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COMMON INVARIANT SUBSPACES OF TWO DOUBLY
COMMUTING OPERATORS ON `2 ⊗ C2

TAKAHIKO NAKAZI AND MICHIO SETO

Abstract. In this paper, we study common invariant subspaces of T and S
on `2 ⊗ C2 where T = T ⊗ IC2 and S = I`2 ⊗ S. We describe such invariant
subspaces using T and S.

1. Introduction

Let H = H1 ⊗ H2 be a Hilbert space where Hj is a Hilbert space for j = 1, 2. Let
Tj be a bounded linear operator on Hj and Ij an identity operator on Hj. We will
write

T1 = T1 ⊗ I2 and T2 = I1 ⊗ T2.

For X = T1, T2, T∗
1 or T∗

2, LatX denotes the set of all invariant subspaces of X in
H. In this paper, we are interested in LatT1 ∩ LatT2 and LatT∗

1 ∩ LatT∗
2.

For M in LatT1 ∩ LatT2 put

Vj = Tj | M (j = 1, 2).

For N in LatT∗
1 ∩ LatT∗

2, put

S∗
j = T∗

j | N (j = 1, 2).

For a closed subspace K in H, PK denotes the orthogonal projection from H onto
K. When H = M ⊕ N , put

A = PMT2PN and B = PNT∗
1PM

then

T2 =

[
V2 A
0 S2

]
and T∗

1 =

[
V ∗

1 0
B S∗

1

]
.

Hence

T2T∗
1 =

[
V2V

∗
1 + AB AS∗

1

S2B S2S
∗
1

]
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and

T∗
1T2 =

[
V ∗

1 V2 V ∗
1 A

BV2 S∗
1S2 + BA

]
.

Since T2T∗
1 = T∗

1T2,
AB | M = V ∗

1 V2 − V2V
∗
1

and
BA | M = S2S

∗
1 − S∗

1S2.

Thus V ∗
1 V2 = V2V

∗
1 if and only if AB = 0, and S2S

∗
1 = S∗

1S2 if and only if BA = 0.
If A = 0 then V ∗

1 V2 = V2V
∗
1 and S2S

∗
1 = S∗

1S2.
H2 denotes the usual Hardy space on the unit circle in C and q is called inner

when q is a unimodular function in H2. Such a problem has been studied in the
following cases.

(1) H1 = H2 = H2 and T1 = T2 are a usual shift on H2 ([1],[2],[5],[6]).

(2) H1 = H2 = H2 and T1 = T2 are a backward shift ([4]).

(3) H1 = H2 and H2 = C2, and T1 is the shift on H2 and T2 is the truncated shift
on C2 ([3]).

Even if in very special examples, our problem is still very difficult. Our mo-
tivation is to make clear the causes by considering most special case. Hence we
will not dare to generalize our results. In this paper, we assume that dim H2 = 2,
that is, H2 = C2. {e1, e2} denotes the standard basis for C2, that is, e1 =t [1, 0] and
e2 =t [0, 1]. We will write PK = P1 for K = H1⊗ [e1] and PK = P2 for K = H1⊗ [e2].
If T2 is a bounded linear operator on C2 then we may assume that T2 is a triangular
matrix under the standard basis. In order to study LatT1 ∩ LatT2 it is enough to
consider when

T2 =

[
0 1
0 0

]
or T2 =

[
1 x
0 0

]
for x 6= 0.

Then T2
2 = 0 or T2

2 = T2. In this paper, for arbitrary T1 we study LatT1 ∩ LatT2

when T2
2 = 0 or T2

2 = T2. We determine M ∈ LatT1∩LatT2 when A = 0. Moreover,
when T1 does not have orthogonal invariant subspaces, we show that AB = 0 if and
only if LatT1 ∩ LatT2 = LatT1 ⊗ LatT2.

In this paper, [S] denotes the closed linear span of a subset S in H. If T2
2 = 0

then T2H = H1 ⊗ [e1]KerT2 = H1 ⊗ [e1] and KerT∗
2 = H1 ⊗ [e2], and if T2

2 = T2 then
T2H = H1 ⊗ [e1], KerT2 = H1 ⊗ [e2 − xe1] and KerT∗

2 = H1 ⊗ [e2]. In general, if M
is in LatT1 ∩ LatT2 then M = KerV ∗

2 ⊕ [V2M ]. It is clear that if V1V
∗
2 = V ∗

2 V1 then
V1KerV ∗

2 ⊆ KerV ∗
2 . This will be used several times in this paper.

The nilpotent case of T2 is studied in Section 2. The idempotent case of T2

is studied in Section 3. In Section 4 several concrete examples are given and it
is noted that one of them can be applied to some invariant subspaces of the two
variable Hardy space.
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2. Nilpotent case

In this section, we assume that T2 =

[
0 1
0 0

]
, that is, T2

2 = 0.

Theorem 2.1 Suppose M ∈ LatT1 ∩ LatT2, then the following are valid.

(i) M = M2 ⊕ [T2M2] and [T2M2] = K3 ⊗ [e1] where K3 ∈ LatT1.

(ii) M2 = M0⊕M2∩KerT2⊕M2∩KerT∗
2, M2∩KerT2 = K1⊗[e1] and M2∩KerT∗

2 =
K2 ⊗ [e2] where K2 ∈ LatT1, K2 ⊆ K3 and K1 ⊕ K3 ∈ LatT1.

(iii) dim M0 = dim P1M0 = dim P2M0.

(iv) P1M0 ⊆ (H1 ª (K1 ⊕ K3)) ⊗ [e1] and P2M0 ⊆ (K3 ª K2) ⊗ [e2].

(v) M=[RangeA]⊕M∩KerA∗ where M∩KerA∗ = {f⊗e1+g⊗e2 ∈ M : f⊗e2 ∈ M}
and M ∩ KerA∗ ∈ LatT1 ∩ LatT∗

2. Hence M ∩ KerA∗ ⊇ K2 ⊗ [e2].

Proof. (i) Put M2 = M ª [T2M ] then T2M = T2M2 because T2
2M = [0]. Since

[T2M ] = K3 ⊗ [e1] and T1T2 = T2T1, K3 belongs to LatT1.
(ii) Since KerT2 = H1 ⊗ [e1] and KerT∗

2 = H1 ⊗ [e2],M2 = M0 ⊕ M2 ∩ KerT2 ⊕
M2 ∩KerT∗

2, and M2 ∩KerT2 = K1 ⊗ [e1] and M2 ∩KerT∗
2 = K2 ⊗ [e2]. It is easy to

see that K2 ∈ LatT1, K1⊥K3 and K2 ⊂ K3. Since M ∩ KerT2 = (K1 ⊕ K3) ⊗ [e1],
K1 ⊕ K3 ∈ LatT1.

(iii) It is enough to show that if {fα ⊗ e1 + gα ⊗ e2}α is a basis in M0 then
{fα ⊗ e1}α is a basis in P1M0 and {gα ⊗ e2}α is in P2M0. If {fα ⊗ e1}α is not
a basis in P1M0 then there exists a nonzero gα ⊗ e2 in M0. For if gα = 0 then
fα ⊗ e1 ∈ KerT2 ∩M0 = [0]. This contradiction implies that if {fα ⊗ e1 + gα ⊗ e2}α

is a basis in M0 then {fα ⊗ e1}α is a basis in P1M0. Similarly we can show that if
{fα ⊗ e1 + gα ⊗ e2}α is in M0 then {gα ⊗ e2}α is a basis in P2M0.

(iv) and (v) are clear. ¤

Corollary 2.1 Suppose M ∈ LatT1 ∩ LatT2. The following are valid.

(i) M0 = [0] if and only if M = (K2 ⊗ [e2]) ⊕ ((K1 ⊕ K3) ⊗ [e1]) where K2 = K3,
K1⊥K3 and K2, K3, K1 ⊕ K3 ∈ LatT1.

(ii) M2 = M0 if and only if M = M0 ⊕ (K3 ⊗ [e1]) where K3 ∈ LatT1. Then
P1M0 = K4 ⊗ [e1], P2M0 = K3 ⊗ [e2], dim K4 = dim K3 = dim M0 and
K4⊥K3.

(iii) In (ii), for f ⊗ e1 + g ⊗ e2 in M , if T1f = 0 then T1g = 0 and if T1g = 0 then
T1f ∈ K3.

(iv) T2M2 = [0] if and only if M = K1 ⊗ [e1] where K1 ∈ LatT1.
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(v) M 6= M0.

Proof. (i) and (iv) are clear.
(ii) If M = M0 ⊕ (K3 ⊗ [e1]) then P2M0 = K3 ⊗ [e2] and P1M0 = K4 ⊗ [e1] and

K3⊥K4. By (iii) of Theorem 2.1, dim K4 = dim K3 = dim M0.
(iii) Let F = f ⊗ e1 + g ⊗ e2 in M = M0 ⊕ (K3 ⊗ [e1]). If T1f = 0 then

T1F = T1g ⊗ e2 ∈ M . By (ii) T1g = 0. If T1g = 0 then T1F = T1f ⊗ e1 ∈ M . By
(ii) T1f ∈ K3.

(v) If M = M0 then M0 ⊃ T2M2 and so T2M2 = [0]. (iii) of Theorem 2.1 and
the above (iv) imply M 6= M0. ¤

Corollary 2.2 Suppose M ∈ LatT1 ∩ LatT2 then the following are equivalent.

(i) A = 0.

(ii) M ∈ LatT∗
2.

(iii) M = K ⊗ [e1, e2] where K ∈ LatT1.

Proof. (i)⇔(ii) is a result of (v) of Theorem 2.1 because (i) is equivalent to M ⊂
KerA∗.

(ii)⇒(iii) If f ⊗ e1 + g ⊗ e2 ∈ M then f ⊗ e2 and g ⊗ e1 belong to M . Hence
both f ⊗ e1 and g ⊗ e2 belong to M . Thus M = K ⊗ [e1, e2].

(iii)⇒(ii) is clear. ¤

Corollary 2.3 Suppose M ∈ LatT1 ∩ LatT2, then the following are equivalent.

(i) [RangeA] = M .

(ii) KerA∗ ∩ M = [0].

(iii) M2 ∩ KerT∗
2 = [0].

(iv) M = M0 ⊕ {(K1 ⊕ K3) ⊗ [e1]}.

Proof. (i)⇔(ii)⇒(iii) is a result of (v) of Theorem 2.1.
(iii)⇒(iv) is a result of (i) and (ii) of Theorem 2.1.
(iv)⇒(ii) Since T∗

2M = T∗
2M0 ⊕ ((K1 ⊕ K3) ⊗ [e2]), T∗

2M ∩ M = [0] and so
KerA∗ ∩ M = [0]. ¤

Theorem 2.2 Suppose M ∈ LatT1 ∩ LatT2.

(i) If AB = 0 then M2 = M0 ⊕ (K1 ⊗ [e1]) ⊕ (K2 ⊗ [e2]) where Kj ∈ LatT1 for
j = 1, 2.
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(ii) AB = 0 on KerT∗
2 ∩ M .

(iii) If A = 0 then M0 = [0].

Proof. We will use the notations in Theorem 2.1.
(i) If AB = 0 then V ∗

2 V1 = V1V
∗
2 and so V1M2 ⊂ M2. K2 ∈ LatT1 by Theorem 2.1

and K1 ∈ LatT1 by that (T1K1) ⊗ e1 ⊂ M2.
(ii) KerT∗

2∩M = K⊗[e2] and V ∗
2 (K⊗[e2]) = 0. Hence (V1V

∗
2 −V ∗

2 V1)(K⊗[e2]) =
−V ∗

2 (T1K ⊗ [e2]) = 0 because K ∈ LatT1.
(iii) Corollaries 2.1 and 2.2 show (iii). ¤

Corollary 2.4 Suppose T1 does not have orthogonal invariant subspaces. When
M ∈ LatT1 ∩ LatT2, AB = 0 if and only if M = K ⊗ [e1] or K ⊗ [e1, e2] for some
K ∈ LatT1.

Proof. Since AB|M = V1V
∗
2 −V ∗

2 V1, it is easy to see the ‘if’ part and so it is enough
to show the ‘only if’ part. If AB = 0 then V1V

∗
2 = V ∗

2 V1 and so V1KerV ∗
2 ⊆ KerV ∗

2 .
If f ⊗ e1 + g ⊗ e2 ∈ M2 then f ⊗ e1⊥T2M2. Since T1(f ⊗ e1 + g ⊗ e2) ∈ M2 and
[T2M2] = K ⊗ [e1] for some K ∈ LatT1,

∪∞
n=0 T n

1 f is orthogonal to K. If f 6= 0 then
K = [0] by hypothesis on LatT1 and so T2M = [0]. Hence M = K ′ ⊗ [e1] for some
K ′ ∈ LatT1. If there does not exist f such that f 6= 0 whenever f ⊗e1 +g⊗e2 ∈ M2,
then M2 = K ′′ ⊗ [e2] for some K ′′ ∈ LatT1 and so M = K ′′ ⊗ [e1, e2]. ¤

3. Idempotent case

In this section, we assume that T2 =

[
1 x
0 0

]
, that is, T2

2 = T2. If x = 0 then

everything is trivial and so we assume x 6= 0.

Theorem 3.1 Suppose M ∈ LatT1 ∩ LatT2. then the following are valid.

(i) M = M2 ⊕ [T2M ],M2 = M ′
2 ⊕ KerT∗

2 ∩ M2 and M ′
2 = M0 ⊕ KerT2 ∩ M ′

2.

(ii) [T2M ] = K3 ⊗ [e1], KerT∗
2 ∩M2 = K2 ⊗ [e2] and KerT2 ∩M ′

2 = K1 ⊗ [e2 −xe1].
Here K2 ⊂ K3, K1⊥K3 where K3 ∈ LatT1 and K2 ∈ LatT1

(iii) dim M0 = dim P1M0 = dim P2M0

(iv) P1M0 ⊆ (H1 ª K3) ⊗ [e1] and P2M0 ⊆ (H1 ª K2) ⊗ [e2)

(v) M = [RangA]⊕M∩KerA∗ where M∩KerA∗ = {f⊗e1+g⊗e2 ∈ M : f⊗(e1+
x̄e2) ∈ M} and M∩KerA∗ ∈ LatT1∩LatT∗

2. Moreover M∩KerA∗ ⊃ K2⊗[e2].
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Proof. (i) is clear.
(ii) The first part is clear. Since T2(K2 ⊗ [e2]) ⊆ K3 ⊗ [e1], K2 ⊆ K3. Since

[T2M ]⊥KerT2 ∩ M ′
2, K1⊥K3 because x 6= 0.

(iii) It is enough to show that if {fα ⊗ e1 + gα ⊗ e2}α is a basis in M0 then
{fα ⊗ e1}α is a basis in P1M0 and {gα ⊗ e2}α is a basis in P2M0. If {fα ⊗ e1}α is
not a basis in P1M0 then there exists a nonzero gα ⊗ e2 in M0. For if gα = 0 then
fα ⊗ e1 ∈ M0 ∩ KerT∗

2 = [0]. This contradiction implies that if {fα ⊗ e1 + gα ⊗ e2}α

is a basis in M0 then {fα ⊗ e1}α is a basis in P1M0. If {gα ⊗ e2}α is not a basis in
P2M0 then there exists a nonzero fα ⊗ e1 in M0 and so fα ∈ K3. By the definitions
of M0 and K3 ⊗ [e1], fα⊥K3. This implies fα = 0.

(iv) and (v) are clear. ¤

Corollary 3.1 Suppose M ∈ LatT1 ∩ LatT2. Then the following are valid.

(i) M0 = [0] if and only if M = (K1 ⊗ [e2 − xe1]) ⊕ (K2 ⊗ [e2]) ⊕ (K3 ⊗ [e1])
where Kj ∈ LatT1 (j = 2, 3), K2 = K3 and K1⊥K3. Hence if M0 = [0] then
T1M2 ⊆ M2.

(ii) M2 = M0 if and only if M = M0 ⊕ (K3 ⊗ [e1]) where K3 ∈ LatT1. Then
P1M0 = K5 ⊗ [e1], P2M0 = K4 ⊗ [e2], dim K5 = dim K4 = dim M0, K5⊥K3

and K4 + xK5 = K3.

(iii) In (ii), if M0 6= [0] then K4 6⊂ K3 and K5 6⊂ K3.

(iv) T2M2 = [0] if and only if M = (K1 ⊗ [e2 − xe1])⊕ (K3 ⊗ [e1]) where K1, K3 ∈
LatT1 and K1⊥K3.

(v) T2M = [0] if and only if M = K1 ⊗ [e2 − xe1] for K1 ∈ LatT1.

Proof. It is clear except (iii) and (iv). (iii) Suppose K4 ⊂ K3. Then K4⊥K5

and if F ∈ K4 then F = f + xg for some f ∈ K4 and g ∈ K5 by (ii). Hence
F − f = xg ∈ K4 ∩ K5 = [0]. Since x 6= 0, g = 0 and by (iii) of Theorem 3.1
f = F = 0 and so M0 = [0]. This contradiction implies K4 6⊂ K3.

(iv) If f ∈ K1 then

T1f ⊗ (e2 − xe1) = f1 ⊗ (e2 − xe1) + f2 ⊗ e1

where f1 ∈ K1 and f2 ∈ K3. Hence T1f = f1 and xT1f = xf1−f2. Therefore f2 = 0
and T1f = f1 ∈ K1. ¤

Corollary 3.2 Suppose M ∈ LatT1 ∩ LatT2. Then A = 0 if and only if M =
K ⊗ [e1, e2] where K ∈ LatT1.
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Proof. By (v) of Theorem 3.1, A = 0 if and only if T∗
2M ⊂ M . Hence the ‘if’ part is

clear. We will show the ‘only if’ part. Since T∗
2M ⊂ M , M = KerT∗

2∩M ⊕ [T2M ] =
(K2 ⊗ [e2]) ⊕ (K3 ⊗ [e1]) where K2 ⊂ K3 and Kj ∈ LatT1 for j = 1, 2. Since
T∗

2M ⊂ M , K2 ⊃ K3 and so K2 = K3. ¤

Theorem 3.2 Suppose M ∈ LatT1 ∩ LatT2.

(i) If AB = 0 then T1P1M0 ⊆ P1M0 + K1 ⊗ [e1] and T1P2M0 ⊆ P2M0 + K2 ⊗ [e2]
where M0, K1 and K2 are defined in Theorem 3.1.

(ii) AB = 0 on KerT∗
2 ∩ M

(iii) If M = K ⊗ [e1], or M = K ⊗ [e1, e2] for some K ∈ LatT1 then AB = 0.

(iv) If A = 0 then M0 = [0].

Proof. (i) If AB = 0 then V1V
∗
2 = V ∗

2 V1 and so V1M2 ⊆ M2. Since M2 = M0 ⊕
(K2 ⊗ [e2]) ⊕ (K1 ⊗ [e2 − xe1]) by Theorem 3.1, T1P1M0 ⊆ P1M0 + K1 ⊗ [e1] and
T1P2M0 ⊆ P2M0 + K2 ⊗ [e2]

(ii) V1V
∗
2 (KerT∗

2 ∩M) = V1PM(T∗
2(KerT∗

2 ∩M)) = [0]. Since KerT∗
2 ∩M ⊂ H1 ⊗

[e2], V
∗
2 V1(KerT∗

2∩M) = [0] by Theorem 3.1. Since AB | M = V1V
∗
2 −V ∗

2 V1, AB = 0
on KerT∗

2 ∩ M .
(iii) By the proof of (ii) AB = 0 on K ⊗ [e2]. Hence we will prove AB = 0 on

K ⊗ [e1]. If f ⊗ e1 ∈ M then

V1V
∗
2 (f ⊗ e1) = V1(f ⊗ e1 + x̄f ⊗ e2) = T1f ⊗ e1 + x̄T1f ⊗ e2

and
V ∗

2 V1(f ⊗ e1) = V ∗
2 (T1f ⊗ e1) = T1f ⊗ e1 + x̄T1f ⊗ e2.

Hence AB = 0 on K ⊗ [e1].
(iv) Corollaries 3.1 and 3.2 show (iv). ¤

Corollary 3.3 Suppose T1 does not have orthogonal invariant subspaces and T2M 6=
[0]. When M ∈ LatT1 ∩ LatT2, AB = 0 if and only if M = K ⊗ [e1] or M =
K ⊗ [e1, e2] for some K ∈ LatT1.

Proof. By (iii) of Theorem 3.2, it is enough to show the ‘only if’ part. If AB = 0
then T1M2 ⊆ M2. Suppose [T2M ] = K3 ⊗ [e1]. If f ⊗ e1 + g ⊗ e2 ∈ M2 then
T1f ⊗ e1 + T1g ⊗ e2 ∈ M2 and so T1f⊥K3. If there exists a nonzero f such that
f ⊗ e1 + g⊗ e2 ∈ M2 then there exists K ′

3 ∈ LatT1 such that K ′
3⊥K3 as in the proof

of Theorem 3.1. The hypothesis on T1 implies that K3 = [0]. Hence it contradicts
T2M 6= [0]. Hence there does not exist any nonzero f such that f ⊗e1 +g⊗e2 ∈ M2,
that is, M2 ⊆ H1 ⊗ [e2] and so M2 = KerT∗

2 ∩M then M = (K2 ⊗ [e2])⊕ (K3 ⊗ [e1])
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and K2 ⊆ K3. If K2 = [0] then M = K3 ⊗ [e1]. If K2 6= [0] we will show K2 = K3.
If f ∈ K3 ª K2 is nonzero then

V ∗
2 V1(f ⊗ e1) = V ∗

2 (T1f ⊗ e1) = T1f ⊗ e1 + PM(x̄T1f ⊗ e2)

and
V1V

∗
2 (f ⊗ e1) = T1f ⊗ e1 + T1PM(x̄f ⊗ e2).

Since V ∗
2 V1 = V1V

∗
2 , PM(T1f ⊗ e2) = T1PM(f ⊗ e2). Since f ⊗ e2⊥K2⊗ e2, f ⊗ e2⊥M

and so PM(f ⊗ e2) = 0. Hence T1f ⊗ e1 ∈ M and T1f ⊗ e2⊥M = (K2⊗ [e2])⊕ (K3⊗
[e1]). Therefore T1f ∈ K3 ª K2. This contradicts the hypothesis on T1. ¤

4. Examples

In this section we give several concrete examples for the theorems in Sections 2 and
3.

Example 4.1 Suppose H1 = Cn = [f1, . . . , fn, 0] where {fj}n
j=1 is a standard basis

and T1fj = fj+1 for 1 ≤ j ≤ n where fn+1 = 0. Suppose T2
2 = 0. If M ∈

LatT1 ∩ LatT2 then by Theorem 2.1 T2M = [ft, . . . , fn+1] ⊗ [e1], M2 ∩ KerT∗
2 =

[fs, . . . , fn+1] ⊗ [e2] with s ≥ t, M2 ∩ KerT2 = [f`, . . . , ft−1] ⊗ [e1], and

M0 ⊆ ([f1, . . . , f`−1] ⊗ [e1]) ⊕ ([ft, . . . , fs−1] ⊗ [e2]).

If M2 = M0 then M2∩KerT∗
2 = M2∩KerT2 = [0], and so P1M0 ⊆ [f1, . . . , ft−1]⊗ [e1]

and P2M0 = [ft, . . . , fn+1]⊗ [e2]. Hence t−1 ≥ n− t+1 and so 2t ≥ n+2. M0 = [0]
if and only if s = t, that is, M = ([f`, . . . , fn+1]⊗ [e1])⊕ ([fs, . . . , fn+1]⊗ [e2]) where
` ≤ s. By Corollary 2.3, M = [Ran A] if and only if M = M0 ⊕ [f`, . . . , fn+1]⊗ [e1].
By Corollary 2.2, A = 0 if and only if M = [f`, . . . , fn+1]⊗ [e1, e2]. By Corollary 3.2,
AB = 0 if and only if M = [fs, . . . , fn+1] ⊗ [e1] or M = [fs, . . . , fn+1] ⊗ [e1, e2].

We consider when n = 2. We assume M 6= [0]. If T2M2 = [f1, f2] ⊗ [e1]
then M = H. Suppose T2M2 = [f2] ⊗ [e1]. If M0 = [0] then M = [f2] ⊗ [e2] or
M = [f2] ⊗ [e1, e2]. If M0 6= [0] then M0 = [f2 ⊗ (α1e1 + α2e2)] where α1 6= 0 and
α2 6= 0, and so M = {[f2 ⊗ (α1e1 + α2e2)]} ⊕ ([f2] ⊗ [e1]).

Example 4.2 Suppose T2
2 = T2 in Example 4.1. If M ∈ LatT1 ∩ LatT2 then by

Theorem 3.1 T2M = [ft, . . . , fn+1]⊗[e1], KerT∗
2∩M2 = [fs, . . . , fn+1]⊗[e2](s ≥ t) and

KerT2∩M ′
2 ⊆ [fm, . . . , ft−1]⊗ [e2−xe1]. Hence M ′

2 = M0⊕ [fm, . . . , ft−1]⊗ [e2−xe1]
and

M ′
2 ⊆ ([f1, . . . , ft−1] ⊗ [e1]) ⊕ ([f1, . . . , fs−1] ⊗ [e2]).

Therefore

dim M0 = dim P1M0 = dim P2M0 ≤ dim M ′
2

≤ min(t − 1, s − 1).
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M0 = [0] if and only if M = ([fm, . . . , ft−1] ⊗ [e2 − xe1]) ⊕ ([ft, . . . , fn+1] ⊗ [e2]) ⊕
([ft, . . . , fn+1] ⊗ [e1]). By Corollary 3.2 A = 0 if and only if M = [ft, . . . , fn+1] ⊗
[e1, e2]. By Corollary 3.3 when T2M 6= [0], AB = 0 if and only if M = [ft, . . . , fn+1]⊗
[e1], [ft, . . . , fn+1] ⊗ [e1, e2].

We consider when n = 2. If T2M = [f1, f2]⊗ [e1] then M2 = [0], M2 = [f2]⊗ [e2]
or M2 = [f1, f2] ⊗ [e2]. If T2M = [f2] ⊗ [e1] then KerT∗

2 ∩ M2 = [0] or [f2] ⊗ [e2].
If KerT∗

2 ∩ M2 = [f2] ⊗ [e2] then M ′
2 ⊆ [f1] ⊗ [e1, e2]. If f1 ⊗ (α1e1 + α2f2) ∈ M ′

2

then α1 + xα2 = 0 because T2M
′
2 ⊆ T2M . Therefore M ′

2 = KerT2 ∩ M and so
M = ([f2]⊗[e1, e2])⊕[f1⊗(e2−xe1)]. If KerT∗

2∩M2 = [0] then M = M ′
2⊕([f2]⊗[e1]).

Suppose α1f1 ⊗ e1 + g ⊗ e2 ∈ M ′
2. Since T1M

′
2 ⊂ M , T1g ⊗ e2 belongs to M and so

T1g ⊗ e2 ∈ KerT∗
2 ∩ M2. Hence T1g = 0 and so g = α2f2. Since T2M

′
2 ⊂ [f2] ⊗ [e1],

α1 = 0. Therefore M ′
2 = [f2]⊗ [e2] and so M = [f2]⊗ [e1, e2]. T2M = [0] if and only

if M = [f1, f2] ⊗ [e2 − xe1] or [f2] ⊗ [e2 − xe1].

Example 4.3 Suppose {fj}∞j=1 is a standard orthogonal basis in H1 = `2 and T1

is a unicellular weighted shift on {fj}∞j=1 and f∞ = 0. Suppose T2
2 = 0. If M ∈

LatT1 ∩ LatT2 then by Theorem 2.1 [T2M2] = [fs, fs+1, . . .] ⊗ [e1], KerT∗
2 ∩ M2 =

[ft, ft+1, . . .] ⊗ [e2] for t ≥ s and KerT2 ∩ M2 = [f`, . . . , fs−1] ⊗ [e1]. Moreover
M0 ⊆ ([f1, . . . , f`−1]⊗ [e1])⊕ ([fs, . . . , ft−1]⊗ [e2]) and dim M0 ≤ min(`− 1, t− s). If
M2 = M0 then dim M0 = ∞ because P2M0 = [fs, fs+1, . . .]⊗[e2]. On the other hand,
dim P1M0 < ∞ because P1M0 ⊆ [f1, . . . , fs−1] ⊗ [e1]. This contradiction shows that
M2 6= M0 and KerT∗

2 ∩M2 6= [0]. M0 = [0] if and only if M = ([f`, f`+1, . . .]⊗ [e1])⊕
([ft, ft+1, . . .] ⊗ [e2]) where ` ≤ t. A = 0 if and only if M = [fs, fs+1, . . .] ⊗ [e1, e2].
AB = 0 if and only if M = [fs, fs+1, . . .] ⊗ [e1] or M = [fs, fs+1, . . .] ⊗ [e1, e2].

If s = 2 then dim M0 ≤ 1. If M0 = [0] then M = H or M = [f2, f3, . . .]⊗ [e1, e2].
If M0 6= [0] then M0 = [α(f1 ⊗ e1) + β(f2 ⊗ e2)] and M2 = ([f2, f3, . . .] ⊗ [e1]) ⊕
([f3, f4, . . .] ⊗ [e1]) ⊕ M0.

Example 4.4 Suppose T2
2 = T2 in Example 4.3. If M ∈ LatT1 ∩ LatT2 then by

Theorem 3.1 [T2M ] = [fs, fs+1, . . .]⊗ [e1], M2∩KerT∗
2 = [ft, ft+1, . . .]⊗ [e2] for t ≥ s,

M ′
2 ∩ KerT2 ⊆ [f`, . . . , fs−1] ⊗ [e2 − xe1] and

M0 ⊆ ([f1, . . . , fs−1] ⊗ [e1]) ⊕ ([f1, . . . , ft−1] ⊗ [e2]).

M0 = [0] if and only if M = (K1⊗ [e2−xe1])⊕([fs, fs+1, . . .]⊗ [e1])⊕([fs, fs+1, . . .]⊗
[e2]) where t ≥ s and K1 ⊆ [f`, . . . , fs−1]. A = 0 if and only if M = [fs, fs+1, . . .] ⊗
[e1, e2]. AB = 0 if and only if M = [fs, fs+1, . . .]⊗ [e1] or M = [fs, fs+1, . . .]⊗ [e1, e2].

If s = 2 then dim M0 ≤ 1. If M0 = [0] then M = ([f2, f3, . . .]⊗[e1])⊕([f2, f3, . . .]⊗
[e2]) ⊕ ([f1] ⊗ [e2 − xe1]). If M0 6= [0] then M0 = [f1 ⊗ (α1e1 + α2e2)] where
α1 6= 0 and α2 6= 0 and so T2M0 = [f1 ⊗ e1]. This is a contradiction because
[T2M ] = [f2, f3, . . .] ⊗ [e1]. Thus if s = 2 then M0 = [0].

Example 4.5 Suppose H1 = H2 and T1 is a unilateral shift on H2. Suppose T2
2 = 0.

If M ∈ LatT1 ∩ LatT2, T2M 6= [0], KerT2 ∩ M 6= [0] and KerT∗
2 ∩ M 6= [0] then by
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Theorem 2.1 and Beurling theorem [T2M2] = q1H
2 ⊗ [e1], KerT2 ∩ M2 = (q3H

2 ª
q1H

2) ⊗ [e1] and KerT∗
2 ∩ M2 = q2H

2 ⊗ [e2] where q2H
2 ⊂ q1H

2 and qj is inner for
j = 1, 2, 3. Hence

M0 ⊆ {(H2 ª q3H
2) ⊗ [e1]} ⊕ {(q1H

2 ª q2H
2) ⊗ [e2]}

and
dim M0 = dim P1M0 = dim P2M0 ≤ min(deg q3, deg q2q̄1).

M0 = [0] if and only if M = {q2H
2 ⊗ [e2]} ⊕ {q3H

2 ⊗ [e1]} where q̄2q3 ∈ H2. A = 0
if and only if M = qH2 ⊗ [e1, e2]. AB = 0 if and only if M = qH2 ⊗ [e1] or M =
qH2⊗[e1, e2]. Here q is inner. If M2 = M0 then q1 is not a finite Blaschke product. In
fact, if q1 is a finite Blaschke product then dim M0 ≤ deg q1 and [T2M0] = q1H

2⊗[e1].
This contradiction shows that q1 is not a finite Blaschke product.

If q1 = z then q3 = 1 or q3 = z. If q3 = 1 then M0 = [0]. If q3 = z then
M2 = M0 ⊕ (q2H

2 ⊗ [e2]). If M0 = [0] then q2 = z. If M0 6= [0] then M0 =
[α(1 ⊗ e1) + β(zf ⊗ e2)] where zf ∈ zH2 ª q2H

2. Hence z̄q2 is a single Blaschke
product.

Example 4.6 Suppose H1 = H2 and T1 is a unilateral shift on H2. Suppose T2
2 =

T2. By Theorem 3.1, if T2M 6= [0] and KerT∗
2 ∩M2 6= [0] then [T2M ] = q1H

2 ⊗ [e1],
KerT∗

2 ∩ M2 = q2H
2 ⊗ [e2] and KerT2 ∩ M ′

2 ⊆ (q3H
2 ª q1H

2) ⊗ [e2 − xe1] where
qj(1 ≤ j ≤ 3) is inner. Hence

M0 ⊆ {(H2 ª q1H
2) ⊗ [e1]} ⊕ {(H2 ª q2H

2) ⊗ [e2]}

and
dim M0 = dim P1M0 = dim P2M0 ≤ min(deg q1, deg q2).

M0 = [0] if and only if M = (K1 ⊗ [e2 − xe1]) ⊕ (q1H
2 ⊗ [e1]) ⊕ (q2H

2 ⊗ [e2]) where
K1 ⊆ q3H

2 ª q1H
2, qj (1 ≤ j ≤ 3) is inner, q̄1q3 ∈ H2 and q̄1q2 ∈ H2. A = 0 if and

only if M = qH2⊗ [e1, e2]. AB = 0 if and only if M = qH2⊗ [e1], M = qH2⊗ [e1, e2].
Here q is inner.

If q1 = z then dim M0 ≤ 1. If M0 = [0] then M = zH2 ⊗ [e1, e2] or M =
(zH2 ⊗ [e1, e2]) ⊕ ([1] ⊗ [e2 − xe1]). If M0 6= [0] then M = (zH2 ⊗ [e1]) ⊕ M2 and
M0 = [1 ⊗ e1 + g ⊗ e2] where g(0) = −1/x, g⊥q2H

2 and q2(0) = 0. Moreover M2 =
[1⊗e1+g⊗e2]⊕(q2H

2⊗[e2]) or M2 = [1⊗e1+g⊗e2]⊕([1]⊗[e2−xe1])⊕(q2H
2⊗[e2]).

Example 4.7 Suppose H1 = H2 and T1 is a unilateral backward shift on H2.
Suppose T2

2 = 0 or T2
2 = T2. Then we can apply the results in §2 and §3

Example 4.8 Let H2 be the Hardy space on the torus in C2, and let z and w be
coordinate functions on C2. Put

Dzf = zf and Dwf = wf (f ∈ H2).

It is an important problem to describe LatDz ∩ LatDw or LatD∗
z ∩ LatD∗

w.
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When H2 = M ⊕ N , N ∈ LatDz ∩ LatDω if and only if M ∈ LatD∗
z ∩ LatD∗

w.
Hence we consider only about LatD∗

z ∩LatD∗
w. For M ∈ LatD∗

z ∩LatD∗
w with M ⊆

H2 ª w2H2 = H2 ⊕ wH2, put H = H1 ⊗ H2 where H1 = H2 and H2 = [1, w] = C2,
and suppose

T1 = D∗
z | H and T2 = D∗

w | H.

Then M belongs to LatT1 ∩ LatT2. Hence we can apply M the results in §2.
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