), there holds

1 * 1
§e>\(log 9) = —2-e,\(logg) + (k+ 1)pa.
Thus

-1 ex(lo g -lo )

are the gradient vector fields. So we have
Ve,\ Yy = ve,,‘P)\, Porv = P
By using (3.2.5) and (3.2.6), then

*

K K'u)\u = KNuAu + 5:<p)w - 5;90;1.1/
Considering the retraction with indexes k, A on (3.2.7), then we get
K 6uey = Keueu - (k - 1)‘P;w-

Thus
1 iy € €
QD#,, = _k‘T(K veuy K uep.)-

Substituting this equality into (3.2.7), we get
%% Kw\u, = W’iu)\,u
where W = (W*,u) is defined as

1
an\u = Knu)‘y + m(ézKEue/\ - 6:\€Keuep,)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

We call formula (3.2.9) the Weyl sub-projective curvature tensor of Sub-Riemannian

spaces. According to (3.2.8), then

Theorem 3.2.2 The Weyl sub-projection curvature tensors are invariants under

the projective transformations.

From Theorem 3.2.2, it is not hard to derive that Proposition 3.2.1 below is

tenable.
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Proposition 3.2.1 For the Weyl sub-projective curvature tensors W*,,,,, there
holds the following

1) Wﬁu)\u = _’Wnuu)\;
2) WKVA,U. + WNA[J.I/ + Wnuu)\ = 5ZKwuuA + 5§wauu + 55wa)\y,;
3) Www.x,u = Z_:%wau)\-

On the other hand, by virtue of (3.2.9), one can prove easily that Theorem 3.2.3
below is tenable.

Theorem 3.2.3 The Weyl sub-projective curvature tensor of Sub-Riemannian
space {M, @, g} with dimension 2 is identically vanishing.

Definition 3.2.3 Assume that ¢; are the projective transformations for all ¢,
then the transformative group {¢;} is the projective transformative group.

By a similar argument just as Section 3.1 and the statements {20], we have

Theorem 3.2.4 The transform group {¢;} is the projective transformative group
if and only if there exist vector field ¢, such that there holds

A
‘CXF;\W = Qoﬂdb + QOy(su

where X is the vector field induced by {¢:}.
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