STRONGLY GENERALIZED DIFFERENCE $\left[V^{\lambda}, \Delta^{M}, P\right]$-SUMMABLE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

AYHAN ESI

Abstract

We introduce the strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$ summable sequences and give the relation between the spaces of strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences and strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences with respect to a sequence of moduli. Also we give natural relationship between strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$-statistical convergence.

1. Introduction

Let l_{∞}, c and c_{o} denote the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$, normed by $\|x\|=\sup _{k}\left|x_{k}\right|$, respectively.

Let $\lambda=\left(\lambda_{r}\right)$ be a non-decreasing sequence of positive numbers tending to infinity and $\lambda_{r+1} \leq \lambda_{r}+1, \lambda_{1}=1$. The generalized de la Vallee-Poussin mean is defined by $t_{r}(x)=\lambda_{r}^{-1} \sum_{k \in I_{r}} x_{k}, I_{r}=\left[r-\lambda_{r}+1, r\right]$. A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number L if $t_{r}(x) \rightarrow L$ as $r \rightarrow \infty$, [10]. If $\lambda_{r}=r$, then the (V, λ)-summability is reduced to $(C, 1)$-summability. We write $[V, \lambda]=$ $\left\{x=\left(x_{k}\right): \lim _{r \rightarrow \infty} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left|x_{k}-L\right|=0\right.$, for some $\left.L\right\}$ for set of sequences $x=\left(x_{k}\right)$ which are strongly (V, λ)-summable to L.

The notion of modulus function was introduced by Nakano [15]. The notion was further investigated by Ruckle [13] and many others. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that (i) $f(x)=0$ if and only if $x=0$, (ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$, (iii) f is increasing, (iv) f is continuous from the right at 0 . It is immediate from (ii) and (iv) that f must be continuous on $[0, \infty)$. Also from condition (ii), we have $f(n x) \leq n f(x)$ for all $n \in N$. A modulus function may be bounded or unbounded. Ruckle [13], Connor [1], Maddox [12], Esi [2], Esi and Tripathy [3] and several authors used a modulus f to contruct some sequence spaces. For a sequence of moduli $F=\left(f_{k}\right)$ we give the following conditions: ($C 1$) $\sup _{k} f_{k}(t)<\infty$ for all $t>0,(C 2) \lim _{t \rightarrow 0} f_{k}(t)=0$, uniformly in $k \geq 1$. We remark

[^0]that in case $f_{k}=f(k \geq 1)$, where f is a modulus, the conditions ($C 1$) and (C2) are automatically fulfilled.

The difference sequence space $X(\Delta)$ was introduced by Kizmaz [8] as follows: $X(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in X\right\}$, for $X=l_{\infty}, c$ and c_{o}, where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k \in N$. Later, these difference sequence spaces were generalized by Et and Çolak [6] as follows: Let $n \in N$ be fixed, then $X\left(\Delta^{n}\right)=\left\{x=\left(x_{k}\right):\left(\Delta^{n} x_{k}\right) \in X\right\}$, for $X=l_{\infty}, c$ and c_{o}, where $\Delta^{n} x_{k}=\Delta^{n-1} x_{k}-\Delta^{n-1} x_{k+1}$ and $\Delta^{0} x_{k}=x_{k}$ for all $k \in N$. The generalized difference has the following binomial representation: $\Delta^{n} x_{k}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x_{k+i}$ for each $k \in N$.

Let X be a sequence space. Then X is called solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in X$ whenever $\left(x_{k}\right) \in X$ for all sequences $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$, for all $k \in N$. A sequence space X is called monotone if X contains preimages of all its step spaces. If X is normal, then it is monotone.

In the present note we introduce the new definitions of strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences and give the relation between the spaces of strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences and strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences with respect to a sequence of moduli. Also we give natural relationship between strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$-statistical convergence.

The following inequality will be used throughout the paper:

$$
\begin{equation*}
\left|x_{k}+y_{k}\right|^{p_{k}} \leq K\left(\left|x_{k}\right|^{p_{k}}+\left|y_{k}\right|^{p_{k}}\right) \tag{1.1}
\end{equation*}
$$

where x_{k} and y_{k} are complex numbers, $K=\max \left(1,2^{H-1}\right)$ and $H=\sup _{k} p_{k}<\infty$, [11].

2. Strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequences

Let $u=\left(u_{k}\right)$ is any sequence such that $u_{k} \neq 0(k=0,1,2, \ldots)$ and $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers $\left(0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\right.$ $\infty)$ and $F=\left(f_{k}\right)$ be a sequence of moduli and $m \geq 0$ be fixed integer then, we define

$$
\begin{aligned}
{\left[V^{\lambda}, F, \Delta^{m}, p\right] } & =\left\{x=\left(x_{k}\right) \left\lvert\, \begin{array}{r}
\lim _{r \rightarrow \infty} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}}=0 \\
\text { uniformly in } s, \quad \text { for some } L
\end{array}\right.\right\}, \\
{\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0} } & =\left\{x=\left(x_{k}\right) \left\lvert\, \begin{array}{r}
\lim _{r \rightarrow \infty} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}=0 \\
\text { uniformly in } s
\end{array}\right.\right\}, \\
{\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty} } & =\left\{x=\left(x_{k}\right) \mid \sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}<\infty\right\}
\end{aligned}
$$

If $u=e=(1,1,1, \ldots), s=0, \Delta^{m} x_{k}=x_{k}, f_{k}=f \quad$ and $p_{k}=1$ for all $k \in N$ then the sequence space $\left[V^{\lambda}, F, \Delta^{m}, p\right]$ reduce to well-known sequence space $[V, \lambda]$.

If $u=e=(1,1,1, \ldots), s=0, f_{k}=f$ for all $k \in N$ then the sequence spaces $\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ reduce to

$$
[V, \lambda, f, p]\left(\Delta^{m}\right),[V, \lambda, f, p]_{0}\left(\Delta^{m}\right), \text { and }[V, \lambda, f, p]_{\infty}\left(\Delta^{m}\right)
$$

which were defined and studied by Et, Altin, and Altinok [5].
Theorem 2.1 Let $F=\left(f_{k}\right)$ be a sequence of moduli then the sequence spaces $\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ are linear spaces over the complex field \mathbb{C}.

Proof. We give the proof only for $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. Since the proof is analogous for the spaces $\left[V^{\lambda}, F, \Delta^{m}, p\right]$ and $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$, we omit the details. Let $x, y \in$ $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\alpha, \beta \in \mathbb{C}$. Then there exist integers T_{α} and T_{β} such that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq T_{\beta}$. We therefore have

$$
\begin{aligned}
& \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m}\left(\alpha x_{k+s}+\beta y_{k+s}\right)\right|\right)\right]^{p_{k}} \\
& \quad=\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|\alpha u_{k} \Delta^{m} x_{k+s}+\beta u_{k} \Delta^{m} y_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad \leq K\left[T_{\alpha}\right]^{H} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}+K\left[T_{\beta}\right]^{H} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} y_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad \rightarrow 0 \text { as } r \rightarrow \infty, \text { uniformly in } s .
\end{aligned}
$$

This proves that the sequence space $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ is linear.

Theorem 2.2 Let $F=\left(f_{k}\right)$ be a sequence of moduli then the inclusions

$$
\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}
$$

hold.
Proof. The inclusion $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]$ is obvious. Now let $x \in$ $\left[V^{\lambda}, F, \Delta^{m}, p\right]$. By using (1.1), we have

$$
\begin{aligned}
& \sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad=\sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L+L\right|\right)\right]^{p_{k}} \\
& \quad \leq K \sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}}+K \sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}(|L|)\right]^{p_{k}} \\
& \quad \leq K \sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}}+K \max \left(f_{k}(|L|)^{h}, f_{k}(|L|)^{H}\right) \\
& \quad<\infty .
\end{aligned}
$$

Hence $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$, which shows that $\left[V^{\lambda}, F, \Delta^{m}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$. This completes the proof.

Theorem 2.3 The sequence spaces

$$
\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}, \text { and }\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}
$$

are solid and hence monotone.
Proof. Let $\left(\alpha_{k}\right)$ be a sequence of scalars such that $\left|\alpha_{k}\right| \leq 1$, for all $k \in N$. Since f_{k} is monotone for all $k \in N$, we get

$$
\begin{aligned}
\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} \alpha_{k+s} x_{k+s}\right|\right)\right]^{p_{k}} & \leq \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|\sup _{k, s} \alpha_{k+s}\right|\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}} \\
& \leq \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}
\end{aligned}
$$

which leads us to the desired result.
Now we give the relation between strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$ convergence and strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-convergence with respect to a sequence of moduli.

Theorem 2.4 Let $F=\left(f_{k}\right)$ be a sequence of moduli then

$$
\left[V^{\lambda}, \Delta^{m}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right], \quad\left[V^{\lambda}, \Delta^{m}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}
$$

and

$$
\left[V^{\lambda}, \Delta^{m}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}
$$

Proof. We consider only the case $\left[V^{\lambda}, \Delta^{m}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$.
Let $x \in\left[V^{\lambda}, \Delta^{m}, p\right]_{0}$ and $\varepsilon>0$. We choose $0<\delta<1$ such that $f_{k}(t)<\varepsilon$ for every t with $0 \leq t \leq \delta$. We can write

$$
\begin{aligned}
& \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad=\lambda_{r}^{-1} \sum_{1}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}+\lambda_{r}^{-1} \sum_{2}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad \leq \max \left(\varepsilon^{h}, \varepsilon^{H}\right)+\max \left(1,\left(2 f_{k}(1) \delta^{-1}\right)^{H}\right) \lambda_{r}^{-1} \sum_{2}\left|u_{k} \Delta^{m} x_{k+s}\right|^{p_{k}}
\end{aligned}
$$

where the summation \sum_{1} is over $\left|u_{k} \Delta^{m} x_{k+s}\right| \leq \delta$ and the summation \sum_{2} is over $\left|u_{k} \Delta^{m} x_{k+s}\right|>\delta$. Hence we obtain $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$.

Theorem 2.5 Let $F=\left(f_{k}\right)$ be a sequence of moduli. If $\lim _{t \rightarrow \infty} \frac{f_{k}(t)}{t}=\beta>0$, for all $k \in N$, then $\left[V^{\lambda}, \Delta^{m}, p\right]=\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, \Delta^{m}, p\right]_{0}=\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, \Delta^{m}, p\right]_{\infty}=\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$.
Proof. For any modulus function, the existence of a positive limit given with β was introduced by Maddox [2]. Let $\beta>0$ and $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. Since $\beta>0$, we have $\frac{f_{k}(t)}{t} \geq \beta$ for all $t>0$ and all $k \in N$. From this inequality, it is easy to see that $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. In Theorem 2.4, it was shown that $\left[V^{\lambda}, \Delta^{m}, p\right]_{0} \subset$ $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. This completes the proof.

Theorem 2.6 If $m \geq 1$, then the inclusions $\left[V^{\lambda}, F, \Delta^{m-1}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]$, $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ are strict. In general, $\left[V^{\lambda}, F, \Delta^{i}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, F, \Delta^{i}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, F, \Delta^{i}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ for all $i=1,2,3, \ldots, m-1$ and the inclusions are strict.

Proof. We give the proof for $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$. The others can be proved in a similar way. Let $x \in\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty}$. Then we have $\sup _{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m-1} x_{k+s}\right|\right)\right]^{p_{k}}<\infty$. By definition of f_{k} for all $k \in N$, from (1.1) we have

$$
\begin{aligned}
& \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}} \\
& \quad \leq K \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m-1} x_{k+s}\right|\right)\right]^{p_{k}}+K \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m-1} x_{k+s+1}\right|\right)\right]^{p_{k}} \\
& \quad<\infty
\end{aligned}
$$

for all $s \in N$. Thus $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$. Proceeding in this way one will have $\left[V^{\lambda}, F, \Delta^{i}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ for all $i=1,2,3, \ldots, m-1$. Now let $\lambda_{n}=n$ for each $n \in N$. Then the sequence $x=\left(k^{m}\right)\left(\Delta^{m} x_{k}=(-1)^{m} m\right.$! and $\left.\Delta^{m-1} x_{k}=(-1)^{m+1} m!\left(k+\frac{m-1}{2}\right)\right)$ for example, belongs to $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$, but it does not belong to $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty}$ for $f_{k}=i d, p_{k}=1$ for all $k \in N$ and $u=e$.

We consider that $\left(p_{k}\right)$ and $\left(q_{k}\right)$ are any bounded sequences of strictly positive real numbers. We are able to prove $\left[V^{\lambda}, \Delta^{m}, q\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, \Delta^{m}, q\right]_{0} \subset$ $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, \Delta^{m}, q\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ only under additional conditions.

Theorem 2.7 Let $0<p_{k} \leq q_{k}$ for all $k \in N$ and let $\left(\frac{q_{k}}{p_{k}}\right)$ be bounded. Then $\left[V^{\lambda}, \Delta^{m}, q\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right],\left[V^{\lambda}, \Delta^{m}, q\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ and $\left[V^{\lambda}, \Delta^{m}, q\right]_{\infty} \subset$ $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$.

Proof. If we take $t_{k, s}=\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{q_{k}}$ for all $k, s \in N$, then using the same technique of Theorem 2 of Nanda [16], the proof is easy.

Corollary 2.1 The following statements are valid:
(i) If $0<\inf _{k} p_{k} \leq 1$ for all $k \in N$, then

$$
\left[V^{\lambda}, \Delta^{m}\right] \subset\left[V^{\lambda}, F, \Delta^{m}, p\right], \quad\left[V^{\lambda}, \Delta^{m}\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}
$$

and

$$
\left[V^{\lambda}, \Delta^{m}\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}
$$

(ii) If $1 \leq p_{i} \leq \sup _{i} p_{i}=H<\infty$, then

$$
\left[V^{\lambda}, \Delta^{m}, p\right] \subset\left[V^{\lambda}, F, \Delta^{m}\right], \quad\left[V^{\lambda}, \Delta^{m}, p\right]_{0} \subset\left[V^{\lambda}, F, \Delta^{m}\right]_{0}
$$

and

$$
\left[V^{\lambda}, \Delta^{m}, p\right]_{\infty} \subset\left[V^{\lambda}, F, \Delta^{m}\right]_{\infty}
$$

Proof. (i) follows from Theorem 2.7 with $q_{k}=1$ for all $k \in N$, and (ii) follows from the same theorem with $p_{k}=1$ for all $k \in N$.

Theorem $2.8\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ is a paranormed space with

$$
h_{\Delta^{m}}(x)=\sup _{r, s}\left(\lambda_{r}^{-1} \sum_{k \in I_{r}} f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)^{p_{k}}\right)^{\frac{1}{M}}
$$

where $M=\max \left(1, \sup _{k} p_{k}\right)<\infty$.
Proof. Clearly $h_{\Delta^{m}}(x)=h_{\Delta^{m}}(-x)$. It is trivial that $\Delta^{m} x_{k}=0$ for $x=0$.Since $f_{k}(0)=0$ for all $k \in N$, we get $h_{\Delta^{m}}(x)=0$ for $x=0$. Since $\frac{p_{k}}{M} \leq 1$ and $M \geq 1$, using the Minkowski's inequality and definition of f_{k}, for each $r, s \geq 1$, we have

$$
\begin{aligned}
& \left(\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k}\left(\Delta^{m} x_{k+s}+\Delta^{m} y_{k+s}\right)\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left(\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[\left(f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)+f_{k}\left(\left|u_{k}\left(\Delta^{m} x_{k+s}\right)\right|\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left(\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}+\left(\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} y_{k+s}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}
\end{aligned}
$$

Hence $h_{\Delta^{m}}$ is subadditive. Finally, to check the continuity of multiplication, let us take any complex number α. By definition of f_{k}, we have

$$
h_{\Delta^{m}}(\alpha x)=\sup _{r, s}\left(\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|\alpha u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \leq T^{\frac{H}{M}} h_{\Delta^{m}}(x)
$$

where T is a positive integer such that $|\alpha| \leq T$. Now, let $\alpha \rightarrow 0$ for any fixed x with $h_{\Delta^{m}}(x) \neq 0$. By definition of f_{k} for $|\alpha|<1$, we have

$$
\begin{equation*}
\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|\alpha u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}<\varepsilon \quad \text { for } \quad r>r_{o} . \tag{2.2}
\end{equation*}
$$

Also, for $1 \leq r \leq r_{o}$, taking α small enough, since f_{k} is continuous for all $k \in N$, we have

$$
\begin{equation*}
\lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|\alpha u_{k} \Delta^{m} x_{k+s}\right|\right)\right]^{p_{k}}<\varepsilon . \tag{2.3}
\end{equation*}
$$

Conditions (2.2) and (2.3) together imply that $h_{\Delta^{m}}(\alpha x) \rightarrow 0$ as $\alpha \rightarrow 0$. This completes the proof.

3. Strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$-statistical convergence

In this section, we introduce natural relationship between strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$-statistical convergence. Fast [7] introduced the idea of statistical convergence. This idea was later studied by Connor [1], Salat [18], Savas [19], Tripathy [17], Esi and Tripathy [4] and many others.

A sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L if for every $\varepsilon>0, \lim _{n}\left|\frac{A(\varepsilon)}{n}\right|=0$, where $|A(\varepsilon)|$ denotes the number of elements in $A(\varepsilon)=\left\{k \in N:\left|x_{k}-L\right| \geq \varepsilon\right\}$.

In [9], Et and Nuray defined a sequence $x=\left(x_{k}\right)$ is Δ^{m}-statisticaly convergent to the number if for every $\varepsilon>0, \lim _{n}\left|\frac{K(\varepsilon)}{n}\right|=0$, where $|K(\varepsilon)|$ denotes the number of elements in $K(\varepsilon)=\left\{k \in N:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}$. The set of Δ^{m}-statisticaly convergent sequences is denoted by $S\left(\Delta^{m}\right)$.

Mursaleen [14] introduced the concept of λ-statistical convergence as follows: A sequence $x=\left(x_{k}\right)$ is said to be λ-statistically convergent to L if for every $\varepsilon>0, \lim _{r} \lambda_{r}^{-1}|C(\varepsilon)|=0$, where $|C(\varepsilon)|$ denotes the number of elements in $C(\varepsilon)=$ $\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}$. The set of all λ-statistically convergent sequences is denoted by S^{λ}.

A sequence $x=\left(x_{k}\right)$ is said to be strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$ statistically convergent to the number L if for any $\varepsilon>0, \lim _{r} \lambda_{r}^{-1}|C(\varepsilon, s)|=$

0 , uniformly in s, where $|C(\varepsilon, s)|$ denotes the number of elements in $C(\varepsilon, s)=$ $\left\{k \in I_{r}:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\}$. The set of all strongly generalized difference generalized statistically convergent sequences is denoted by $S^{\lambda}\left(\Delta^{m}, s\right)$.

If $u_{k}=e$ for all $k \in N, s=0$, and $\lambda_{r}=r$ for $r \geq 1$, then the space $S^{\lambda}\left(\Delta^{m}, s\right)$ reduces to the space $S\left(\Delta^{m}\right)$, which was defined and studied by Et and Nuray [9]. If $u_{k}=e$ for all $k \in N, s=0, m=0$ and $\lambda_{r}=r$ for $r \geq 1$, then the space $S^{\lambda}\left(\Delta^{m}, s\right)$ reduces to the space of ordinary statistical convergence. If $u_{k}=e$ for all $k \in N$, $s=0, m=0$ and then the space $S^{\lambda}\left(\Delta^{m}, s\right)$ reduces to the space of λ-statistical convergence which was defined and studied by Mursaleen [14].

Now we give the relation between strongly generalized difference $S^{\lambda}\left(\Delta^{m}\right)$-statistical convergence and strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-convergence with respect to a sequence of moduli.

Theorem 3.1 Let $F=\left(f_{k}\right)$ be a sequence of moduli then $\left[V^{\lambda}, F, \Delta^{m}, p\right] \subset S^{\lambda}\left(\Delta^{m}, s\right)$.
Proof. Let $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]$. Then

$$
\begin{aligned}
& \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}} \\
& \quad \geq \lambda_{r}^{-1} \sum_{1}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}} \\
& \quad \geq \lambda_{r}^{-1} \sum_{1}\left[f_{k}(\varepsilon)\right]^{p_{k}} \\
& \quad \geq \lambda_{r}^{-1} \sum_{1} \min \left(f_{k}(\varepsilon)^{h}, f_{k}(\varepsilon)^{H}\right) \\
& \quad \geq \lambda_{r}^{-1}\left|\left\{k \in I_{r}:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\}\right| \min \left(f_{k}(\varepsilon)^{h}, f_{k}(\varepsilon)^{H}\right),
\end{aligned}
$$

where the summation \sum_{1} is over $\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon$. Hence we obtain $x \in$ $S^{\lambda}\left(\Delta^{m}, s\right)$. This completes the proof.

Theorem 3.2 Let $F=\left(f_{k}\right)$ be a uniformly bounded sequence of moduli on the interval $[0, \infty)$. Then $\left[V^{\lambda}, F, \Delta^{m}, p\right]=S^{\lambda}\left(\Delta^{m}, s\right)$.

Proof. By Theorem 3.1, it is sufficient to show that $\left[V^{\lambda}, F, \Delta^{m}, p\right] \supset S^{\lambda}\left(\Delta^{m}, s\right)$. Let $x \in S^{\lambda}\left(\Delta^{m}\right)$. Since $F=\left(f_{k}\right)$ is uniformly bounded on the interval $[0, \infty)$, so there exists an integer $B>0$ such that $f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right) \leq B$ for all $k \in N$. Then for a given $\varepsilon>0$, we have

$$
\begin{aligned}
& \lambda_{r}^{-1} \sum_{k \in I_{r}}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}} \\
& \quad=\lambda_{r}^{-1} \sum_{1}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}}+\lambda_{r}^{-1} \sum_{2}\left[f_{k}\left(\left|u_{k} \Delta^{m} x_{k+s}-L\right|\right)\right]^{p_{k}} \\
& \quad \geq B^{H} \lambda_{r}^{-1}\left|\left\{k \in I_{r}:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\}\right|+\max \left(f_{k}(\varepsilon)^{h}, f_{k}(\varepsilon)^{H}\right),
\end{aligned}
$$

where the summation \sum_{1} is over $\left|u_{k} \Delta^{m} x_{k+s}\right| \leq \delta$ and the summation \sum_{2} is over $\left|u_{k} \Delta^{m} x_{k+s}\right|>\delta$. Taking the limit as $\varepsilon \rightarrow 0$ and $r \rightarrow \infty$, uniformly in s, we get $x \in\left[V^{\lambda}, F, \Delta^{m}, p\right]$. This completes the proof.

Theorem 3.3 If $\liminf _{r} \frac{\lambda_{r}}{r}>0$, then $S\left(\Delta^{m}, s\right) \subset S^{\lambda}\left(\Delta^{m}, s\right)$, where

$$
S\left(\Delta^{m}, s\right)=\left\{\left.\begin{array}{r|}
x=\left(x_{k}\right)
\end{array}\left|\lim _{r} \frac{1}{r}\right|\left\{k \leq r:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\} \right\rvert\,=0, ~ 子 .\right.
$$

Proof. Let $x \in S\left(\Delta^{m}, s\right)$. For given $\varepsilon>0$, we get

$$
\left\{k \leq r:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\} \supset C(\varepsilon, s) .
$$

Thus

$$
\frac{1}{r}\left|\left\{k \leq r:\left|u_{k} \Delta^{m} x_{k+s}-L\right| \geq \varepsilon\right\}\right| \geq \frac{1}{r}|C(\varepsilon, s)|=\frac{\lambda_{r}}{r} \frac{1}{\lambda_{r}}|C(\varepsilon, s)| .
$$

Taking limit as $r \rightarrow \infty$ and using $\lim \inf _{r} \frac{\lambda_{r}}{r}>0$, we get $x \in S^{\lambda}\left(\Delta^{m}, s\right)$. This completes the proof.

References

[1] J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2) (1989), 194-198.
[2] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turkish J. of Math., 21 (1997), 61-68.
[3] A. Esi and B. C. Tripathy, On some generalized new type difference sequence spaces defined by a modulus function in a seminormed space, Fasciculi Mathematici, Fasc. Math., 40 (2008), 15-24.
[4] A. Esi and B. C. Tripathy, Strongly almost convergent generalized difference sequences associated with multiplier sequences, Math. Slovaca, 57 (2007), 339348.
[5] M. Et, Y. Altin, and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat, 17 (2003), 23-33.
[6] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J.Math., 21 (1995), 377-386.
[7] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[8] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169176.
[9] M. Et and F. Nuray, Δ^{m}-statistical convergence, Indian J. Pure and Appl. Math., 6(32) (2001),961-969.
[10] L. Leindler, Über die la Vallee-Pousinche summierbarkeit allgemeiner orthogonalchen, Acta Math. Hung., 16 (1965), 375-378.
[11] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser.2, 18 (1967), 345-355.
[12] I. J. Maddox, Sequence spaces defined by a modulus function, Math. Proc. Camb. Phil. Soc., 100 (1986), 161-166.
[13] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
[14] Mursaleen, λ-statistical convergence, Math. Slovaca, 50 (2000), 111-115.
[15] H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27 (1951), 508-512.
[16] S. Nanda, Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung., 49(1-2) (1987), 71-76.
[17] B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex space, Soochow J. Math., 29(3) (2003), 313-326.
[18] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 2 (1980), 139-150.
[19] E. Savaş, Some sequence spaces and statistical convergence, Int. J. Math. and Math. Sci., 29(5) (2002), 303-306.
(Ayhan Esi) Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey
E-mail address: aesi23@hotmail.com

Received January 20, 2009
Revised August 3, 2009

[^0]: 2000 Mathematics Subject Classification. 40A05, 40C05, 46A45.
 Key words and phrases. De la Vallee-Poussin mean, modulus function, difference sequence, statistical convergence.

