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LEFT UNITARILY INVARIANT NORMS
ON MATRICES
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ABSTRACT. In operator theory, unitarily invariant norms and related inequali-
ties have been studied intensively. In this article, weaker invariance; left unitary
invariance and related results are observed.

1. INTRODUCTION

Unitarily invariant norms and their inequalities have been studied well in operator
theory. See [1] for instance. And weaker invariances of norms have been observed;
weakly unitarily invariance, unitary similarity invariance, and so on. C.K. Li and
N.K. Tsing gave such invariant norms a general point of view: they consider G-
actions on matrices and G-invariant norms and their properties ([6, 7, 8]). See also
[9].

In this article, we would like to study the following norm $\mu$ on the set of all
complex n-square matrices:

$\mu(UA)=\mu(A)$

for all matrices $A$ and all unitary $U$ . This is equivalent to

$\mu(|A|)=\mu(A)$

for all matrices $A$ . This property is called unitary row equivalence invariance in [7,
pp. 436], and we call this property left unitary invariance. By studying left unitarily
invariant norms, we think that we can recognize the theory of unitarily invariant
norms from another point of view: we present properties of left unitarily invari-
ant norms; characterizations of left unitary invariance, submultiplicativity, essential
subclasses, non-existence of a finite essential subclass, and a characterization of left
unitarily invariant norms given by inner products.

We would like to express our sincere gratitude to Professor Tsuyoshi Ando for
valuable comments. And we would like to thank the members of Tohoku-Seminar
for helpful suggestions.

2. LEFT UNITARILY INVARIANT NORMS ON $MATR\backslash $ICES

Let $M_{n}(\mathbb{C})$ be the set of all complex n-square matrices. A norm $\mu$ on $M_{n}(\mathbb{C})$ is
said to be unitarily invariant (abbreviated to ui) if

$\mu(UAV)=\mu(A)$
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for all $A\in M_{n}(\mathbb{C})$ and all unitary $U,$ $V\in M_{n}(\mathbb{C})$ . In this article, a norm $\mu$ on $M_{n}(\mathbb{C})$

is said to be left unitarily invariant (abbreviated to lui) if

$\mu(UA)=\mu(A)$

for all $A\in M_{n}(\mathbb{C})$ and all unitary $U\in M_{n}(\mathbb{C})$ .
Left unitary invariance is characterized as follows:

Theorem 2.1. Let $\mu$ be a norm on $M_{n}(\mathbb{C})$ . Then the following are equivalent:
(i) $\mu$ is left unitarily invariant.
(ii) $\mu(|A|)=\mu(A)$ for all $A\in M_{n}(\mathbb{C})$ .
(iii) $\mu(AB)\leqq\Vert A\Vert\mu(B)$ for all $A,$ $B\in M_{n}(\mathbb{C})$ .
Here $\Vert$ . II is the operator norm on $M_{n}(\mathbb{C})$ and $|A|=\sqrt{A^{*}A}$ .

Proof. $(i)\Leftrightarrow(ii)$ and $(iii)\Rightarrow(i)$ are easy to see.
$(i)\Rightarrow(iii)$ : we may and do assume that $\Vert A\Vert=1$ . Since a contraction is a convex

combination of unitary matrices, $A$ is of the form: $A=\sum_{j=1}^{N}\lambda_{j}U_{j}$ for $\lambda_{j}(\geqq 0)$ and

unitary $U_{j}(j=1,2, \ldots, N)$ with $\sum_{j=1}^{N}\lambda_{j}=1$ . It folows that

$\mu(AB)$ $=$ $\mu((\sum_{j=1}^{N}\lambda_{j}U_{j})B)$

$\leqq$ $\sum_{j=1}^{N}\lambda_{j}\mu(U_{j}B)=\sum_{j=1}^{N}\lambda_{j}\mu(B)=\mu(B)$ .

Hence, the proof is complete. $\square $

Example. Let $\mu$ be a left unitarily invariant norm on $M_{n}(\mathbb{C})$ and let $C\in M_{n}(\mathbb{C})$

be invertible. Then we have the left unitarily invariant norm $\mu_{C}$ defined by

$\mu_{C}(A)$ $:=\mu(AC)$ $(A\in M_{n}(\mathbb{C}))$ .

Proposition 2.2. Let $\mu$ be a unitarily invariant norm on $M_{n}(\mathbb{C})$ and let $C\in M_{n}(\mathbb{C})$

be invertible. Then the left unitarily invariant norm $\mu_{C}$ defined above is unitarily
invariant if and only if $C$ is a scalar multiple of a unitary matrix.

Proof. If $\mu_{C}$ is unitarily invariant, $\mu(AUCV)=\mu(AC)$ for all $A\in M_{n}(\mathbb{C})$ and all
unitary $U,$ $V$ . For instance,

$\mu$(diag(1, $0,$ $\cdots$ , $0$) $Udiag(s_{1}(C),$ $s_{2}(C),$ $\cdots$ , $s_{n}(C))V$ ) $(\#)$

is constant for all unitary $U,$ $V$ , where $s_{i}(C)$ denotes the i-th singular value of $C$

with $s_{1}(C)\geqq s_{2}(C)\geqq\cdots\geqq s_{n}(C)$ . Taking $U$ as a permutation matrix for 1 and $i$ ,
and $V$ as $U^{*}$ , we see that the above value $(\#)$ is $s_{i}(C)\mu(diag(1,0, \cdots 0))$ . Hence, the
singular values are identical. The converse is clear and the proof is complete. $\square $
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Example. ($G(C)$ -radius $r_{G(C)}$ in [8].) For an invertible matrix $C\in M_{n}(\mathbb{C})$ , we
have the left unitarily invariant norm $f_{C}$ on $M_{n}(\mathbb{C})$ defined by

$f_{C}(A)$ $:=$ max $|Tr(UAC)|$
$U$ : unitary

$=\max_{nS:Cotraction}$
$|Tr(SAC)|=\Vert AC\Vert_{1}$

for $A\in M_{n}(\mathbb{C})$ , where $\Vert\cdot\Vert_{1}$ is the trace norm. Equalities follow from the fact that
a contraction is a convex combination of unitary matrices and the duality between
the trace norm and the operator norm. This $f_{C}$ is the $G(C^{*})-$ radius $r_{G(C^{*})}$ in [8,
pp. 183]; $r_{G(C)}(A)=$ max $|H((UC)^{*}A)|$ .

$U$ : unitary

Remark that we have

$U,V:unitary\max|Tr(UAVC)|=\sum_{i=1}^{n}s_{i}(A)s_{i}(C)$

due to von Neumann ([10, pp. 514]).
Although some of Theorem 2.3 are known in [8, Theorem 3.4], we have the fol-

lowing with a simple proof for our case:
Theorem 2.3. Let $A,$ $B\in M_{n}(\mathbb{C})$ . Then the following are equivalent:
(i) $\mu(A)\leqq\mu(B)$ for all lui norms $\mu$ .
(ii) $\mu(AC)\leqq\mu(BC)$ for all lui norms $\mu$ and all invertible $C$ .
(iii) $\mu(AC)\leqq\mu(BC)$ for some lui norms $\mu$ and all invertible $C$.
(iv) $\mu(AC)\leqq\mu(BC)$ for some lui norms $\mu$ and all matrices $C$.
(v) $\mu(AP)\leqq\mu(BP)$ for some lui norms $\mu$ and all projections $P$.
(vi) $A=VB$ for some contraction $V$ .

Proof. $(i)\Rightarrow(ii)\Rightarrow(iii)$ and $(iv)\Rightarrow(v)$ are clear.
$(iii)\Rightarrow(iv)$ : since the set of invertible matrices is dense in $M_{n}(\mathbb{C})$ and the map
$C\mapsto\mu(\cdot C)$ is continuous, (iii) implies (iv).
$(vi)\Rightarrow(i)$ : this follows from Theorem 2.1.
$(v)\Rightarrow(vi)$ : take a unit vector $x\in \mathbb{C}^{n}$ and denote the orthogonal projection to the
subspace $\mathbb{C}x$ by $P$ . By assumption,

$\mu(|AP|)=\mu(AP)\leqq\mu(BP)=\mu(|BP|)$ .
Since the matrices $|AP|,$ $|BP|$ are at most rank-one, $|AP|=\alpha P,$ $|BP|=\beta P$ for
$\alpha,$

$\beta\geqq 0$ . $\mu(\alpha P)\leqq\mu(\beta P)$ implies $\alpha\leqq\beta$ , or
$PA^{*}AP=\alpha^{2}P\leqq\beta^{2}P=PB^{*}BP$.

Hence,
$\Vert Ax\Vert\leqq\Vert Bx\Vert$

for all $x\in \mathbb{C}^{n}$ , and (vi) follows. $\square $

Remark that we can replace “lui” with “ui” in Theorem 2.3.
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By Theorem 2.3, we have several essential subclasses for the set of left unitarily
invariant norms in the following sense: a subclass $C$ in lui norms is said to be essential
if for $A,$ $B\in M_{n}(\mathbb{C})$ ,

$\mu(A)\leqq\mu(B)$

for all lui norms $\mu$ whenever
$\mu(A)\leqq\mu(B)$

for all $\mu\in C$ .
In [8], C. K. Li and N. K. Tsing consider the existence of finite essential subclasses

for G-invariant norms. We apply [8, Theorem 4.3] to our case: if there were a finite
essential subclass for lui norms, then we would have

$span${ $UC$ : unitary $U$} $=M_{n}(\mathbb{C})$

for all $C\neq O\in M_{n}(\mathbb{C})$ . But for any non-invertible matrix $C\neq O$ ,

$span${ $UC$ : unitary $U$ } $=M_{n}(\mathbb{C})\cdot C\neq M_{n}(\mathbb{C})$ .
Hence, we have

Proposition 2.4. There is no finite essential subclass for left unitarily invariant
norms.

For the trace norm $\Vert\cdot\Vert_{1}$ , the following may be considered as an essential subclass
in Theorem 2.3:

$h(|AC|)=\Vert AC\Vert_{1}\leqq\Vert BC\Vert_{1}=b(|BC|)$

for all $C\in M_{n}(\mathbb{C})$ . This is equivalent to
$|R(AC)|\leqq\prime b(|BC|)$

for all $C\in M_{n}(\mathbb{C})$ . Here we observe another inequality:

Proposition 2.5. Let $A,$ $B\in M_{n}(\mathbb{C})$ .
$|R(AC)|\leqq|R(BC)|$

for all $C\in M_{n}(\mathbb{C})$ if and only if there is a complex number $\alpha(|\alpha|\leqq 1)$ such that
$A=\alpha B$ .

Proof. Let $\varphi,$
$\psi$ be the linear functionals on $M_{n}(\mathbb{C})$ defined by

$\varphi(\cdot)=^{r}b(A\cdot)$ , $\psi(\cdot)=R(B)$ .
Then the assumption implies

ker $\psi\subseteqq ker\varphi$ .
By the well-known fact ([2, Appendix $A]$ ), there exists a complex number $\alpha$ such
that

$\varphi=\alpha\psi$ .
This means the assertion. $\square $

We study the submultiplicativity of lui norms. See [4, Theorem] or [5, Theorem
5.5.7] for the corresponding result for ui norms.
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Theorem 2.6. Let $\mu$ be a lui norm on $M_{n}(\mathbb{C})$ . Then the following are equivalent:
(i) $\mu$ dominates the operator norm, $i.e.,$ $\Vert A\Vert\leqq\mu(A)$ for all $A\in M_{n}(\mathbb{C})$ .
(ii) $\mu$ is submultiplicative, $i.e.,$ $\mu(AB)\leqq\mu(A)\mu(B)$ for all $A,$ $B\in M_{n}(\mathbb{C})$ .
(iii) $\mu$ is spectrally dominant, $i.e.,$ $\rho(A)\leqq\mu(A)$ for all $A\in M_{n}(\mathbb{C})$ , where $\rho(A)$ is
the spectral mdius of $A;\rho(A)$ $:=\max${ $|\lambda$ I : $\lambda$ is an eigenvalue of $A$}.

Proof. $(i)\Rightarrow(ii)$ : this follows from Theorem 2.1.
$(Ii)\Rightarrow(iii)$ : take an eigenvector $x(\neq 0)$ for an eigenvalue $\lambda$ of $A$ and put $X=$
$(xx\ldots x)\in M_{n}(\mathbb{C})$ . Then we have

$|\lambda|\mu(X)=\mu(AX)\leqq\mu(A)\mu(X)$ .

(See also [3, Theorem 5.6.9].)
$(iii)\Rightarrow(i)$ : for $A\in M_{n}(\mathbb{C})$ ,

$\Vert A\Vert^{2}=\Vert A^{*}A\Vert=\rho(A^{*}A)\leqq\mu(A^{*}A)\leqq\Vert A^{*}\Vert\mu(A)=\Vert A\Vert\mu(A)$ .

It is well-known that for each unitarily invariant norm $\mu$ , we have

$\mu(AoB)\leqq\Vert A\Vert\mu(B)$ .

See [4, pp. 95], for instance. But this is not the case for lui norms:
For

$A=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)B=\left(\begin{array}{l}1-1\\00\end{array}\right)C=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ ,

we have
$\Vert(A\circ B)C\Vert_{1}>\Vert A\Vert\Vert BC\Vert_{1}$ .

The following characterizes lui norms given by inner products on matrices. This
kind of norms is called elliptical and studied in [7]. Here we have a proof from the
viewpoint of the theory of operator algebras.

Theorem 2.7. ([7, Theorem 4.4]) Let $\mu$ be a norm on $M_{n}(\mathbb{C})$ that is given by an
inner product $\langle\cdot, \cdot\rangle_{0}$ on $M_{n}(\mathbb{C})$ ;

$\mu(A)$ $;=\sqrt{\langle A,A\rangle_{0}}$ $(A\in M_{n}(\mathbb{C}))$ .

If $\mu$ is left unitarily invariant, then we have a positive definite matrix $C\in M_{n}(\mathbb{C})$

such that
$\mu(A)=\Vert AC^{\frac{1}{2}}\Vert_{2}=\sqrt{R(|A|^{2}C)}$ $(A\in M_{n}(\mathbb{C}))$ .

Proof. We recall basic facts of the standard representation of $M_{n}(\mathbb{C})$ : we identify
$M_{n}(\mathbb{C})$ with $\mathbb{C}^{n^{2}}$ as a Hilbert space via the inner product $\langle\cdot, \cdot\rangle$ induced by the trace
Tr. For $A\in M_{n}(\mathbb{C})$ , we denote the corresponding vector in $\mathbb{C}^{n^{2}}$ by $\eta(A)$ and we
have the inner product $\langle\cdot, \cdot\rangle$ on $\mathbb{C}^{n^{2}}$ defined by

$\langle\eta(A), \eta(B)\rangle=h(B^{*}A)$ $(A, B\in M_{n}(\mathbb{C}))$ .
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By the left multiplication, we have the $*-$ representation $\pi$ of $M_{n}(\mathbb{C})$ on $\mathbb{C}^{n^{2}}$ ; for
$A\in M_{n}(\mathbb{C})$ ,

$\pi(A)\eta(C)$ $:=\eta(AC)$ $(C\in M_{n}(\mathbb{C}))$ .

And we define the conjugation $J$ on $\mathbb{C}^{n^{2}}$ by $J\eta(C)$ $:=\eta(C^{*})(C\in M_{n}(\mathbb{C}))$ and the
commutant of $\pi(M_{n}(\mathbb{C}))$ by

$\pi(M_{n}(\mathbb{C}))^{\prime}$ $:=\{X\in B(\mathbb{C}^{n^{2}})|X\pi(A)=\pi(A)X(A\in M_{n}(\mathbb{C}))\}$ .

It is easy to see that $J\pi(A)J\eta(B)=\eta(BA^{*})$ and it is known that

$\pi(M_{n}(\mathbb{C}))^{\prime}=J\pi(M_{n}(\mathbb{C}))J$.

The inner product $\langle\cdot, \cdot\rangle_{0}$ in the assertion induces one on $\mathbb{C}^{n^{2}}$ ;

$\langle\eta(A),\eta(B))_{0}^{\sim}:=\langle A, B\rangle_{0}$ $(A, B\in M_{n}(\mathbb{C}))$ .

This is represented by a positive definite $X\in B(\mathbb{C}^{n^{2}})$ such as
$\langle\eta(A), \eta(B)\rangle_{0}^{\sim}=\langle X\eta(A), \eta(B)\rangle$ .

Then the left unitary invariance of $\mu$ yields

$\langle X\eta(A), \eta(A)\rangle=\mu(A)=\mu(UA)=\langle\pi(U)^{*}X\pi(U)\eta(A), \eta(A)\rangle$

for all $A\in M_{n}(\mathbb{C})$ and all unitary $U\in M_{n}(\mathbb{C})$ . Therefore, $X=\pi(U)^{*}X\pi(U)$ for all
unitary $U$ and unitary matrices generate $M_{n}(\mathbb{C})$ so that

$X\in\pi(M_{n}(\mathbb{C}))^{\prime}$ .

The preceding argument implies

$X\eta(A)=\eta(AC)$

for a positive definite $C\in M_{n}(\mathbb{C})$ and the proof is complete. $\square $
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