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COMMON INVARIANT SUBSPACES OF TWO DOUBLY
COMMUTING OPERATORS ON ¢* @ C?

TAKAHIKO NAKAZI AND MICHIO SETO

ABSTRACT. In this paper, we study common invariant subspaces of T and S
on 2@ C? where T =T ® Ic2 and S = I» ® S. We describe such invariant
subspaces using T and S.

1. Introduction

Let H = H; ® Hy be a Hilbert space where H; is a Hilbert space for j = 1,2. Let
T; be a bounded linear operator on H; and I; an identity operator on H;. We will

write
T1:T1®]2 and T2:]1®T2.

For X =Ty, Ty, T7 or T;, LatX denotes the set of all invariant subspaces of X in
H. In this paper, we are interested in LatT; N LatTy and LatT; N LatT5.
For M in LatT; N LatTs put

Vi=T; [ M (j=12)
For N in LatTj N LatT5, put
S;=T;|N (j=12).

For a closed subspace K in H, Pk denotes the orthogonal projection from H onto
K. When H =M & N, put

A:PMTQPN and B:PNTTPM

then

(KA L[V oo
T2—|:0 S2:| and Tl—{B Sf}

Hence

T,T" — {Vle +AB  AS; ]
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and p
| VITVR %%
Tl =1 By, s:5,+B4 |-
Since TQTT = TTTQ,

AB | M = Vi'Vy — VRV

and
BA | M = 55,57 — S7.9.

Thus V'V, = VL V¥ if and only if AB = 0, and 5,57 = S7.5; if and only if BA = 0.
If A =0 then V*V, = VLV* and S,5] = ST.55.

H? denotes the usual Hardy space on the unit circle in C and ¢ is called inner
when ¢ is a unimodular function in H2. Such a problem has been studied in the
following cases.

(1) H; = Hy = H? and Ty = T5 are a usual shift on H? ([1],[2],[5],[6])-
(2) H, = Hy = H? and T} = T; are a backward shift ([4]).

(3) Hy = H? and Hy = C?, and T} is the shift on H? and T} is the truncated shift
on C* ([3]).

Even if in very special examples, our problem is still very difficult. Our mo-
tivation is to make clear the causes by considering most special case. Hence we
will not dare to generalize our results. In this paper, we assume that dim Hy = 2,
that is, Hy = C?. {e1, es} denotes the standard basis for C2, that is, e; = [1,0] and
ey =" [0,1]. We will write P = Py for K = Hi®[e;] and Px = P, for K = H; ®[es].
If T is a bounded linear operator on C? then we may assume that T} is a triangular
matrix under the standard basis. In order to study LatT; N LatT, it is enough to
consider when

0 1 1 =z
T2—|:0 0] or T2—|:0 0] for x #0.

Then T% = 0 or T2 = T,. In this paper, for arbitrary T; we study LatT; N LatT,
when T2 = 0 or T2 = T,. We determine M € LatT;NLatT, when A = 0. Moreover,
when T; does not have orthogonal invariant subspaces, we show that AB = 0 if and
only if LatT; N LatTy = LatT} ® LatTs.

In this paper, [S] denotes the closed linear span of a subset S in H. If T3 = 0
then ToH = H, ® [e1]KerTy = H; ® [e1] and KerT; = H; ® [ey], and if T5 = Ty then
ToH = Hy ® [e1], KerTy = Hy ® [e5 — weq] and KerT) = H; ® [es]. In general, if M
is in LatT; N LatTy then M = KerVy @ [VaM]. It is clear that if ViV = V5V] then
ViKerVy C KerVy. This will be used several times in this paper.

The nilpotent case of Ty is studied in Section 2. The idempotent case of Ty
is studied in Section 3. In Section 4 several concrete examples are given and it
is noted that one of them can be applied to some invariant subspaces of the two
variable Hardy space.
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2. Nilpotent case

01

In this section, we assume that 7, = [ 00

], that is, T3 = 0.

Theorem 2.1 Suppose M € LatT,; N LatTsy, then the following are valid.
(i) M = M, @ [TyMs] and [ToMs] = K3 ® [e1] where K3 € LatTy.

(i) My = My®MyNKerTy@ MoNKerTs, MyNKerTy = K1 ®leq] and MyNKerTh =
Ky ® [es] where Ky € LatTy, Ky C K3 and K, & K3 € LatT).

(iv) PLMy C (Hy © (K1 @ K3)) ® [e1] and P,My C (K3 © K3) ® [e].

(v) M=[RangeAJ®MnNKerA* where MNKerA* = {f®e1+g®Res € M : fRey € M}
and M N KerA* € LatT; N LatT;. Hence M N KerA* O Ky ® [ey].

Proof. (i) Put My = M & [ToM] then ToM = ToM, because T3M = [0]. Since
[ToM] = K3 ® [e1] and T Ty = ToTy, K3 belongs to LatTj.

(ii) Since KerTy = H; ® [e1] and KerTh = Hy ® [es], My = My @ My N KerTy &
My N KerTs, and My NKerTy = K7 ® [eg] and My NKerT; = Ky ® [es]. Tt is easy to
see that Ky € LatTy, K1 1 K3 and Ky C K3. Since M NKerTy = (K1 & K3) ® [eq],
K, & K5 € LatT].

(iii) It is enough to show that if {f, ® €1 + go ® €2}, is a basis in M, then
{fa ® e1}q is a basis in P My and {g, ® €2}y is in PyMy. If {f, ® €1}, is not
a basis in P; M, then there exists a nonzero g, ® es in M. For if g, = 0 then
fa ®e1 € KerTy N My = [0]. This contradiction implies that if {f, ® €1 + go ® €2}4
is a basis in My then {f, ® €1}, is a basis in P;M,. Similarly we can show that if
{fa ® €1+ ga @ er}y is in My then {g, ® e}, is a basis in Py Mj.

(iv) and (v) are clear. O

Corollary 2.1 Suppose M € LatT, N LatTsy. The following are valid.

(i) Mo = [0] if and only if M = (K2 ® [eo]) © (K1 @ K3) ® [e1]) where Kz = K,
KlJ_Kg and KQ,Kg,Kl D Kg € LatTl.

(i) My = My if and only if M = My ® (K3 ® [e1]) where K5 € LatTy. Then
P1M0 = K4 X [61], P2M0 = Kg &® [62], dlmK4 = dlmK3 = dlmMO and
Kyl K;.

(i) In (1), for f@e1+g®eq in M, if T1f =0 then Thg =0 and if T1g = 0 then
T\f € Ks.

(iv) ToMsy = [0] if and only if M = K; ® |e1] where K, € LatTj.
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(V) M 7& M().

Proof. (i) and (iv) are clear.

(ll) If M = MQ D (Kg X [61]) then P2M0 = Kg & [62] and P1M0 = K4 & [61] and
K31 K,. By (iii) of Theorem 2.1, dim K4 = dim K3 = dim M,.

(iii) Let ' = f®e +9g®e in M = Myd (K3 ® [eq]). If T1f = 0 then
T\F=Tig®ey, € M. By (ii) T1g = 0. If T1g = 0 then TyF =T1f ® e; € M. By
(ii) T, f € K.

(v) If M = M, then My D TyM, and so ToMy = [0]. (iii) of Theorem 2.1 and
the above (iv) imply M # M,. O

Corollary 2.2 Suppose M € LatT, N LatTy then the following are equivalent.
(i) A=0.
(ii) M € LatTs.

(iii) M = K ® [ey, es] where K € LatT;.

Proof. (i)<(ii) is a result of (v) of Theorem 2.1 because (i) is equivalent to M C
KerA*.

(i)=(iii) If f@e;1 +9g®ex € M then f ® ey and g ® e; belong to M. Hence
both f ® e; and g ® es belong to M. Thus M = K ® [eq, e].

(iii)=(ii) is clear. O

Corollary 2.3 Suppose M € LatT, N LatTsy, then the following are equivalent.

(i) [RangeA] =
(i) KerA*N M = [0]
(iii) My N KerT; = [0]
(iv) M = Mo ® {(K, @ K3) ® [e1]}

Proof. (1)< (ii)=(iii) is a result of (v) of Theorem 2.1.

(iii)=(iv) is a result of (i) and (ii) of Theorem 2.1.

(iv)=-(ii) Since TsM = Ti;M, & (K1 & K3) ® [ea]), TsM N M = [0] and so
KerA* N M = [0]. O

Theorem 2.2 Suppose M € LatT; N LatTs,.

(i) If AB = 0 then My = My @ (K1 ® [e1]) ® (Ks ® [es]) where K; € LatTy for
j=1,2.
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(i) AB=0 on KerT5s N M.
(iii) If A =0 then My = [0].

Proof. We will use the notations in Theorem 2.1.

(i) If AB = 0 then V;*V; = V1V and so Vi My C Ms. Ky € LatT) by Theorem 2.1
and K; € LatT; by that (TlKl) ® e C M.

(i) KerTsNM = K®[es] and V5 (K ®[es]) = 0. Hence (Vi Vy =V V) (K ®]es]) =
VS (T1K ® [es]) = 0 because K € LatT;.

(iii) Corollaries 2.1 and 2.2 show (iii). O

Corollary 2.4 Suppose Ty does not have orthogonal invariant subspaces. When
M € LatTy; NLatTy, AB =0 if and only if M = K ® [e1] or K ® [eq, es] for some
K e LatTl.

Proof. Since AB|M = V,V3 — V5V, it is easy to see the ‘if” part and so it is enough
to show the ‘only if’ part. If AB = 0 then ViV = V5V; and so ViKerV," C KerVs'.
If fee +g®ey € My then f ® ey LToMs. Since Ti(f ® 3 + g ® e3) € My and
[ToMs] = K ® [eq] for some K € LatTh, | J -, 17" f is orthogonal to K. If f # 0 then
K = [0] by hypothesis on Lat7; and so ToM = [0]. Hence M = K’ ® [e;] for some
K’ € LatTy. If there does not exist f such that f # 0 whenever f®e;+g®ey € My,
then My = K" ® [ey] for some K” € LatT; and so M = K" ® [ey, es). O

3. Idempotent case

In this section, we assume that T, = { (1) z }, that is, T2 = Ty. If x = 0 then

everything is trivial and so we assume x # 0.

Theorem 3.1 Suppose M € LatT, N LatTy. then the following are valid.
(1) M = MQ @D [TQM], MQ = Mé @D KerT§ N MQ and Mé = Mo D KerT2 N Mé

(i) [ToM] = K3® [e1], KerTs N My = Ky ® [es] and KerToN M) = K; ® [eg — zeq].
Here Ky C K3, Ki L K3 where K3 € LatT| and Ky € LatT)

(iv) PiMo C (Hy © K3) @ [e1] and PoaMy C (Hy © Ka) ® [e2)

(v) M = [RangA]® MNKerA* where MNKerA* = {f®e;+gRes € M : f®(e1+
Tey) € M} and MNKerA* € LatT,NLatT5. Moreover MNKerA* D Ky®|[es].
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Proof. (i) is clear.

(ii) The first part is clear. Since To(Ky ® [es]) C K3 ® [e1], Ko € Kj. Since
[ToM]LKerTy N M), Ky L K5 because z # 0.

(iii) It is enough to show that if {f, ® €1 + g, ® €2}, is a basis in M; then
{fa ® e1}4 is a basis in PyMy and {g, ® es}, is a basis in PoMy. If {f, ® e1}, is
not a basis in P, M, then there exists a nonzero g, ® ey in M. For if g, = 0 then
fo ®e1 € MynKerTs = [0]. This contradiction implies that if {f, ® €1 + go ® €2}4
is a basis in M then {f, ® e1}, is a basis in Py My. If {g, ® es}, is not a basis in
P, M then there exists a nonzero f, ® e; in My and so f, € K3. By the definitions
of My and K3 ® ley], foL K3. This implies f, = 0.

(iv) and (v) are clear. O

Corollary 3.1 Suppose M € LatT, N LatTsy. Then the following are valid.

(i) My = [0] if and only if M = (K1 ® [e2 — ze1]) & (K2 ® [e2]) @ (K3 @ [e1])
where K; € LatTy (j = 2,3), Ky = K3 and K11 Ks. Hence if My = [0] then
T\ My C M.

(il) My = My if and only if M = My & (K3 ® [e1]) where K3 € LatTy. Then
P1M0 = K5 X [61], P2M0 = K4 X [62], dlmK5 == dlmK4 = dimMo, Kg,J_Kg
and K4 + iL'Kg) = Kg.

(iv) ToMy = [0] if and only if M = (K1 ® [ea — ze1]) ® (K3 ® [e1]) where Ky, K3 €
LatT1 and KlJ_Kg.

(v) ToM = [0] if and only if M = K, ® [ea — xey] for K, € LatTj.

Proof. Tt is clear except (iii) and (iv). (iii) Suppose Ky C Kj3. Then K, Kj
and if FF € K4 then FF = f + xg for some f € K4 and g € K5 by (ii). Hence
F—f=uz9¢€ KyNnKs = [0]. Since z # 0, g = 0 and by (iii) of Theorem 3.1
f=F =0 and so My = [0]. This contradiction implies K, ¢ K.

(iv) If f € K; then

T f® (e —xzer) = L ®(e2 —wer) + fa®ey
where f; € K7 and f; € K3. Hence T} f = f; and 2T f = xf; — fo. Therefore fo =0
and Tlf:fl EKI. O

Corollary 3.2 Suppose M € LatT; N LatTy. Then A = 0 if and only if M =
K ® [e1, es] where K € LatT.
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Proof. By (v) of Theorem 3.1, A = 0 if and only if TsM C M. Hence the ‘if” part is
clear. We will show the ‘only if” part. Since TsM C M, M = KerTiNM & [ToM| =
(K2 ® [es]) ® (K35 ® [e1]) where Ky C K3 and K; € LatTy for j = 1,2. Since
TsM C M, Ky D K3 and so Ky = K. ]

Theorem 3.2 Suppose M € LatT; N LatTs,.

(1) ]f AB =0 then T1P1M0 g PlM() + Kl (%9 [61] and T1P2Mo Q P2M0 + K2 (%9 [62]
where My, K1 and Ky are defined in Theorem 3.1.

(i) AB=0 on KerT;N M
(iii) If M = K ® [e1], or M = K ® [ey, €3] for some K € LatT) then AB = 0.
(iv) If A= 0 then My = [0].

Proof. (i) If AB = 0 then V1V, = V;*V] and so ViMy C M,. Since My = My @
(Ks ® [es]) ® (Ky ® [ea — zeq]) by Theorem 3.1, TP My € PiMy + K; ® [e1] and
Ty P,My C PoMy + Ky ® [es]

(ii) ViVy (KerT5 N M) = Vi Py (T5(KerT5 N M) = [0]. Since KerT;N M ¢ Hy ®
[ea], VaVi(KerT3N M) = [0] by Theorem 3.1. Since AB | M = V}Vy =V Vi, AB =0
on KerT; N M.

(iii) By the proof of (ii) AB = 0 on K ® [e3]. Hence we will prove AB = 0 on
K ®[e]. If f®e € M then

‘/1‘/2*(][(861) :‘/1(f®€1+.ff®62> :T1f®€1—|—1_3T1f®62

and
ViVilf@e) =V (Nif@e) =Tif®er + 211 f @ es.

Hence AB =0 on K ® [e4].
(iv) Corollaries 3.1 and 3.2 show (iv). O

Corollary 3.3 Suppose Ty does not have orthogonal invariant subspaces and ToM #
[0]. When M € LatT; N LatTy, AB = 0 if and only if M = K ® [e1] or M =
K ® ey, es] for some K € LatT).

Proof. By (iii) of Theorem 3.2, it is enough to show the ‘only if’ part. If AB =0
then T{My C M. Suppose [TQM] = K3 (029 [61]. If f e +9g&Qey € M5 then
Tif ®e +Tig®ey € My and so Ty f L K3. If there exists a nonzero f such that
f®e;+g®es € M, then there exists K} € LatT) such that K5 L K3 as in the proof
of Theorem 3.1. The hypothesis on 77 implies that K3 = [0]. Hence it contradicts
ToM # [0]. Hence there does not exist any nonzero f such that f®e; +g®ey € My,
that is, My C H; ® [e2] and so My = KerT5 N M then M = (K3 ® [ea]) ® (K35 ® [e1])
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and Ky C K3. If Ky = [0] then M = K3 ® [ey]. If Ky # [0] we will show Ky = K.
If f € K36 K, is nonzero then

VaVi(f@e) =Vi(Tif@e) =Tif @er + Pu(ZT1f @ ez)

and
ViVi(f®e)=Tif ®er+T1Pu(Zf @ es).

Since Vo'Vy = ViV, Py (Thf @ ea) = Ti Py (f ®e3). Since fRes L Ky®es, f ey L M
and so Py (f®ez) =0. Hence T1 f®e; € M and Th f @ ea LM = (Ky® [es]) & (K3 ®
[e1]). Therefore T f € K3 & Ks. This contradicts the hypothesis on 7. O

4. Examples

In this section we give several concrete examples for the theorems in Sections 2 and
3.

Example 4.1 Suppose H; = C" = [fi,..., f,,0] where {f;}}_, is a standard basis
and Ty f; = fjp1 for 1 < j < n where f,,.; = 0. Suppose T3 = 0. If M €
LatT; N LatTy then by Theorem 2.1 ToM = [f,..., fos1] ® [e1], Mo N KerT) =
(for ooy fura] ® [ea] with s >, My N KerTy = [fy, ..., fi1] @ [ea], and

Mo C ([f1,-- -, fea]l @ [ea]) @ ([fes - - -5 fom1] ® [ea]).

If My = M,y then MynKerTh = MyNKerTy = [0], and so PLMy C [f1,..., fi—1]®][e1]
and PyMy = [fi,. .., fay1]®|[ea]. Hencet —1 > n—t+1 and so 2t > n+2. My = [0]
if and only if s = ¢, that is, M = ([fo, ..., fas1] @ [e1]) ® ([fs, - - -, fnr1] @ [e2]) where
¢ < s. By Corollary 2.3, M = [Ran A] if and only if M = My @ [fr,. .., far1] ® [e1].
By Corollary 2.2, A = 0 if and only if M = [fy, ..., fur1] ®[e1, e2]. By Corollary 3.2,
AB =0if and only if M = [f,..., fas1] ® [e1] or M = [fs, ..., far1] ® [e1, €2].

We consider when n = 2. We assume M # [0]. If ToMy = [f1, fo] ® [eq]
then M = H. Suppose ToMy = [fo] ® [e1]. If My = [0] then M = [f2] ® [ea] or
M = [fg] X [61,62]. If M() 7é [O] then MO = [fg X (06161 + 06262)] where (03] 7é 0 and
az # 0, and so M = {[f> ® (a1e1 + aze2)]} @ ([fo] ® [e1]).

Example 4.2 Suppose T3 = T, in Example 4.1. If M € LatT; N LatTy then by
Theorem 3.1 ToM = [fi, ..., fo1]®[e1], KerTsNMy = [fs, .. ., fatr1]®[ea](s > t) and
KerToN M) C [fm, .-, fi—1]®[e2 —xer]. Hence My = Mo@ [ fm, - -, [i—1] ®[e2 — xeq]
and

My C ([f1s--, fral @ [e]) @ ([frs -, for] @ [ea])

Therefore

<min(t —1,s —1).
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My = [0] if and only if M = ([f,..., fic1] ® [e2 — wea]) & ([ft, -+, frr1] @ [e2]) ©
([fts-- -, fat1] ® [e1]). By Corollary 3.2 A = 0 if and only if M = [f;,..., fos1] ®
[e1, €2]. By Corollary 3.3 when ToM # [0], AB = 0if and only if M = [f;, ..., for1]®
[ea], [fes -y faa] ® [en, ea.

We consider when n = 2. If TQM = [fl, fg] X [61] then M2 = [0], MQ = [fg] X [62]
or My = [fi1, fo] ® [ea]. If ToM = [fo] ® [e1] then KerTs N My = [0] or [f2] ® [es].
If KerTs N My = [fa] ® [ea] then M, C [f1] ® [e1,ea]. If fi @ (arer + aafa) € M)
then a; + zas = 0 because ToM, C ToM. Therefore M) = KerTy N M and so
M = ([fo]®]e1, ea]) B[ f1®(ea—wey)]. If KerTsN My = [0] then M = Mi®([f2]®[e1]).
Suppose ay fi ® e; + g ® ea € M. Since Ty M), C M, T1g ® ey belongs to M and so
Tig ® ey € KerTs N M. Hence Tig = 0 and so g = aa fo. Since ToM) C [fo] ® [e1],
ay = 0. Therefore M} = [f2] ® [es] and so M = [fo] ® [e1, es]. ToM = [0] if and only
if M =[f1, fo] ® [e2 — zey] or [fo] ® [ea — xey].

Example 4.3 Suppose {f;}32, is a standard orthogonal basis in H; = ¢? and Ty
is a unicellular weighted shift on {f;}52, and f. = 0. Suppose T3 = 0. If M €
LatT1 N LatTg then by Theorem 2.1 [TQMQ] = [f57fs+17 .. ] X [61], KerT§ N MQ =
[ft, fra1,.. ] ® [eg] for t > s and KerTy N My = [fo,..., fs—1] ® [e1]. Moreover
My C ([f1,---, fia]®[ea]) @ ([fs, - - -5 fio1] @ [e2]) and dim My < min(¢ — 1, —s). If
My = My then dim My = oo because PoaMy = [fs, fs+1,--.]®][ea]. On the other hand,
dim P, My < oo because PyMy C [f1,..., fs—1] ® [e1]. This contradiction shows that
M2 7é MO and KerT§ ﬂMg 7é [0] MO = [O] if and OIlly if M = ([f[, f4+1, .. ] & [61]) D
([ft, fr41s -] ® [e2]) where £ < t. A =0 if and only if M = [fs, fer1,...] ® [e1, ea].
AB =0 if and only if M = [fs, fet1,...] ® [e1] or M = [fs, fst1,...] @ [e1, ea].

If s = 2 then dim My < 1. If My = [0] then M = H or M = [f3, f3,...] ®[e1, ea].
If My # [0] then My = [a(fi ® e1) + B(f2 ® e2)] and My = ([f2, f3,...] @ [e1]) ®
(Ifs fas-- ] ® [ea]) ® Mo.

Example 4.4 Suppose T3 = T, in Example 4.3. If M € LatT; N LatT, then by
Theorem 3.1 [ToM] = [fs, fst1,- -] ®[e1], MonKerTs = [fi, frr1,...] ®|[ea] for t > s,
M; N KerTy C [fo, ..., fs—1] ® [ea — ze;y] and

Mo C ([f1,--- fsal®@e)) @ ([fi,- .., fis] ® [ea]).

My = [0] if and only if M = (K, ®[ea —xe1]) B ([fs, for1,- -] ®@[er]) ® ([fs, fsr1,--]®
[ea]) where t > s and K7 C [fs, ..., fs—1]. A=0if and only if M = [fs, fs11,...| ®
le1,e2]. AB =0if and only if M = [fs, fsi1,...]®][e1] or M = [fs, foi1,--.] ®[e1, ea].

If s = 2 then dim My < 1. If My = [0] then M = ([fa, f3, ... ]®[e1])®([f2, f5, .. ]®
[ea]) @ ([f1] ® [e2 — weq]). If My # [0] then My = [f1 ® (ane; + ages)] where
a; # 0 and as # 0 and so ToMy = [f; ® e1]. This is a contradiction because
[ToM] = [f2, f3,...] @ [e1]. Thus if s = 2 then M, = [0].

Example 4.5 Suppose H; = H? and T} is a unilateral shift on H?. Suppose T3 = 0.
If M € LatT, N LatTy, ToM # [0], KerTo N M # [0] and KerT5 N M # [0] then by
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Theorem 2.1 and Beurling theorem [ToMy] = ¢ H? @ [e1], KerTo N My = (@3 H* ©
@ H?) ® [e1] and KerT; N My = o H? ® [es] where goH? C ¢ H* and g, is inner for
7 =1,2,3. Hence

My C{(H? © gsH?) @ [ea]} @ {(n H* © ¢2H?) ® [ea]}

and
dim My = dim P, My = dim P,M, < min(deg g3, deg ¢2¢1).

My = [0] if and only if M = {¢2H? ® [es]} ® {q3H* ® [e1]} where Gogz € H?. A =0
if and only if M = qH? ® [e1,e5]. AB = 0 if and only if M = ¢H? ® [e;] or M =
qH?®leq, es]. Here ¢ is inner. If My = M then ¢, is not a finite Blaschke product. In
fact, if ¢; is a finite Blaschke product then dim My < deg ¢; and [ToMy] = ¢ H2®[e1].
This contradiction shows that ¢; is not a finite Blaschke product.

If g = zthen g3 = 1or g3 = 2. If g3 = 1 then My = [0]. If g3 = z then
M2 = M() S5 (QQH2 ® [62]). If MO = [0] then Gy = <. If MO 7é [0] then M() =
[a(1®e1) + B(zf ® eg)] where z2f € 2H? © goH?. Hence Zqy is a single Blaschke
product.

Example 4.6 Suppose H; = H? and Tj is a unilateral shift on H?. Suppose T2 =
Ty. By Theorem 3.1, if ToM # [0] and KerT5 N Moy # [0] then [ToM] = ¢ H? @ [e4],
KerT; N My = qoH? ® [es] and KerTy N My C (g3 H? © ¢ H?) ® [es — xeq] where
¢;(1 < j < 3) is inner. Hence

My C{(H? & ulH*) @ [ea]} @ {(H* © 2 1*) @ [ea]}

and
dim MO = dim P1M0 = dim P2M0 S mln(deg q1, deg QQ)

My = [0] if and only if M = (K| ® [ex — ze1]) ® (1 H?* ® [e1]) ® (@2 H? ® [e3]) where
K1 CgH*© qH? q; (1 <j <3)isinner, ¢ig3 € H* and ¢1¢2 € H*>. A =0 if and
only if M = ¢H?*®|ey, es]. AB =0if and only if M = gH?®|e1], M = qH?*® ey, €3).
Here ¢ is inner.

If ¢ = 2 then dimM, < 1. If My = [0] then M = 2H? ® [ey,ep] or M =
(zH? ® [e1, e]) ® ([1] ® [e2 — zeq]). If My # [0] then M = (2H? ® [e1]) & My and
My =[1® e +g® es] where g(0) = —1/z, glgaH* and ¢2(0) = 0. Moreover My =
[1®e1+g®@es)®(qH?®]eo]) or My = [1@er+g@er] @ ([1@[ea —wer]) B (g2 H* @ e2]).

Example 4.7 Suppose H;, = H? and T} is a unilateral backward shift on H?2.
Suppose T2 = 0 or T2 = Ty. Then we can apply the results in §2 and §3

Example 4.8 Let H? be the Hardy space on the torus in C2, and let z and w be
coordinate functions on C2. Put

D.f=zf and D,f=wf (fcH?.

It is an important problem to describe LatD, N LatD,, or LatD} N LatD,.
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When H? = M & N, N € LatD, N LatD,, if and only if M € LatD? N LatD},.
Hence we consider only about LatD} NLatD;. For M € LatD; NLatD} with M C
H? © w?H? = H> @ wH?, put H = H; ® Hy where H; = H? and H, = [1,w] = C?,
and suppose

T12D2|H and TQZDZ)|H

Then M belongs to LatT; N LatTy. Hence we can apply M the results in §2.
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