COMMON INVARIANT SUBSPACES OF TWO DOUBLY COMMUTING OPERATORS ON $\ell^{2} \otimes \mathbb{C}^{2}$

TAKAHIKO NAKAZI AND MICHIO SETO

Abstract

In this paper, we study common invariant subspaces of \mathbb{T} and \mathbb{S} on $\ell^{2} \otimes \mathbb{C}^{2}$ where $\mathbb{T}=T \otimes I_{\mathbb{C}^{2}}$ and $\mathbb{S}=I_{\ell^{2}} \otimes S$. We describe such invariant subspaces using T and S.

1. Introduction

Let $H=H_{1} \otimes H_{2}$ be a Hilbert space where H_{j} is a Hilbert space for $j=1,2$. Let T_{j} be a bounded linear operator on H_{j} and I_{j} an identity operator on H_{j}. We will write

$$
\mathbb{T}_{1}=T_{1} \otimes I_{2} \quad \text { and } \quad \mathbb{T}_{2}=I_{1} \otimes T_{2}
$$

For $X=\mathbb{T}_{1}, \mathbb{T}_{2}, \mathbb{T}_{1}^{*}$ or \mathbb{T}_{2}^{*}, Lat X denotes the set of all invariant subspaces of X in H. In this paper, we are interested in $\operatorname{Lat} \mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$ and $\operatorname{Lat} \mathbb{T}_{1}^{*} \cap \operatorname{Lat} \mathbb{T}_{2}^{*}$.

For M in $\operatorname{Lat}_{1} \cap \operatorname{Lat}_{1}$ put

$$
V_{j}=\mathbb{T}_{j} \mid M \quad(j=1,2) .
$$

For N in $\operatorname{Lat} \mathbb{T}_{1}^{*} \cap \operatorname{Lat} \mathbb{T}_{2}^{*}$, put

$$
S_{j}^{*}=\mathbb{T}_{j}^{*} \mid N \quad(j=1,2)
$$

For a closed subspace K in H, P_{K} denotes the orthogonal projection from H onto K. When $H=M \oplus N$, put

$$
A=P_{M} \mathbb{T}_{2} P_{N} \quad \text { and } \quad B=P_{N} \mathbb{T}_{1}^{*} P_{M}
$$

then

$$
\mathbb{T}_{2}=\left[\begin{array}{cc}
V_{2} & A \\
0 & S_{2}
\end{array}\right] \quad \text { and } \quad \mathbb{T}_{1}^{*}=\left[\begin{array}{cc}
V_{1}^{*} & 0 \\
B & S_{1}^{*}
\end{array}\right]
$$

Hence

$$
\mathbb{T}_{2} \mathbb{T}_{1}^{*}=\left[\begin{array}{cc}
V_{2} V_{1}^{*}+A B & A S_{1}^{*} \\
S_{2} B & S_{2} S_{1}^{*}
\end{array}\right]
$$

2000 Mathematics Subject Classification. Primary 47A15, 47A80.
Key words and phrases. Interpolation, ℓ^{1}, F-space, Hardy space, Smirnov class.
and

$$
\mathbb{T}_{1}^{*} \mathbb{T}_{2}=\left[\begin{array}{cc}
V_{1}^{*} V_{2} & V_{1}^{*} A \\
B V_{2} & S_{1}^{*} S_{2}+B A
\end{array}\right]
$$

Since $\mathbb{T}_{2} \mathbb{T}_{1}^{*}=\mathbb{T}_{1}^{*} \mathbb{T}_{2}$,

$$
A B \mid M=V_{1}^{*} V_{2}-V_{2} V_{1}^{*}
$$

and

$$
B A \mid M=S_{2} S_{1}^{*}-S_{1}^{*} S_{2}
$$

Thus $V_{1}^{*} V_{2}=V_{2} V_{1}^{*}$ if and only if $A B=0$, and $S_{2} S_{1}^{*}=S_{1}^{*} S_{2}$ if and only if $B A=0$. If $A=0$ then $V_{1}^{*} V_{2}=V_{2} V_{1}^{*}$ and $S_{2} S_{1}^{*}=S_{1}^{*} S_{2}$.
H^{2} denotes the usual Hardy space on the unit circle in \mathbb{C} and q is called inner when q is a unimodular function in H^{2}. Such a problem has been studied in the following cases.
(1) $H_{1}=H_{2}=H^{2}$ and $T_{1}=T_{2}$ are a usual shift on $H^{2}([1],[2],[5],[6])$.
(2) $H_{1}=H_{2}=H^{2}$ and $T_{1}=T_{2}$ are a backward shift ([4]).
(3) $H_{1}=H^{2}$ and $H_{2}=\mathbb{C}^{2}$, and T_{1} is the shift on H^{2} and T_{2} is the truncated shift on $\mathbb{C}^{2}([3])$.

Even if in very special examples, our problem is still very difficult. Our motivation is to make clear the causes by considering most special case. Hence we will not dare to generalize our results. In this paper, we assume that $\operatorname{dim} H_{2}=2$, that is, $H_{2}=\mathbb{C}^{2} .\left\{e_{1}, e_{2}\right\}$ denotes the standard basis for \mathbb{C}^{2}, that is, $e_{1}={ }^{t}[1,0]$ and $e_{2}={ }^{t}[0,1]$. We will write $P_{K}=P_{1}$ for $K=H_{1} \otimes\left[e_{1}\right]$ and $P_{K}=P_{2}$ for $K=H_{1} \otimes\left[e_{2}\right]$. If T_{2} is a bounded linear operator on \mathbb{C}^{2} then we may assume that T_{2} is a triangular matrix under the standard basis. In order to study $\operatorname{Lat}^{(T} \cap \operatorname{Lat} \mathbb{T}_{2}$ it is enough to consider when

$$
T_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { or } \quad T_{2}=\left[\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right] \quad \text { for } \quad x \neq 0
$$

Then $\mathbb{T}_{2}^{2}=0$ or $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$. In this paper, for arbitrary \mathbb{T}_{1} we study Lat $\mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$ when $\mathbb{T}_{2}^{2}=0$ or $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$. We determine $M \in \operatorname{Lat} \mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$ when $A=0$. Moreover, when \mathbb{T}_{1} does not have orthogonal invariant subspaces, we show that $A B=0$ if and only if $\operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}=\operatorname{Lat} T_{1} \otimes \operatorname{Lat} T_{2}$.

In this paper, $[S]$ denotes the closed linear span of a subset S in H. If $\mathbb{T}_{2}^{2}=0$ then $\mathbb{T}_{2} H=H_{1} \otimes\left[e_{1}\right] \operatorname{Ker} \mathbb{T}_{2}=H_{1} \otimes\left[e_{1}\right]$ and $\operatorname{Ker} \mathbb{T}_{2}^{*}=H_{1} \otimes\left[e_{2}\right]$, and if $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$ then $\mathbb{T}_{2} H=H_{1} \otimes\left[e_{1}\right], \operatorname{Ker}_{2}=H_{1} \otimes\left[e_{2}-x e_{1}\right]$ and $\operatorname{Ker}_{2}^{*}=H_{1} \otimes\left[e_{2}\right]$. In general, if M is in $\operatorname{LatT}_{1} \cap \operatorname{Lat}_{2}$ then $M=\operatorname{Ker} V_{2}^{*} \oplus\left[V_{2} M\right]$. It is clear that if $V_{1} V_{2}^{*}=V_{2}^{*} V_{1}$ then $V_{1} \operatorname{Ker} V_{2}^{*} \subseteq \operatorname{Ker} V_{2}^{*}$. This will be used several times in this paper.

The nilpotent case of \mathbb{T}_{2} is studied in Section 2. The idempotent case of \mathbb{T}_{2} is studied in Section 3. In Section 4 several concrete examples are given and it is noted that one of them can be applied to some invariant subspaces of the two variable Hardy space.

2. Nilpotent case

In this section, we assume that $T_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, that is, $\mathbb{T}_{2}^{2}=0$.
Theorem 2.1 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$, then the following are valid.
(i) $M=M_{2} \oplus\left[\mathbb{T}_{2} M_{2}\right]$ and $\left[\mathbb{T}_{2} M_{2}\right]=K_{3} \otimes\left[e_{1}\right]$ where $K_{3} \in \operatorname{Lat} T_{1}$.
(ii) $M_{2}=M_{0} \oplus M_{2} \cap \operatorname{Ker} \mathbb{T}_{2} \oplus M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}, M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}=K_{1} \otimes\left[e_{1}\right]$ and $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=$ $K_{2} \otimes\left[e_{2}\right]$ where $K_{2} \in \operatorname{LatT}_{1}, K_{2} \subseteq K_{3}$ and $K_{1} \oplus K_{3} \in \operatorname{Lat} T_{1}$.
(iii) $\operatorname{dim} M_{0}=\operatorname{dim} P_{1} M_{0}=\operatorname{dim} P_{2} M_{0}$.
(iv) $P_{1} M_{0} \subseteq\left(H_{1} \ominus\left(K_{1} \oplus K_{3}\right)\right) \otimes\left[e_{1}\right]$ and $P_{2} M_{0} \subseteq\left(K_{3} \ominus K_{2}\right) \otimes\left[e_{2}\right]$.
(v) $M=[$ Range $A] \oplus M \cap \operatorname{Ker} A^{*}$ where $M \cap \operatorname{Ker} A^{*}=\left\{f \otimes e_{1}+g \otimes e_{2} \in M: f \otimes e_{2} \in M\right\}$ and $M \cap \operatorname{Ker} A^{*} \in \operatorname{Lat} \mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}^{*}$. Hence $M \cap \operatorname{Ker} A^{*} \supseteq K_{2} \otimes\left[e_{2}\right]$.

Proof. (i) Put $M_{2}=M \ominus\left[\mathbb{T}_{2} M\right]$ then $\mathbb{T}_{2} M=\mathbb{T}_{2} M_{2}$ because $\mathbb{T}_{2}^{2} M=[0]$. Since $\left[\mathbb{T}_{2} M\right]=K_{3} \otimes\left[e_{1}\right]$ and $\mathbb{T}_{1} \mathbb{T}_{2}=\mathbb{T}_{2} \mathbb{T}_{1}, K_{3}$ belongs to $\operatorname{Lat} T_{1}$.
(ii) Since Ker $\mathbb{T}_{2}=H_{1} \otimes\left[e_{1}\right]$ and $\operatorname{KerT}_{2}^{*}=H_{1} \otimes\left[e_{2}\right], M_{2}=M_{0} \oplus M_{2} \cap \operatorname{KerT}_{2} \oplus$ $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}$, and $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}=K_{1} \otimes\left[e_{1}\right]$ and $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=K_{2} \otimes\left[e_{2}\right]$. It is easy to see that $K_{2} \in \operatorname{Lat}_{1}, K_{1} \perp K_{3}$ and $K_{2} \subset K_{3}$. Since $M \cap \operatorname{KerT}_{2}=\left(K_{1} \oplus K_{3}\right) \otimes\left[e_{1}\right]$, $K_{1} \oplus K_{3} \in \operatorname{Lat}_{1}$.
(iii) It is enough to show that if $\left\{f_{\alpha} \otimes e_{1}+g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in M_{0} then $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is a basis in $P_{1} M_{0}$ and $\left\{g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is in $P_{2} M_{0}$. If $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is not a basis in $P_{1} M_{0}$ then there exists a nonzero $g_{\alpha} \otimes e_{2}$ in M_{0}. For if $g_{\alpha}=0$ then $f_{\alpha} \otimes e_{1} \in \operatorname{Ker}_{2} \cap M_{0}=[0]$. This contradiction implies that if $\left\{f_{\alpha} \otimes e_{1}+g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in M_{0} then $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is a basis in $P_{1} M_{0}$. Similarly we can show that if $\left\{f_{\alpha} \otimes e_{1}+g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is in M_{0} then $\left\{g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in $P_{2} M_{0}$.
(iv) and (v) are clear.

Corollary 2.1 Suppose $M \in \operatorname{Lat} \mathbb{T}_{1} \cap \operatorname{Lat}_{2}$. The following are valid.
(i) $M_{0}=[0]$ if and only if $M=\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(\left(K_{1} \oplus K_{3}\right) \otimes\left[e_{1}\right]\right)$ where $K_{2}=K_{3}$, $K_{1} \perp K_{3}$ and $K_{2}, K_{3}, K_{1} \oplus K_{3} \in \operatorname{Lat} T_{1}$.
(ii) $M_{2}=M_{0}$ if and only if $M=M_{0} \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ where $K_{3} \in \operatorname{Lat} T_{1}$. Then $P_{1} M_{0}=K_{4} \otimes\left[e_{1}\right], P_{2} M_{0}=K_{3} \otimes\left[e_{2}\right], \operatorname{dim} K_{4}=\operatorname{dim} K_{3}=\operatorname{dim} M_{0}$ and $K_{4} \perp K_{3}$.
(iii) In (ii), for $f \otimes e_{1}+g \otimes e_{2}$ in M, if $T_{1} f=0$ then $T_{1} g=0$ and if $T_{1} g=0$ then $T_{1} f \in K_{3}$.
(iv) $\mathbb{T}_{2} M_{2}=[0]$ if and only if $M=K_{1} \otimes\left[e_{1}\right]$ where $K_{1} \in \operatorname{Lat} T_{1}$.
(v) $M \neq M_{0}$.

Proof. (i) and (iv) are clear.
(ii) If $M=M_{0} \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ then $P_{2} M_{0}=K_{3} \otimes\left[e_{2}\right]$ and $P_{1} M_{0}=K_{4} \otimes\left[e_{1}\right]$ and $K_{3} \perp K_{4}$. By (iii) of Theorem 2.1, $\operatorname{dim} K_{4}=\operatorname{dim} K_{3}=\operatorname{dim} M_{0}$.
(iii) Let $F=f \otimes e_{1}+g \otimes e_{2}$ in $M=M_{0} \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$. If $T_{1} f=0$ then $\mathbb{T}_{1} F=T_{1} g \otimes e_{2} \in M$. By (ii) $T_{1} g=0$. If $T_{1} g=0$ then $\mathbb{T}_{1} F=T_{1} f \otimes e_{1} \in M$. By (ii) $T_{1} f \in K_{3}$.
(v) If $M=M_{0}$ then $M_{0} \supset \mathbb{T}_{2} M_{2}$ and so $\mathbb{T}_{2} M_{2}=[0]$. (iii) of Theorem 2.1 and the above (iv) imply $M \neq M_{0}$.

Corollary 2.2 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$ then the following are equivalent.
(i) $A=0$.
(ii) $M \in \operatorname{Lat} \mathbb{T}_{2}^{*}$.
(iii) $M=K \otimes\left[e_{1}, e_{2}\right]$ where $K \in \operatorname{Lat} T_{1}$.

Proof. (i) \Leftrightarrow (ii) is a result of (v) of Theorem 2.1 because (i) is equivalent to $M \subset$ $\operatorname{Ker} A^{*}$.
(ii) \Rightarrow (iii) If $f \otimes e_{1}+g \otimes e_{2} \in M$ then $f \otimes e_{2}$ and $g \otimes e_{1}$ belong to M. Hence both $f \otimes e_{1}$ and $g \otimes e_{2}$ belong to M. Thus $M=K \otimes\left[e_{1}, e_{2}\right]$.
(iii) \Rightarrow (ii) is clear.

Corollary 2.3 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$, then the following are equivalent.
(i) $[$ Range $A]=M$.
(ii) $\operatorname{Ker} A^{*} \cap M=[0]$.
(iii) $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=[0]$.
(iv) $M=M_{0} \oplus\left\{\left(K_{1} \oplus K_{3}\right) \otimes\left[e_{1}\right]\right\}$.

Proof. (i) \Leftrightarrow (ii) \Rightarrow (iii) is a result of (v) of Theorem 2.1.
(iii) \Rightarrow (iv) is a result of (i) and (ii) of Theorem 2.1.
(iv) \Rightarrow (ii) Since $\mathbb{T}_{2}^{*} M=\mathbb{T}_{2}^{*} M_{0} \oplus\left(\left(K_{1} \oplus K_{3}\right) \otimes\left[e_{2}\right]\right), \mathbb{T}_{2}^{*} M \cap M=[0]$ and so $\operatorname{Ker} A^{*} \cap M=[0]$.

Theorem 2.2 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$.
(i) If $A B=0$ then $M_{2}=M_{0} \oplus\left(K_{1} \otimes\left[e_{1}\right]\right) \oplus\left(K_{2} \otimes\left[e_{2}\right]\right)$ where $K_{j} \in \operatorname{Lat} T_{1}$ for $j=1,2$.
(ii) $A B=0$ on $\operatorname{Ker}_{2} \mathbb{T}_{2}^{*} \cap M$.
(iii) If $A=0$ then $M_{0}=[0]$.

Proof. We will use the notations in Theorem 2.1.
(i) If $A B=0$ then $V_{2}^{*} V_{1}=V_{1} V_{2}^{*}$ and so $V_{1} M_{2} \subset M_{2} . K_{2} \in \operatorname{Lat} T_{1}$ by Theorem 2.1 and $K_{1} \in \operatorname{Lat}_{1}$ by that $\left(T_{1} K_{1}\right) \otimes e_{1} \subset M_{2}$.
(ii) $\operatorname{Ker}_{2}^{*} \cap M=K \otimes\left[e_{2}\right]$ and $V_{2}^{*}\left(K \otimes\left[e_{2}\right]\right)=0$. Hence $\left(V_{1} V_{2}^{*}-V_{2}^{*} V_{1}\right)\left(K \otimes\left[e_{2}\right]\right)=$ $-V_{2}^{*}\left(T_{1} K \otimes\left[e_{2}\right]\right)=0$ because $K \in \operatorname{Lat} T_{1}$.
(iii) Corollaries 2.1 and 2.2 show (iii).

Corollary 2.4 Suppose T_{1} does not have orthogonal invariant subspaces. When $M \in \mathrm{LatT}_{1} \cap \mathrm{LatT}_{2}, A B=0$ if and only if $M=K \otimes\left[e_{1}\right]$ or $K \otimes\left[e_{1}, e_{2}\right]$ for some $K \in \operatorname{Lat} T_{1}$.

Proof. Since $A B \mid M=V_{1} V_{2}^{*}-V_{2}^{*} V_{1}$, it is easy to see the 'if' part and so it is enough to show the 'only if' part. If $A B=0$ then $V_{1} V_{2}^{*}=V_{2}^{*} V_{1}$ and so $V_{1} \operatorname{Ker} V_{2}^{*} \subseteq \operatorname{Ker} V_{2}^{*}$. If $f \otimes e_{1}+g \otimes e_{2} \in M_{2}$ then $f \otimes e_{1} \perp \mathbb{T}_{2} M_{2}$. Since $\mathbb{T}_{1}\left(f \otimes e_{1}+g \otimes e_{2}\right) \in M_{2}$ and $\left[\mathbb{T}_{2} M_{2}\right]=K \otimes\left[e_{1}\right]$ for some $K \in \operatorname{Lat}_{1}, \bigcup_{n=0}^{\infty} T_{1}^{n} f$ is orthogonal to K. If $f \neq 0$ then $K=[0]$ by hypothesis on Lat_{1} and so $\mathbb{T}_{2} M=[0]$. Hence $M=K^{\prime} \otimes\left[e_{1}\right]$ for some $K^{\prime} \in \operatorname{Lat} T_{1}$. If there does not exist f such that $f \neq 0$ whenever $f \otimes e_{1}+g \otimes e_{2} \in M_{2}$, then $M_{2}=K^{\prime \prime} \otimes\left[e_{2}\right]$ for some $K^{\prime \prime} \in \operatorname{Lat} T_{1}$ and so $M=K^{\prime \prime} \otimes\left[e_{1}, e_{2}\right]$.

3. Idempotent case

In this section, we assume that $T_{2}=\left[\begin{array}{ll}1 & x \\ 0 & 0\end{array}\right]$, that is, $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$. If $x=0$ then everything is trivial and so we assume $x \neq 0$.

Theorem 3.1 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$. then the following are valid.
(i) $M=M_{2} \oplus\left[\mathbb{T}_{2} M\right], M_{2}=M_{2}^{\prime} \oplus \operatorname{Ker}_{2}^{*} \cap M_{2}$ and $M_{2}^{\prime}=M_{0} \oplus \operatorname{Ker}_{2} \cap M_{2}^{\prime}$.
(ii) $\left[\mathbb{T}_{2} M\right]=K_{3} \otimes\left[e_{1}\right], \operatorname{Ker}_{2}^{*} \cap M_{2}=K_{2} \otimes\left[e_{2}\right]$ and $\operatorname{Ker}_{2} \cap M_{2}^{\prime}=K_{1} \otimes\left[e_{2}-x e_{1}\right]$. Here $K_{2} \subset K_{3}, K_{1} \perp K_{3}$ where $K_{3} \in \operatorname{Lat}_{1}$ and $K_{2} \in \operatorname{Lat} T_{1}$
(iii) $\operatorname{dim} M_{0}=\operatorname{dim} P_{1} M_{0}=\operatorname{dim} P_{2} M_{0}$
(iv) $P_{1} M_{0} \subseteq\left(H_{1} \ominus K_{3}\right) \otimes\left[e_{1}\right]$ and $P_{2} M_{0} \subseteq\left(H_{1} \ominus K_{2}\right) \otimes\left[e_{2}\right)$
(v) $M=[\operatorname{Rang} A] \oplus M \cap \operatorname{Ker} A^{*}$ where $M \cap \operatorname{Ker} A^{*}=\left\{f \otimes e_{1}+g \otimes e_{2} \in M: f \otimes\left(e_{1}+\right.\right.$

Proof. (i) is clear.
(ii) The first part is clear. Since $\mathbb{T}_{2}\left(K_{2} \otimes\left[e_{2}\right]\right) \subseteq K_{3} \otimes\left[e_{1}\right], K_{2} \subseteq K_{3}$. Since $\left[\mathbb{T}_{2} M\right] \perp \operatorname{Ker}_{2} \cap M_{2}^{\prime}, K_{1} \perp K_{3}$ because $x \neq 0$.
(iii) It is enough to show that if $\left\{f_{\alpha} \otimes e_{1}+g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in M_{0} then $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is a basis in $P_{1} M_{0}$ and $\left\{g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in $P_{2} M_{0}$. If $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is not a basis in $P_{1} M_{0}$ then there exists a nonzero $g_{\alpha} \otimes e_{2}$ in M_{0}. For if $g_{\alpha}=0$ then $f_{\alpha} \otimes e_{1} \in M_{0} \cap \operatorname{KerT}_{2}^{*}=[0]$. This contradiction implies that if $\left\{f_{\alpha} \otimes e_{1}+g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is a basis in M_{0} then $\left\{f_{\alpha} \otimes e_{1}\right\}_{\alpha}$ is a basis in $P_{1} M_{0}$. If $\left\{g_{\alpha} \otimes e_{2}\right\}_{\alpha}$ is not a basis in $P_{2} M_{0}$ then there exists a nonzero $f_{\alpha} \otimes e_{1}$ in M_{0} and so $f_{\alpha} \in K_{3}$. By the definitions of M_{0} and $K_{3} \otimes\left[e_{1}\right], f_{\alpha} \perp K_{3}$. This implies $f_{\alpha}=0$.
(iv) and (v) are clear.

Corollary 3.1 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}^{2}$. Then the following are valid.
(i) $M_{0}=[0]$ if and only if $M=\left(K_{1} \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ where $K_{j} \in \operatorname{Lat}_{1}(j=2,3), K_{2}=K_{3}$ and $K_{1} \perp K_{3}$. Hence if $M_{0}=[0]$ then $T_{1} M_{2} \subseteq M_{2}$.
(ii) $M_{2}=M_{0}$ if and only if $M=M_{0} \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ where $K_{3} \in \operatorname{Lat} T_{1}$. Then $P_{1} M_{0}=K_{5} \otimes\left[e_{1}\right], P_{2} M_{0}=K_{4} \otimes\left[e_{2}\right], \operatorname{dim} K_{5}=\operatorname{dim} K_{4}=\operatorname{dim} M_{0}, K_{5} \perp K_{3}$ and $K_{4}+x K_{5}=K_{3}$.
(iii) In (ii), if $M_{0} \neq[0]$ then $K_{4} \not \subset K_{3}$ and $K_{5} \not \subset K_{3}$.
(iv) $\mathbb{T}_{2} M_{2}=[0]$ if and only if $M=\left(K_{1} \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ where $K_{1}, K_{3} \in$ Lat_{1} and $K_{1} \perp K_{3}$.
(v) $\mathbb{T}_{2} M=[0]$ if and only if $M=K_{1} \otimes\left[e_{2}-x e_{1}\right]$ for $K_{1} \in \operatorname{Lat} T_{1}$.

Proof. It is clear except (iii) and (iv). (iii) Suppose $K_{4} \subset K_{3}$. Then $K_{4} \perp K_{5}$ and if $F \in K_{4}$ then $F=f+x g$ for some $f \in K_{4}$ and $g \in K_{5}$ by (ii). Hence $F-f=x g \in K_{4} \cap K_{5}=[0]$. Since $x \neq 0, g=0$ and by (iii) of Theorem 3.1 $f=F=0$ and so $M_{0}=[0]$. This contradiction implies $K_{4} \not \subset K_{3}$.
(iv) If $f \in K_{1}$ then

$$
T_{1} f \otimes\left(e_{2}-x e_{1}\right)=f_{1} \otimes\left(e_{2}-x e_{1}\right)+f_{2} \otimes e_{1}
$$

where $f_{1} \in K_{1}$ and $f_{2} \in K_{3}$. Hence $T_{1} f=f_{1}$ and $x T_{1} f=x f_{1}-f_{2}$. Therefore $f_{2}=0$ and $T_{1} f=f_{1} \in K_{1}$.

Corollary 3.2 Suppose $M \in \operatorname{LatT}_{1} \cap \operatorname{Lat}_{2}$. Then $A=0$ if and only if $M=$ $K \otimes\left[e_{1}, e_{2}\right]$ where $K \in \operatorname{Lat} T_{1}$.

Proof. By (v) of Theorem 3.1, $A=0$ if and only if $\mathbb{T}_{2}^{*} M \subset M$. Hence the 'if' part is clear. We will show the 'only if' part. Since $\mathbb{T}_{2}^{*} M \subset M, M=\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M \oplus\left[\mathbb{T}_{2} M\right]=$ $\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$ where $K_{2} \subset K_{3}$ and $K_{j} \in \operatorname{Lat} T_{1}$ for $j=1,2$. Since $\mathbb{T}_{2}^{*} M \subset M, K_{2} \supset K_{3}$ and so $K_{2}=K_{3}$.

Theorem 3.2 Suppose $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}$.
(i) If $A B=0$ then $T_{1} P_{1} M_{0} \subseteq P_{1} M_{0}+K_{1} \otimes\left[e_{1}\right]$ and $T_{1} P_{2} M_{0} \subseteq P_{2} M_{0}+K_{2} \otimes\left[e_{2}\right]$ where M_{0}, K_{1} and K_{2} are defined in Theorem 3.1.
(ii) $A B=0$ on $\operatorname{Ker}_{2}^{*} \cap M$
(iii) If $M=K \otimes\left[e_{1}\right]$, or $M=K \otimes\left[e_{1}, e_{2}\right]$ for some $K \in \operatorname{Lat} T_{1}$ then $A B=0$.
(iv) If $A=0$ then $M_{0}=[0]$.

Proof. (i) If $A B=0$ then $V_{1} V_{2}^{*}=V_{2}^{*} V_{1}$ and so $V_{1} M_{2} \subseteq M_{2}$. Since $M_{2}=M_{0} \oplus$ $\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(K_{1} \otimes\left[e_{2}-x e_{1}\right]\right)$ by Theorem 3.1, $T_{1} P_{1} M_{0} \subseteq P_{1} M_{0}+K_{1} \otimes\left[e_{1}\right]$ and $T_{1} P_{2} M_{0} \subseteq P_{2} M_{0}+K_{2} \otimes\left[e_{2}\right]$
(ii) $V_{1} V_{2}^{*}\left(\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M\right)=V_{1} P_{M}\left(\mathbb{T}_{2}^{*}\left(\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M\right)\right)=[0]$. Since $\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M \subset H_{1} \otimes$ $\left[e_{2}\right], V_{2}^{*} V_{1}\left(\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M\right)=[0]$ by Theorem 3.1. Since $A B \mid M=V_{1} V_{2}^{*}-V_{2}^{*} V_{1}, A B=0$ on $\operatorname{Ker}_{2} \mathbb{T}_{2}^{*} \cap M$.
(iii) By the proof of (ii) $A B=0$ on $K \otimes\left[e_{2}\right]$. Hence we will prove $A B=0$ on $K \otimes\left[e_{1}\right]$. If $f \otimes e_{1} \in M$ then

$$
V_{1} V_{2}^{*}\left(f \otimes e_{1}\right)=V_{1}\left(f \otimes e_{1}+\bar{x} f \otimes e_{2}\right)=T_{1} f \otimes e_{1}+\bar{x} T_{1} f \otimes e_{2}
$$

and

$$
V_{2}^{*} V_{1}\left(f \otimes e_{1}\right)=V_{2}^{*}\left(T_{1} f \otimes e_{1}\right)=T_{1} f \otimes e_{1}+\bar{x} T_{1} f \otimes e_{2} .
$$

Hence $A B=0$ on $K \otimes\left[e_{1}\right]$.
(iv) Corollaries 3.1 and 3.2 show (iv).

Corollary 3.3 Suppose T_{1} does not have orthogonal invariant subspaces and $\mathbb{T}_{2} M \neq$ [0]. When $M \in \operatorname{LatT}_{1} \cap \operatorname{LatT}_{2}, A B=0$ if and only if $M=K \otimes\left[e_{1}\right]$ or $M=$ $K \otimes\left[e_{1}, e_{2}\right]$ for some $K \in \operatorname{Lat} T_{1}$.

Proof. By (iii) of Theorem 3.2, it is enough to show the 'only if' part. If $A B=0$ then $\mathbb{T}_{1} M_{2} \subseteq M_{2}$. Suppose $\left[\mathbb{T}_{2} M\right]=K_{3} \otimes\left[e_{1}\right]$. If $f \otimes e_{1}+g \otimes e_{2} \in M_{2}$ then $T_{1} f \otimes e_{1}+T_{1} g \otimes e_{2} \in M_{2}$ and so $T_{1} f \perp K_{3}$. If there exists a nonzero f such that $f \otimes e_{1}+g \otimes e_{2} \in M_{2}$ then there exists $K_{3}^{\prime} \in \operatorname{Lat} T_{1}$ such that $K_{3}^{\prime} \perp K_{3}$ as in the proof of Theorem 3.1. The hypothesis on T_{1} implies that $K_{3}=[0]$. Hence it contradicts $\mathbb{T}_{2} M \neq[0]$. Hence there does not exist any nonzero f such that $f \otimes e_{1}+g \otimes e_{2} \in M_{2}$, that is, $M_{2} \subseteq H_{1} \otimes\left[e_{2}\right]$ and so $M_{2}=\operatorname{Ker}_{2}^{*} \cap M$ then $M=\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(K_{3} \otimes\left[e_{1}\right]\right)$
and $K_{2} \subseteq K_{3}$. If $K_{2}=[0]$ then $M=K_{3} \otimes\left[e_{1}\right]$. If $K_{2} \neq[0]$ we will show $K_{2}=K_{3}$. If $f \in K_{3} \ominus K_{2}$ is nonzero then

$$
V_{2}^{*} V_{1}\left(f \otimes e_{1}\right)=V_{2}^{*}\left(T_{1} f \otimes e_{1}\right)=T_{1} f \otimes e_{1}+P_{M}\left(\bar{x} T_{1} f \otimes e_{2}\right)
$$

and

$$
V_{1} V_{2}^{*}\left(f \otimes e_{1}\right)=T_{1} f \otimes e_{1}+T_{1} P_{M}\left(\bar{x} f \otimes e_{2}\right) .
$$

Since $V_{2}^{*} V_{1}=V_{1} V_{2}^{*}, P_{M}\left(T_{1} f \otimes e_{2}\right)=T_{1} P_{M}\left(f \otimes e_{2}\right)$. Since $f \otimes e_{2} \perp K_{2} \otimes e_{2}, f \otimes e_{2} \perp M$ and so $P_{M}\left(f \otimes e_{2}\right)=0$. Hence $T_{1} f \otimes e_{1} \in M$ and $T_{1} f \otimes e_{2} \perp M=\left(K_{2} \otimes\left[e_{2}\right]\right) \oplus\left(K_{3} \otimes\right.$ $\left[e_{1}\right]$). Therefore $T_{1} f \in K_{3} \ominus K_{2}$. This contradicts the hypothesis on T_{1}.

4. Examples

In this section we give several concrete examples for the theorems in Sections 2 and 3.

Example 4.1 Suppose $H_{1}=\mathbb{C}^{n}=\left[f_{1}, \ldots, f_{n}, 0\right]$ where $\left\{f_{j}\right\}_{j=1}^{n}$ is a standard basis and $T_{1} f_{j}=f_{j+1}$ for $1 \leq j \leq n$ where $f_{n+1}=0$. Suppose $\mathbb{T}_{2}^{2}=0$. If $M \in$ Lat $\mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$ then by Theorem $2.1 \mathbb{T}_{2} M=\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right], M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=$ $\left[f_{s}, \ldots, f_{n+1}\right] \otimes\left[e_{2}\right]$ with $s \geq t, M_{2} \cap \operatorname{KerT}_{2}=\left[f_{\ell}, \ldots, f_{t-1}\right] \otimes\left[e_{1}\right]$, and

$$
M_{0} \subseteq\left(\left[f_{1}, \ldots, f_{\ell-1}\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{t}, \ldots, f_{s-1}\right] \otimes\left[e_{2}\right]\right)
$$

If $M_{2}=M_{0}$ then $M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}=[0]$, and so $P_{1} M_{0} \subseteq\left[f_{1}, \ldots, f_{t-1}\right] \otimes\left[e_{1}\right]$ and $P_{2} M_{0}=\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{2}\right]$. Hence $t-1 \geq n-t+1$ and so $2 t \geq n+2 . M_{0}=[0]$ if and only if $s=t$, that is, $M=\left(\left[f_{\ell}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{s}, \ldots, f_{n+1}\right] \otimes\left[e_{2}\right]\right)$ where $\ell \leq s$. By Corollary 2.3, $M=[\operatorname{Ran} A]$ if and only if $M=M_{0} \oplus\left[f_{\ell}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right]$. By Corollary 2.2, $A=0$ if and only if $M=\left[f_{\ell}, \ldots, f_{n+1}\right] \otimes\left[e_{1}, e_{2}\right]$. By Corollary 3.2, $A B=0$ if and only if $M=\left[f_{s}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right]$ or $M=\left[f_{s}, \ldots, f_{n+1}\right] \otimes\left[e_{1}, e_{2}\right]$.

We consider when $n=2$. We assume $M \neq[0]$. If $\mathbb{T}_{2} M_{2}=\left[f_{1}, f_{2}\right] \otimes\left[e_{1}\right]$ then $M=H$. Suppose $\mathbb{T}_{2} M_{2}=\left[f_{2}\right] \otimes\left[e_{1}\right]$. If $M_{0}=[0]$ then $M=\left[f_{2}\right] \otimes\left[e_{2}\right]$ or $M=\left[f_{2}\right] \otimes\left[e_{1}, e_{2}\right]$. If $M_{0} \neq[0]$ then $M_{0}=\left[f_{2} \otimes\left(\alpha_{1} e_{1}+\alpha_{2} e_{2}\right)\right]$ where $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$, and so $M=\left\{\left[f_{2} \otimes\left(\alpha_{1} e_{1}+\alpha_{2} e_{2}\right)\right]\right\} \oplus\left(\left[f_{2}\right] \otimes\left[e_{1}\right]\right)$.

Example 4.2 Suppose $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$ in Example 4.1. If $M \in \operatorname{Lat} \mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$ then by Theorem $3.1 \mathbb{T}_{2} M=\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right]$, $\operatorname{Ker}_{2}^{*} \cap M_{2}=\left[f_{s}, \ldots, f_{n+1}\right] \otimes\left[e_{2}\right](s \geq t)$ and $\operatorname{Ker} \mathbb{T}_{2} \cap M_{2}^{\prime} \subseteq\left[f_{m}, \ldots, f_{t-1}\right] \otimes\left[e_{2}-x e_{1}\right]$. Hence $M_{2}^{\prime}=M_{0} \oplus\left[f_{m}, \ldots, f_{t-1}\right] \otimes\left[e_{2}-x e_{1}\right]$ and

$$
M_{2}^{\prime} \subseteq\left(\left[f_{1}, \ldots, f_{t-1}\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{1}, \ldots, f_{s-1}\right] \otimes\left[e_{2}\right]\right)
$$

Therefore

$$
\begin{aligned}
& \operatorname{dim} M_{0}=\operatorname{dim} P_{1} M_{0}=\operatorname{dim} P_{2} M_{0} \leq \operatorname{dim} M_{2}^{\prime} \\
& \leq \min (t-1, s-1)
\end{aligned}
$$

$M_{0}=[0]$ if and only if $M=\left(\left[f_{m}, \ldots, f_{t-1}\right] \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{2}\right]\right) \oplus$ $\left(\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{1}\right]\right)$. By Corollary $3.2 A=0$ if and only if $M=\left[f_{t}, \ldots, f_{n+1}\right] \otimes$ $\left[e_{1}, e_{2}\right]$. By Corollary 3.3 when $\mathbb{T}_{2} M \neq[0], A B=0$ if and only if $M=\left[f_{t}, \ldots, f_{n+1}\right] \otimes$ $\left[e_{1}\right],\left[f_{t}, \ldots, f_{n+1}\right] \otimes\left[e_{1}, e_{2}\right]$.

We consider when $n=2$. If $\mathbb{T}_{2} M=\left[f_{1}, f_{2}\right] \otimes\left[e_{1}\right]$ then $M_{2}=[0], M_{2}=\left[f_{2}\right] \otimes\left[e_{2}\right]$ or $M_{2}=\left[f_{1}, f_{2}\right] \otimes\left[e_{2}\right]$. If $\mathbb{T}_{2} M=\left[f_{2}\right] \otimes\left[e_{1}\right]$ then $\operatorname{Ker}_{2}^{*} \cap M_{2}=[0]$ or $\left[f_{2}\right] \otimes\left[e_{2}\right]$. If $\operatorname{KerT}_{2}^{*} \cap M_{2}=\left[f_{2}\right] \otimes\left[e_{2}\right]$ then $M_{2}^{\prime} \subseteq\left[f_{1}\right] \otimes\left[e_{1}, e_{2}\right]$. If $f_{1} \otimes\left(\alpha_{1} e_{1}+\alpha_{2} f_{2}\right) \in M_{2}^{\prime}$ then $\alpha_{1}+x \alpha_{2}=0$ because $\mathbb{T}_{2} M_{2}^{\prime} \subseteq \mathbb{T}_{2} M$. Therefore $M_{2}^{\prime}=\operatorname{Ker} \mathbb{T}_{2} \cap M$ and so $M=\left(\left[f_{2}\right] \otimes\left[e_{1}, e_{2}\right]\right) \oplus\left[f_{1} \otimes\left(e_{2}-x e_{1}\right)\right]$. If Ker $\mathbb{T}_{2}^{*} \cap M_{2}=[0]$ then $M=M_{2}^{\prime} \oplus\left(\left[f_{2}\right] \otimes\left[e_{1}\right]\right)$. Suppose $\alpha_{1} f_{1} \otimes e_{1}+g \otimes e_{2} \in M_{2}^{\prime}$. Since $\mathbb{T}_{1} M_{2}^{\prime} \subset M, T_{1} g \otimes e_{2}$ belongs to M and so $T_{1} g \otimes e_{2} \in \operatorname{Ker}_{2}^{*} \cap M_{2}$. Hence $T_{1} g=0$ and so $g=\alpha_{2} f_{2}$. Since $\mathbb{T}_{2} M_{2}^{\prime} \subset\left[f_{2}\right] \otimes\left[e_{1}\right]$, $\alpha_{1}=0$. Therefore $M_{2}^{\prime}=\left[f_{2}\right] \otimes\left[e_{2}\right]$ and so $M=\left[f_{2}\right] \otimes\left[e_{1}, e_{2}\right]$. $\mathbb{T}_{2} M=[0]$ if and only if $M=\left[f_{1}, f_{2}\right] \otimes\left[e_{2}-x e_{1}\right]$ or $\left[f_{2}\right] \otimes\left[e_{2}-x e_{1}\right]$.

Example 4.3 Suppose $\left\{f_{j}\right\}_{j=1}^{\infty}$ is a standard orthogonal basis in $H_{1}=\ell^{2}$ and T_{1} is a unicellular weighted shift on $\left\{f_{j}\right\}_{j=1}^{\infty}$ and $f_{\infty}=0$. Suppose $\mathbb{T}_{2}^{2}=0$. If $M \in$ $\operatorname{Lat} T_{1} \cap \operatorname{Lat} T_{2}$ then by Theorem $2.1\left[\mathbb{T}_{2} M_{2}\right]=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}\right], \operatorname{Ker} \mathbb{T}_{2}^{*} \cap M_{2}=$ $\left[f_{t}, f_{t+1}, \ldots\right] \otimes\left[e_{2}\right]$ for $t \geq s$ and $\operatorname{KerT}_{2} \cap M_{2}=\left[f_{\ell}, \ldots, f_{s-1}\right] \otimes\left[e_{1}\right]$. Moreover $M_{0} \subseteq\left(\left[f_{1}, \ldots, f_{\ell-1}\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{s}, \ldots, f_{t-1}\right] \otimes\left[e_{2}\right]\right)$ and $\operatorname{dim} M_{0} \leq \min (\ell-1, t-s)$. If $M_{2}=M_{0}$ then $\operatorname{dim} M_{0}=\infty$ because $P_{2} M_{0}=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{2}\right]$. On the other hand, $\operatorname{dim} P_{1} M_{0}<\infty$ because $P_{1} M_{0} \subseteq\left[f_{1}, \ldots, f_{s-1}\right] \otimes\left[e_{1}\right]$. This contradiction shows that $M_{2} \neq M_{0}$ and $\operatorname{Ker}_{2}^{*} \cap M_{2} \neq[0] . M_{0}=[0]$ if and only if $M=\left(\left[f_{\ell}, f_{\ell+1}, \ldots\right] \otimes\left[e_{1}\right]\right) \oplus$ $\left(\left[f_{t}, f_{t+1}, \ldots\right] \otimes\left[e_{2}\right]\right)$ where $\ell \leq t . A=0$ if and only if $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}, e_{2}\right]$. $A B=0$ if and only if $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}\right]$ or $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}, e_{2}\right]$.

If $s=2$ then $\operatorname{dim} M_{0} \leq 1$. If $M_{0}=[0]$ then $M=H$ or $M=\left[f_{2}, f_{3}, \ldots\right] \otimes\left[e_{1}, e_{2}\right]$. If $M_{0} \neq[0]$ then $M_{0}=\left[\alpha\left(f_{1} \otimes e_{1}\right)+\beta\left(f_{2} \otimes e_{2}\right)\right]$ and $M_{2}=\left(\left[f_{2}, f_{3}, \ldots\right] \otimes\left[e_{1}\right]\right) \oplus$ $\left(\left[f_{3}, f_{4}, \ldots\right] \otimes\left[e_{1}\right]\right) \oplus M_{0}$.

Example 4.4 Suppose $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$ in Example 4.3. If $M \in \operatorname{Lat} T_{1} \cap \operatorname{Lat} T_{2}$ then by Theorem $3.1\left[\mathbb{T}_{2} M\right]=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}\right], M_{2} \cap \operatorname{Ker} \mathbb{T}_{2}^{*}=\left[f_{t}, f_{t+1}, \ldots\right] \otimes\left[e_{2}\right]$ for $t \geq s$, $M_{2}^{\prime} \cap \operatorname{KerT}_{2} \subseteq\left[f_{\ell}, \ldots, f_{s-1}\right] \otimes\left[e_{2}-x e_{1}\right]$ and

$$
M_{0} \subseteq\left(\left[f_{1}, \ldots, f_{s-1}\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{1}, \ldots, f_{t-1}\right] \otimes\left[e_{2}\right]\right)
$$

$M_{0}=[0]$ if and only if $M=\left(K_{1} \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{s}, f_{s+1}, \ldots\right] \otimes\right.$ $\left.\left[e_{2}\right]\right)$ where $t \geq s$ and $K_{1} \subseteq\left[f_{\ell}, \ldots, f_{s-1}\right] . A=0$ if and only if $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes$ $\left[e_{1}, e_{2}\right] . A B=0$ if and only if $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}\right]$ or $M=\left[f_{s}, f_{s+1}, \ldots\right] \otimes\left[e_{1}, e_{2}\right]$.

If $s=2$ then $\operatorname{dim} M_{0} \leq 1$. If $M_{0}=[0]$ then $M=\left(\left[f_{2}, f_{3}, \ldots\right] \otimes\left[e_{1}\right]\right) \oplus\left(\left[f_{2}, f_{3}, \ldots\right] \otimes\right.$ $\left.\left[e_{2}\right]\right) \oplus\left(\left[f_{1}\right] \otimes\left[e_{2}-x e_{1}\right]\right)$. If $M_{0} \neq[0]$ then $M_{0}=\left[f_{1} \otimes\left(\alpha_{1} e_{1}+\alpha_{2} e_{2}\right)\right]$ where $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$ and so $\mathbb{T}_{2} M_{0}=\left[f_{1} \otimes e_{1}\right]$. This is a contradiction because $\left[\mathbb{T}_{2} M\right]=\left[f_{2}, f_{3}, \ldots\right] \otimes\left[e_{1}\right]$. Thus if $s=2$ then $M_{0}=[0]$.

Example 4.5 Suppose $H_{1}=H^{2}$ and T_{1} is a unilateral shift on H^{2}. Suppose $\mathbb{T}_{2}^{2}=0$. If $M \in \operatorname{Lat}_{1} \cap \operatorname{Lat}_{2}, \mathbb{T}_{2} M \neq[0], \operatorname{Ker} \mathbb{T}_{2} \cap M \neq[0]$ and $\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M \neq[0]$ then by

Theorem 2.1 and Beurling theorem $\left[\mathbb{T}_{2} M_{2}\right]=q_{1} H^{2} \otimes\left[e_{1}\right]$, $\operatorname{Ker} \mathbb{T}_{2} \cap M_{2}=\left(q_{3} H^{2} \ominus\right.$ $\left.q_{1} H^{2}\right) \otimes\left[e_{1}\right]$ and $\operatorname{Ker}_{2}^{*} \cap M_{2}=q_{2} H^{2} \otimes\left[e_{2}\right]$ where $q_{2} H^{2} \subset q_{1} H^{2}$ and q_{j} is inner for $j=1,2,3$. Hence

$$
M_{0} \subseteq\left\{\left(H^{2} \ominus q_{3} H^{2}\right) \otimes\left[e_{1}\right]\right\} \oplus\left\{\left(q_{1} H^{2} \ominus q_{2} H^{2}\right) \otimes\left[e_{2}\right]\right\}
$$

and

$$
\operatorname{dim} M_{0}=\operatorname{dim} P_{1} M_{0}=\operatorname{dim} P_{2} M_{0} \leq \min \left(\operatorname{deg} q_{3}, \operatorname{deg} q_{2} \bar{q}_{1}\right)
$$

$M_{0}=[0]$ if and only if $M=\left\{q_{2} H^{2} \otimes\left[e_{2}\right]\right\} \oplus\left\{q_{3} H^{2} \otimes\left[e_{1}\right]\right\}$ where $\overline{q_{2}} q_{3} \in H^{2} . A=0$ if and only if $M=q H^{2} \otimes\left[e_{1}, e_{2}\right] . A B=0$ if and only if $M=q H^{2} \otimes\left[e_{1}\right]$ or $M=$ $q H^{2} \otimes\left[e_{1}, e_{2}\right]$. Here q is inner. If $M_{2}=M_{0}$ then q_{1} is not a finite Blaschke product. In fact, if q_{1} is a finite Blaschke product then $\operatorname{dim} M_{0} \leq \operatorname{deg} q_{1}$ and $\left[\mathbb{T}_{2} M_{0}\right]=q_{1} H^{2} \otimes\left[e_{1}\right]$. This contradiction shows that q_{1} is not a finite Blaschke product.

If $q_{1}=z$ then $q_{3}=1$ or $q_{3}=z$. If $q_{3}=1$ then $M_{0}=[0]$. If $q_{3}=z$ then $M_{2}=M_{0} \oplus\left(q_{2} H^{2} \otimes\left[e_{2}\right]\right)$. If $M_{0}=[0]$ then $q_{2}=z$. If $M_{0} \neq[0]$ then $M_{0}=$ $\left[\alpha\left(1 \otimes e_{1}\right)+\beta\left(z f \otimes e_{2}\right)\right]$ where $z f \in z H^{2} \ominus q_{2} H^{2}$. Hence $\bar{z} q_{2}$ is a single Blaschke product.

Example 4.6 Suppose $H_{1}=H^{2}$ and T_{1} is a unilateral shift on H^{2}. Suppose $\mathbb{T}_{2}^{2}=$ \mathbb{T}_{2}. By Theorem 3.1, if $\mathbb{T}_{2} M \neq[0]$ and $\operatorname{Ker} \mathbb{T}_{2}^{*} \cap M_{2} \neq[0]$ then $\left[\mathbb{T}_{2} M\right]=q_{1} H^{2} \otimes\left[e_{1}\right]$, $\operatorname{KerT} \mathbb{T}_{2}^{*} \cap M_{2}=q_{2} H^{2} \otimes\left[e_{2}\right]$ and $\operatorname{Ker} \mathbb{T}_{2} \cap M_{2}^{\prime} \subseteq\left(q_{3} H^{2} \ominus q_{1} H^{2}\right) \otimes\left[e_{2}-x e_{1}\right]$ where $q_{j}(1 \leq j \leq 3)$ is inner. Hence

$$
M_{0} \subseteq\left\{\left(H^{2} \ominus q_{1} H^{2}\right) \otimes\left[e_{1}\right]\right\} \oplus\left\{\left(H^{2} \ominus q_{2} H^{2}\right) \otimes\left[e_{2}\right]\right\}
$$

and

$$
\operatorname{dim} M_{0}=\operatorname{dim} P_{1} M_{0}=\operatorname{dim} P_{2} M_{0} \leq \min \left(\operatorname{deg} q_{1}, \operatorname{deg} q_{2}\right)
$$

$M_{0}=[0]$ if and only if $M=\left(K_{1} \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(q_{1} H^{2} \otimes\left[e_{1}\right]\right) \oplus\left(q_{2} H^{2} \otimes\left[e_{2}\right]\right)$ where $K_{1} \subseteq q_{3} H^{2} \ominus q_{1} H^{2}, q_{j}(1 \leq j \leq 3)$ is inner, $\overline{q_{1}} q_{3} \in H^{2}$ and $\overline{q_{1}} q_{2} \in H^{2} . A=0$ if and only if $M=q H^{2} \otimes\left[e_{1}, e_{2}\right] . A B=0$ if and only if $M=q H^{2} \otimes\left[e_{1}\right], M=q H^{2} \otimes\left[e_{1}, e_{2}\right]$. Here q is inner.

If $q_{1}=z$ then $\operatorname{dim} M_{0} \leq 1$. If $M_{0}=[0]$ then $M=z H^{2} \otimes\left[e_{1}, e_{2}\right]$ or $M=$ $\left(z H^{2} \otimes\left[e_{1}, e_{2}\right]\right) \oplus\left([1] \otimes\left[e_{2}-x e_{1}\right]\right)$. If $M_{0} \neq[0]$ then $M=\left(z H^{2} \otimes\left[e_{1}\right]\right) \oplus M_{2}$ and $M_{0}=\left[1 \otimes e_{1}+g \otimes e_{2}\right]$ where $g(0)=-1 / x, g \perp q_{2} H^{2}$ and $q_{2}(0)=0$. Moreover $M_{2}=$ $\left[1 \otimes e_{1}+g \otimes e_{2}\right] \oplus\left(q_{2} H^{2} \otimes\left[e_{2}\right]\right)$ or $M_{2}=\left[1 \otimes e_{1}+g \otimes e_{2}\right] \oplus\left([1] \otimes\left[e_{2}-x e_{1}\right]\right) \oplus\left(q_{2} H^{2} \otimes\left[e_{2}\right]\right)$.

Example 4.7 Suppose $H_{1}=H^{2}$ and T_{1} is a unilateral backward shift on H^{2}. Suppose $\mathbb{T}_{2}^{2}=0$ or $\mathbb{T}_{2}^{2}=\mathbb{T}_{2}$. Then we can apply the results in $\S 2$ and $\S 3$

Example 4.8 Let \mathbb{H}^{2} be the Hardy space on the torus in \mathbb{C}^{2}, and let z and w be coordinate functions on \mathbb{C}^{2}. Put

$$
D_{z} f=z f \quad \text { and } \quad D_{w} f=w f \quad\left(f \in \mathbb{H}^{2}\right) .
$$

It is an important problem to describe $\operatorname{Lat} D_{z} \cap \operatorname{Lat} D_{w}$ or $\operatorname{Lat} D_{z}^{*} \cap \operatorname{Lat} D_{w}^{*}$.

When $\mathbb{H}^{2}=M \oplus N, N \in \operatorname{Lat} D_{z} \cap \operatorname{Lat} D_{\omega}$ if and only if $M \in \operatorname{Lat} D_{z}^{*} \cap \operatorname{Lat} D_{w}^{*}$. Hence we consider only about Lat $D_{z}^{*} \cap \operatorname{Lat} D_{w}^{*}$. For $M \in \operatorname{Lat} D_{z}^{*} \cap \operatorname{Lat} D_{w}^{*}$ with $M \subseteq$ $\mathbb{H}^{2} \ominus w^{2} \mathbb{H}^{2}=H^{2} \oplus w H^{2}$, put $H=H_{1} \otimes H_{2}$ where $H_{1}=H^{2}$ and $H_{2}=[1, w]=\mathbb{C}^{2}$, and suppose

$$
\mathbb{T}_{1}=D_{z}^{*} \mid H \quad \text { and } \quad \mathbb{T}_{2}=D_{w}^{*} \mid H
$$

Then M belongs to Lat $\mathbb{T}_{1} \cap \operatorname{Lat} \mathbb{T}_{2}$. Hence we can apply M the results in $\S 2$.

Acknowledgments. Research of Takahiko Nakazi was partially supported by Grant-in-Aid Research, No.20541048. Research of Michio Seto was partially supported by Grant-in-Aid Research, No. 21740099.

References

[1] O. P. Agrawal, D. N. Clark and R. G. Douglas, Invariant subspaces in the polydisk, Pacific J. Math., 121 (1986), 1-11.
[2] P. R. Ahern and D. N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech., 19 (1970), 963-969.
[3] R. G. Douglas, T. Nakazi and M. Seto, Shift operators on the \mathbb{C}^{2}-valued Hardy space, Acta Sci. Math. (Szeged), 73 (2007), 729-744.
[4] K. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisk II, J. Operator Theory, 51 (2004), 361-376.
[5] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc., 103 (1988), 145-148.
[6] T. Nakazi, Certain invariant subspaces of H^{2} and L^{2} on a bidisc, Canad. J. Math., XL (1988), 1272-1280.
(Takahiko Nakazi) Hokusei Gakuen University, 2-3-1, Ohyachi-Nishi, Atsubetu-ku, Sapporo 0048631, Japan
(Michio Seto) Department of Mathematics, Shimane University, Matsue 690-8504, Japan
E-mail address: z00547@hokusei.ac.jp (T. Nakazi),
mseto@shimane-u.ac.jp (M. Seto)

Received May 25, 2009
Revised November 29, 2009

