REVERSES OF OPERATOR INEQUALITIES ON OPERATOR MEANS

MASATOSHI FUJII*, RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

Abstract. In this note, we improve the non-commutative Kantorovich inequality as follows: If A, B satisfy $0<m \leq A, B \leq M$, then for each $\mu \in[0,1]$

$$
A \nabla_{\mu} B \leq \frac{M \nabla_{\mu} m}{M!_{\mu} m} A!_{\mu} B
$$

where $A!_{\mu} B$ is the μ-harmonic mean and $A \nabla_{\mu} B$ is the μ-arithmetic mean. Next we discuss the optimality of the constant $(\sqrt{M}-\sqrt{m})^{2}$ in the difference reverse inequality

$$
A \nabla B-A!B \leq(\sqrt{M}-\sqrt{m})^{2}
$$

for all positive invertible A, B with $0<m \leq A, B \leq M$.
In addition, we compare the μ-geometric mean $A \not \sharp_{\mu} B$ with $A \nabla_{\mu} B, A!_{\mu} B$ and $\frac{1}{2}\left(A \nabla_{\mu} B+A!_{\mu} B\right)$ for positive operators A and B.

1. Noncommutative Kantorovich inequality. Let Φ be a unital positive linear map on $B(H)$, the C^{*}-algebra of all bounded linear operators on a Hilbert space H. Then Kadison's Schwarz inequality asserts

$$
\begin{equation*}
\Phi\left(A^{-1}\right)^{-1} \leq \Phi(A) \tag{1}
\end{equation*}
$$

for all positive invertible $A \in B(H)$.
If Φ is defined on $B(H) \oplus B(H)$ by

$$
\begin{equation*}
\Phi(A \oplus B)=\frac{1}{2}(A+B) \quad \text { for } A, B \in B(H) \tag{2}
\end{equation*}
$$

then Φ satisfies

$$
\begin{equation*}
\Phi\left((A \oplus B)^{-1}\right)^{-1}=A!B, \quad \Phi(A \oplus B)=A \nabla B \tag{3}
\end{equation*}
$$

for all positive invertible $A, B \in B(H)$, where $A!B$ is the harmonic operator mean and $A \nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [5]. Consequently, Kadison's Schwarz inequality implies the arithmetic-harmonic mean inequality, i.e., $A!B \leq A \nabla B$, cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean inequality, i.e., $A!_{\mu} B \leq A \nabla_{\mu} B$ for $\mu \in[0,1]$, is proved.

Key words and phrases. Kantorovich inequality, reverse inequality, operator mean.

Moreover a reverse of Kadison's Schwarz inequality is known as follows:

$$
\begin{equation*}
\Phi(A) \leq \frac{(M+m)^{2}}{4 M m} \Phi\left(A^{-1}\right)^{-1} \tag{4}
\end{equation*}
$$

if A satisfies $0<m \leq A \leq M$ for some constants $m<M$, cf. [4, Theorem 1.32] and [3]. Thus it follows that

$$
\begin{equation*}
A \nabla_{\mu} B \leq \frac{(M+m)^{2}}{4 M m} A!_{\mu} B \tag{5}
\end{equation*}
$$

for A, B with $0<m \leq A, B \leq M$. It is nothing but the noncommutative Kantorovich inequality introduced in [1] (for the case $\mu=\frac{1}{2}$), cf. [3]. We here remark the following facts:
(1) The Kantorovich constant $\frac{(M+m)^{2}}{4 M m}$ is understood as the ratio of $M \nabla m$ by $M!m$, that is,

$$
\frac{(M+m)^{2}}{4 M m}=\frac{M \nabla m}{M!m} .
$$

(2) The Kantorovich constant is the maximum among $\left\{\frac{M \nabla_{\mu} m}{M!\mu m} ; \mu \in[0,1]\right\}$. That is,

$$
\frac{(M+m)^{2}}{4 M m}=\frac{M \nabla m}{M!m} \geq \frac{M \nabla_{\mu} m}{M!_{\mu} m}
$$

for all $\mu \in[0,1]$.
Based on these facts, we prove the following improvement:
Theorem 1. If A, B satisfy $0<m \leq A, B \leq M$, then for each $\mu \in[0,1]$

$$
\begin{equation*}
A \nabla_{\mu} B \leq \frac{M \nabla_{\mu} m}{M!_{\mu} m} A!_{\mu} B \tag{6}
\end{equation*}
$$

Proof. We put $K_{\mu}=\frac{M \nabla_{\mu} m}{M!_{\mu} m}, C=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ and $h=\frac{M}{m}$. Then it suffices to show that

$$
1 \nabla_{\mu} C \leq K_{\mu} 1!_{\mu} C
$$

by the transformer inequality, or equivalently,

$$
1 \nabla_{\mu} t \leq K_{\mu} 1!_{\mu} t \text { for } t \in\left[h^{-1}, h\right]
$$

This follows from $K_{\mu}=\max \left\{\frac{1 \nabla_{\mu} t}{1!\mu t} ; t \in\left[h^{-1}, h\right]\right\}$.
2. Reverse inequalities of difference type. A difference version of the noncommutative Kantorovich inequality is also introduced by

$$
\begin{equation*}
A \nabla B-A!B \leq(\sqrt{M}-\sqrt{m})^{2} \tag{7}
\end{equation*}
$$

for all positive invertible $A, B \in B(H)$ with $0<m \leq A, B \leq M$, cf. [1, Theorem 6]. More generally, it has already known in [4, Theorem 1.32] that

$$
\begin{equation*}
\Phi(A)-\Phi\left(A^{-1}\right)^{-1} \leq(\sqrt{M}-\sqrt{m})^{2} \tag{8}
\end{equation*}
$$

for all positive invertible $A \in B(H)$ with $0<m \leq A \leq M$.
On the other hand, the optimality of the constant $(\sqrt{M}-\sqrt{m})^{2}$ has been discussed. It is shown by the following example in [2, Example 2.4]:

Example 2. Let A and B be 2×2 matrices defined by

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\frac{1}{3}\left(\begin{array}{cc}
4 & 2 \sqrt{2} \\
2 \sqrt{2} & 11
\end{array}\right)
$$

Then we can take $m=1$ and $M=4$ because spectra of both A and B are $\{1,4\}$. Furthermore we have

$$
A \nabla B=\frac{1}{3}\left(\begin{array}{cc}
8 & \sqrt{2} \\
\sqrt{2} & 7
\end{array}\right)
$$

and

$$
A!B=\frac{2}{9}\left(\begin{array}{cc}
8 & \sqrt{2} \\
\sqrt{2} & 7
\end{array}\right)
$$

We pay our attention to the fact that

$$
A!B=\frac{2}{3} A \nabla B
$$

in this example, and show that it happens often in the following way:
Lemma 3. Let A and B be 2×2 matrices satisfying $|A|=|B| \neq 0$ and $\left|A \nabla_{\mu} B\right| \neq 0$. Then

$$
\begin{equation*}
A!_{\mu} B=\frac{|A|}{\left|A \nabla_{\mu} B\right|} A \nabla_{\mu} B \tag{9}
\end{equation*}
$$

Proof. We put $\nu=1-\mu$ and denote by \tilde{X} the cofactor matrix of a matrix X, i.e., $\tilde{X}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ for $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then we have

$$
\begin{aligned}
A!_{\mu} B & =\left(\nu A^{-1}+\mu B^{-1}\right)^{-1}=\left(\frac{\nu}{|A|} \tilde{A}+\frac{\mu}{|B|} \tilde{B}\right)^{-1} \\
& =\frac{|A|}{|\nu \tilde{A}+\mu \tilde{B}|}(\nu \tilde{A}+\mu \tilde{B})=\frac{|A|}{|\nu A+\mu B|}(\nu A+\mu B)
\end{aligned}
$$

as required.

In the below, we fix matrices A and B for a given $M>0$ as follows:

$$
A=\left(\begin{array}{cc}
M+1 & 0 \tag{10}\\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right)+1 \quad \text { and } \quad B=U A U^{*}
$$

where $U=\left(\begin{array}{cc}u & v \\ w & z\end{array}\right)$ is unitary.
Lemma 4. Let A, B, μ and ν be as in above. Then the spectrum and determinant of $A \nabla_{\mu} B$ are as follows:

$$
\begin{gathered}
\sigma\left(A \nabla_{\mu} B\right)=\left\{1+\frac{M}{2}\left(1 \pm \sqrt{1-4 \nu \mu|w|^{2}}\right)\right\} \\
\left|A \nabla_{\mu} B\right|=1+M+M^{2} \nu \mu|w|^{2}
\end{gathered}
$$

Thus it follows that

$$
\begin{aligned}
A \nabla_{\mu} B-A!_{\mu} B & =\frac{\left|A \nabla_{\mu} B\right|-|A|}{\left|A \nabla_{\mu} B\right|} A \nabla_{\mu} B \\
& \leq \frac{M^{2} \nu \mu|w|^{2}}{1+M+M^{2} \nu \mu|w|^{2}}\left(1+\frac{M}{2}\left(1+\sqrt{1-4 \nu \mu|w|^{2}}\right)\right) \\
& =\frac{M^{2} \nu \mu|w|^{2}}{1+\frac{M}{2}\left(1-\sqrt{1-4 \nu \mu|w|^{2}}\right)}
\end{aligned}
$$

Summing up, we have
Lemma 5. Let A, B, μ and ν be as in above. Then

$$
A \nabla_{\mu} B-A!_{\mu} B \leq \frac{M^{2} \nu \mu|w|^{2}}{1+\frac{M}{2}\left(1-\sqrt{1-4 \nu \mu|w|^{2}}\right)}
$$

Under such preparation, we have the following conclusion:
Theorem 6. Let A, B, μ and ν be as in above. That is, they satisfy $1 \leq A, B \leq$ $M+1$. If $M \geq \frac{4 \delta}{(1-\delta)^{2}}$ for $\delta=\sqrt{1-4 \nu \mu}$, then the optimal upper bound $(\sqrt{M+1}-1)^{2}$ of $A \nabla_{\mu} B-A!_{\mu} B$ can be attained.

In particular, if $\mu=\frac{1}{2}$, then the optimal upper bound $(\sqrt{M+1}-1)^{2}$ can be attained for all $M>0$.

Proof. For convenience, we put

$$
t=4 \nu \mu|w|^{2}, s=\sqrt{1-t} \text { and } N=M / 2
$$

Hence Lemma 5 ensures that it suffices to estimate

$$
\max \left\{\frac{(M / 2)^{2} t}{1+M / 2 \cdot(1-\sqrt{1-t})} ; t \in[0,1]\right\}=\max \left\{\frac{N^{2}\left(1-s^{2}\right)}{1+N(1-s)} ; s \in[0,1]\right\}
$$

Since $g^{\prime}(s)=\frac{N^{2}\left(N s^{2}-2(1+N) s+N\right)}{(1+N(1-s))^{2}}$ for $g(s)=\frac{N^{2}\left(1-s^{2}\right)}{1+N(1-s)}(s \in[0,1))$, the solusion of $g^{\prime}(s)=0$ is $\left\{\frac{1}{N}(N+1 \pm \sqrt{2 N+1})\right\}$. So we adopt

$$
s_{0}=\frac{1}{N}(N+1-\sqrt{2 N+1}) \in[0,1]
$$

Then it is easily seen that $g\left(s_{0}\right)=(\sqrt{2 N+1}-1)^{2}=(\sqrt{M+1}-1)^{2}$. Incidentally it is clear that $\delta \leq s \leq 1$ by $|w|^{2} \in[0,1]$. So we need the condition $\delta \leq s_{0}(\leq 1)$ to be attained the optimal constant, and it is equivalent to $M \geq \frac{4 \delta}{(1-\delta)^{2}}$.

For convenience, we rephrase Theorem 6 in a general setting:
Theorem 7. Suppose that $0<r \leq A, B \leq R$ and $0<\mu<1$. If $\frac{R}{r} \geq\left(\frac{1+\delta}{1-\delta}\right)^{2}$ for $\delta=\sqrt{1-4 \nu \mu}$, then the optimal upper bound $(\sqrt{R}-\sqrt{r})^{2}$ of $A \nabla_{\mu} B-A!_{\mu} B$ can be attained.

In particular, if $\mu=\frac{1}{2}$, then the optimal upper bound $(\sqrt{R}-\sqrt{r})^{2}$ can be attained.

Remark. We mention that the second half of Theorem 7 has been discussed in the further observation after [2, Example 2.4].
3. Comparison with the geometric mean. The μ-geometric mean $A \sharp_{\mu} B$ for positive (invertible) operators A and B is defined by

$$
A \sharp_{\mu} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\mu} A^{\frac{1}{2}},
$$

and we denote by $A \sharp B=A \#_{\frac{1}{2}} B$ simply, see [5].
It is well-known that

$$
A!_{\mu} B \leq A \not \sharp_{\mu} B \leq A \nabla_{\mu} B
$$

for positive operators A and B.
In this section, we compare the μ-geometric mean $A \sharp_{\mu} B$ with $A \nabla_{\mu} B, A!_{\mu} B$ and $\frac{1}{2}\left(A \nabla_{\mu} B+A!_{\mu} B\right)$ for positive operators A and B. We first discuss the following reverse inequalities:

Theorem 8. If A and B are positive operators $0<m \leq A, B \leq M, h=\frac{M}{m}$ and $\mu \in(0,1)$, then

$$
\begin{equation*}
L(\mu)^{-1} A \nabla_{\mu} B \leq A \sharp_{\mu} B \leq L(1-\mu) A!_{\mu} B, \tag{11}
\end{equation*}
$$

where

$$
L(\beta)=\frac{1-\beta+\beta h}{h^{\beta}} \quad(0<\beta \leq 1 / 2), \quad=\frac{1-\beta+\beta h^{-1}}{h^{-\beta}} \quad(1 / 2<\beta<1) .
$$

Proof. The representing functions of $\nabla_{\mu}, \sharp_{\mu}$ and $!_{\mu}$ are

$$
1-\mu+\mu t, t^{\mu} \text { and } \frac{t}{(1-\mu) t+\mu}
$$

respectively. So if we set

$$
L_{1}=\max _{h^{-1} \leq t \leq h}\left\{\frac{1-\mu+\mu t}{t^{\mu}}\right\} \quad \text { and } \quad L_{2}=\max _{h^{-1} \leq t \leq h}\left\{\frac{(1-\mu) t+\mu}{t^{1-\mu}}\right\}
$$

then we have

$$
A \nabla_{\mu} B \leq L_{1} A \sharp_{\mu} B \quad \text { and } \quad A \sharp_{\mu} B \leq L_{2} A!_{\mu} B
$$

and L_{1}, L_{2} are optimal.
Next we determine them exactly. For this, we show that

$$
g(t)=\frac{1-t+t h^{-1}}{h^{-t}}-\frac{1-t+t h}{h^{t}}(0<t<1)
$$

satisfies $g(t)<0$ for $0<t<1 / 2$ and $g(t) \geq 0$ if $1 / 2 \leq t<1$. Noting that $g(t)=t(1-t)(f(t)-f(1-t))$ for

$$
f(t)=\frac{h^{t}-h^{-t}}{t}=\frac{k(t)}{t}(0<t<1)
$$

it suffices to prove that $f(t)$ is an increasing function, which is exhibited as lemma:
Lemma 9. The function $f(t)=\frac{h^{t}-h^{-t}}{t}=\frac{k(t)}{t}$ for $0<t<1$ is increasing.
Proof. Since $k^{\prime}(t)=(\log h)\left(h^{t}+h^{-t}\right)>0$ and $k^{\prime \prime}(t)=(\log h)^{2} k(t)>0, k(t)$ is increasing and convex. Combining it with $k(0)=0$, it follows that for $\alpha \in(0,1)$,

$$
\alpha k(t)=\alpha k(t)+(1-\alpha) k(0) \geq k(\alpha t+(1-\alpha) 0)=k(\alpha t) .
$$

Therefore we have

$$
\frac{t}{t+\epsilon} k(t+\epsilon) \geq k\left(\frac{t}{t+\epsilon}(t+\epsilon)\right)=k(t)
$$

for $\epsilon>0$, so that $f(t)=\frac{k(t)}{t}$ is increasing, as desired.

Remark. In the proof of [1, Theorem 11], it is shown that if σ is an operator mean, $0<m \leq A, B<M$ and $h=\frac{M}{m}$, then

$$
\begin{equation*}
A \sigma B \geq \frac{g(h)-g\left(h^{-1}\right)}{h-h^{-1}} B+\frac{h g\left(h^{-1}\right)-h^{-1} g(h)}{h-h^{-1}} A \tag{12}
\end{equation*}
$$

where g is the representing function of $\sigma, g(t)=1 \sigma t$ for $t \geq 0$. Therefore, if $f(t)=\frac{h^{t}-h^{-t}}{t}(0<t<1)$ as in Lemma 9, then we have

$$
\begin{equation*}
A \sharp_{\mu} B \geq \frac{1}{h-h^{-1}}\{(1-\mu) f(1-\mu) A+\mu f(\mu) B\} . \tag{13}
\end{equation*}
$$

Noting that $f(t)$ is increasing by Lemma 9 , it follows from (13) that

$$
A \sharp_{\mu} B \geq \begin{cases}\frac{f(\mu)}{h-h^{-1}} A \nabla_{\mu} B & \left(0<\mu \leq \frac{1}{2}\right), \\ \frac{f(1-\mu)}{h-h^{-1}} A \nabla_{\mu} B & \left(\frac{1}{2} \leq \mu \leq 1\right) .\end{cases}
$$

Unfortunately the above estimation is not better than that of Theorem 8 by Lemma 9. As a matter of fact, if $0<\mu \leq \frac{1}{2}$, then

$$
\left(L(\mu)^{-1}-\frac{f(\mu)}{h-h^{-1}}\right) \mu\left(h-h^{-1}\right)(1-\mu+\mu h)=\mu(1-\mu)(f(1-\mu)-f(\mu)) \geq 0 .
$$

Similarly, if $\frac{1}{2} \leq \mu \leq 1$, then
$h\left(L(\mu)^{-1}-\frac{f(1-\mu)}{h-h^{-1}}\right)(1-\mu)\left(h-h^{-1}\right)\left(1-\mu+\mu h^{-1}\right)=\mu(1-\mu)(f(\mu)-f(1-\mu)) \geq 0$.

Next we compare $A \sharp B$ and $\frac{A \nabla B+A!B}{2}$.
Theorem 10. If A and B are positive operators, then

$$
\begin{equation*}
\frac{A \nabla B+A!B}{2} \geq A \sharp B . \tag{14}
\end{equation*}
$$

On the other hand, if $0<m \leq A, B \leq M$ and $K=\frac{m \nabla M+m!M}{2(m \sharp M)}$, then

$$
\begin{equation*}
\frac{A \nabla B+A!B}{2} \leq K A \sharp B \tag{15}
\end{equation*}
$$

Proof. We put

$$
f(t)=4 \cdot \frac{1 \nabla t+1!t}{2 \sqrt{t}} \quad \text { for } t \in\left[h^{-1}, h\right], \text { where } h=\frac{M}{m} .
$$

Then $f^{\prime}(t)=\frac{(t-1)^{3}}{2 t \sqrt{t}(t+1)^{2}}$ and $f^{\prime \prime}(t)>0$, so that $\min f(t)=f(1)=1$. Therefore we have the former.

To prove the latter, we note that $f^{\prime}(t)<0$ for $0<t<1, f^{\prime}(t)>0$ for $t>1$ and $f(h)=f\left(h^{-1}\right)$. It follows that

$$
\max f(t)=\max \left\{f\left(h^{-1}\right), f(h)\right\}=f(h),
$$

which implies (15).

Next we consider the weighted version of the above, in which they are not ordered in the sense that

$$
f_{\mu}(t)=\frac{1 \nabla_{\mu} t+1!_{\mu} t}{2\left(1 \not \sharp_{\mu} t\right)} \nsupseteq 1 .
$$

So one of inequalities we can discuss is a reverse one as follows:

Theorem 11. If A and B are positive operators $0<m \leq A, B \leq M$ and $h=\frac{M}{m}$, then

$$
\begin{equation*}
k_{\mu} A \not \sharp_{\mu} B \leq \frac{A \nabla_{\mu} B+A!_{\mu} B}{2} \leq K_{\mu} A \sharp_{\mu} B, \tag{16}
\end{equation*}
$$

where $k_{\mu}=f_{\mu}\left(\left(\frac{\mu}{1-\mu}\right)^{2}\right)$, and $K_{\mu}=f_{\mu}(h)$ if $0<\mu<\frac{1}{2}$, and $K_{\mu}=f_{\mu}\left(h^{-1}\right)$ if $\frac{1}{2}<\mu<1$.

Proof. We put $\nu=1-\mu$ for convenience. Then

$$
f_{\mu}^{\prime}(t)=\frac{\nu \mu(t-1)^{2}\left(\nu^{2} t-\mu^{2}\right)}{2 t^{\mu+1}(\mu+\nu t)^{2}}
$$

Noting that $f_{\mu}^{\prime}(1)=f_{\mu}^{\prime}\left(\frac{\mu^{2}}{\nu^{2}}\right)=0, f_{\mu}(t)$ is decreasing in $\left(0, \frac{\mu^{2}}{\nu^{2}}\right)$ and $f_{\mu}(t)$ is increasing in $\left(\frac{\mu^{2}}{\nu^{2}}, \infty\right)$. Hence it follows that

$$
\max \left\{f_{\mu}(t) ; t \in\left[h^{-1}, h\right]\right\}=\max \left\{f_{\mu}\left(h^{-1}\right), f_{\mu}(h)\right\} .
$$

If $0<\mu<\frac{1}{2}$, then $f_{\mu}\left(h^{-1}\right) \leq f_{\mu}(h)$, and, if $\frac{1}{2}<\mu<1$, then $f_{\mu}\left(h^{-1}\right) \geq f_{\mu}(h)$. As a matter of fact, it is assured as follows: We put $g(h)=\frac{f_{\mu}(h)}{f_{\mu}\left(h^{-1}\right)}$ for $h \geq 1$. Then $g(1)=1$. Since

$$
\log g(h)=\log \frac{\mu h+\nu}{\mu+\nu h}+(1-2 \mu) \log h
$$

it follows that

$$
\{\log g(h)\}^{\prime}=\frac{\mu}{\mu h+\nu}-\frac{\nu}{\mu+\nu h}+\frac{1-2 \mu}{h}=\frac{\mu \nu(\nu-\mu)(h-1)^{2}}{h(\mu h+\nu)(\mu+\nu h)} .
$$

Finally the left hand side of (16) follows from $k_{\mu}=\min f_{\mu}(t)$.

References

[1] J.I.Fujil, M.Nakamura, J.E.Pečarić and Y.Seo, Bounds for the ratio and difference between parallel sum and series via Mond-J.E.Pečarić method, Preprint.
[2] M.Fujii, S.Izumino and R.NAKAMOTO, Upper bounds for the difference between symmetric operator means, Sci. Math. Japon., 63(2006), 103-111.
[3] M.Fujil and M.NaKamura, Kadison's Schwarz inequality and noncommutative Kantorovich inequality, Sci. Math. Japon., 63(2006), 101-102.
[4] T.Furuta, J.Mićić, J.E.Pečarić and Y.Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[5] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
*) Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
**) Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.
E-mail address: nakamoto@base.ibaraki.ac.jp

Received June 13, 2006
Revised August 12, 2006

