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STRONGLY GENERALIZED DIFFERENCE[
V λ, ∆M , P

]
-SUMMABLE SEQUENCE SPACES DEFINED

BY A SEQUENCE OF MODULI

AYHAN ESİ

Abstract. We introduce the strongly generalized difference
[
V λ, ∆m, p

]
-

summable sequences and give the relation between the spaces of strongly
generalized difference

[
V λ, ∆m, p

]
-summable sequences and strongly general-

ized difference
[
V λ, ∆m, p

]
-summable sequences with respect to a sequence

of moduli. Also we give natural relationship between strongly generalized
difference

[
V λ,∆m, p

]
-convergence with respect to a sequence of moduli and

strongly generalized difference Sλ (∆m)-statistical convergence.

1. Introduction

Let l∞, c and co denote the Banach spaces of bounded, convergent and null sequences
x = (xk), normed by ‖x‖ = supk |xk|, respectively.

Let λ = (λr) be a non-decreasing sequence of positive numbers tending to infinity
and λr+1 ≤ λr + 1, λ1 = 1. The generalized de la Vallee-Poussin mean is defined
by tr (x) = λ−1

r

∑
k∈Ir

xk, Ir = [r − λr + 1, r]. A sequence x = (xk) is said to
be (V, λ)-summable to a number L if tr (x) → L as r → ∞, [10]. If λr = r,
then the (V, λ)-summability is reduced to (C, 1)-summability. We write [V, λ] ={
x = (xk) : limr→∞ λ−1

r

∑
k∈Ir

|xk − L| = 0, for someL
}

for set of sequences x = (xk)
which are strongly (V, λ)-summable to L.

The notion of modulus function was introduced by Nakano [15]. The notion was
further investigated by Ruckle [13] and many others. We recall that a modulus f
is a function from [0,∞) to [0,∞) such that (i) f (x) = 0 if and only if x = 0, (ii)
f (x + y) ≤ f (x) + f (y) for x, y ≥ 0, (iii) f is increasing, (iv) f is continuous from
the right at 0. It is immediate from (ii) and (iv) that f must be continuous on [0,∞).
Also from condition (ii), we have f (nx) ≤ nf (x) for all n ∈ N . A modulus function
may be bounded or unbounded. Ruckle [13], Connor [1], Maddox [12], Esi [2], Esi
and Tripathy [3] and several authors used a modulus f to contruct some sequence
spaces. For a sequence of moduli F = (fk) we give the following conditions: (C1)
supk fk (t) < ∞ for all t > 0, (C2) limt→0 fk (t) = 0, uniformly in k ≥ 1. We remark
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that in case fk = f (k ≥ 1), where f is a modulus, the conditions (C1) and (C2)
are automatically fulfilled.

The difference sequence space X (∆) was introduced by Kizmaz [8] as follows:
X (∆) = {x = (xk) : (∆xk) ∈ X}, for X = l∞, c and co, where ∆xk = xk − xk+1

for all k ∈ N . Later, these difference sequence spaces were generalized by Et and
Çolak [6] as follows: Let n ∈ N be fixed, then X (∆n) = {x = (xk) : (∆nxk) ∈ X},
for X = l∞, c and co, where ∆nxk = ∆n−1xk − ∆n−1xk+1 and ∆0xk = xk for
all k ∈ N . The generalized difference has the following binomial representation:
∆nxk =

∑n
i=0 (−1)i (n

i

)
xk+i for each k ∈ N .

Let X be a sequence space. Then X is called solid (or normal) if (αkxk) ∈ X
whenever (xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1, for all k ∈ N . A
sequence space X is called monotone if X contains preimages of all its step spaces.
If X is normal, then it is monotone.

In the present note we introduce the new definitions of strongly generalized dif-
ference

[
V λ, ∆m, p

]
-summable sequences and give the relation between the spaces of

strongly generalized difference
[
V λ, ∆m, p

]
-summable sequences and strongly gen-

eralized difference
[
V λ, ∆m, p

]
-summable sequences with respect to a sequence of

moduli. Also we give natural relationship between strongly generalized difference[
V λ, ∆m, p

]
-convergence with respect to a sequence of moduli and strongly general-

ized difference Sλ (∆m)-statistical convergence.
The following inequality will be used throughout the paper:

|xk + yk|pk ≤ K (|xk|pk + |yk|pk) (1.1)

where xk and yk are complex numbers, K = max
(
1, 2H−1

)
and H = supk pk < ∞,

[11].

2. Strongly generalized difference
[
V λ, ∆m, p

]
-summable se-

quences

Let u = (uk) is any sequence such that uk 6= 0 (k = 0, 1, 2, . . .) and p = (pk) be a
bounded sequence of positive real numbers (0 < h = infk pk ≤ pk ≤ supk pk = H <
∞) and F = (fk) be a sequence of moduli and m ≥ 0 be fixed integer then, we
define

[
V λ, F, ∆m, p

]
=

x = (xk)

∣∣∣∣∣∣
lim
r→∞

λ−1
r

∑
k∈Ir

[fk(|uk∆
mxk+s − L|)]pk = 0

uniformly in s, for some L

 ,

[
V λ, F, ∆m, p

]
0

=

x = (xk)

∣∣∣∣∣∣
lim
r→∞

λ−1
r

∑
k∈Ir

[fk(|uk∆
mxk+s|)]pk = 0

uniformly in s

 ,

[
V λ, F, ∆m, p

]
∞ =

{
x = (xk)

∣∣∣∣∣ sup
r,s

λ−1
r

∑
k∈Ir

[fk(|uk∆
mxk+s|)]pk < ∞

}
.
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If u = e = (1, 1, 1, . . .) , s = 0, ∆mxk = xk , fk = f and pk = 1 for all k ∈ N
then the sequence space

[
V λ, F, ∆m, p

]
reduce to well-known sequence space [V, λ].

If u = e = (1, 1, 1, . . .) , s = 0, fk = f for all k ∈ N then the sequence spaces[
V λ, F, ∆m, p

]
,
[
V λ, F, ∆m, p

]
0

and
[
V λ, F, ∆m, p

]
∞ reduce to

[V, λ, f, p] (∆m), [V, λ, f, p]0 (∆m), and [V, λ, f, p]∞ (∆m)

which were defined and studied by Et, Altin, and Altinok [5].

Theorem 2.1 Let F = (fk) be a sequence of moduli then the sequence spaces[
V λ, F, ∆m, p

]
,
[
V λ, F, ∆m, p

]
0

and
[
V λ, F, ∆m, p

]
∞ are linear spaces over the com-

plex field C.

Proof. We give the proof only for
[
V λ, F, ∆m, p

]
0
. Since the proof is analogous

for the spaces
[
V λ, F, ∆m, p

]
and

[
V λ, F, ∆m, p

]
∞ , we omit the details. Let x, y ∈[

V λ, F, ∆m, p
]
0
and α, β ∈ C. Then there exist integers Tα and Tβ such that |α| ≤ Tα

and |β| ≤ Tβ. We therefore have

λ−1
r

∑
k∈Ir

[fk (|uk∆
m (αxk+s + βyk+s)|)]pk

= λ−1
r

∑
k∈Ir

[fk (|αuk∆
mxk+s + βuk∆

myk+s|)]pk

≤ K [Tα]H λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk + K [Tβ]H λ−1

r

∑
k∈Ir

[fk (|uk∆
myk+s|)]pk

→ 0 as r → ∞, uniformly in s.

This proves that the sequence space
[
V λ, F, ∆m, p

]
0

is linear. ¤

Theorem 2.2 Let F = (fk) be a sequence of moduli then the inclusions[
V λ, F, ∆m, p

]
0
⊂

[
V λ, F, ∆m, p

]
⊂

[
V λ, F, ∆m, p

]
∞

hold.

Proof. The inclusion
[
V λ, F, ∆m, p

]
0
⊂

[
V λ, F, ∆m, p

]
is obvious. Now let x ∈[

V λ, F, ∆m, p
]
. By using (1.1), we have

sup
r,s

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk

= sup
r,s

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s − L + L|)]pk

≤ K sup
r,s

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s − L|)]pk + K sup

r,s
λ−1

r

∑
k∈Ir

[fk (|L|)]pk

≤ K sup
r,s

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s − L|)]pk + K max

(
fk (|L|)h , fk (|L|)H

)
< ∞.
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Hence x ∈
[
V λ, F, ∆m, p

]
∞, which shows that

[
V λ, F, ∆m, p

]
⊂

[
V λ, F, ∆m, p

]
∞.

This completes the proof. ¤

Theorem 2.3 The sequence spaces[
V λ, F, ∆m, p

]
,
[
V λ, F, ∆m, p

]
0
, and

[
V λ, F, ∆m, p

]
∞

are solid and hence monotone.

Proof. Let (αk) be a sequence of scalars such that |αk| ≤ 1, for all k ∈ N. Since fk

is monotone for all k ∈ N , we get

λ−1
r

∑
k∈Ir

[fk (|uk∆
mαk+sxk+s|)]pk ≤ λ−1

r

∑
k∈Ir

[
fk

(∣∣∣∣sup
k,s

αk+s

∣∣∣∣ |uk∆
mxk+s|

)]pk

≤ λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk ,

which leads us to the desired result. ¤

Now we give the relation between strongly generalized difference
[
V λ, ∆m, p

]
-

convergence and strongly generalized difference
[
V λ, ∆m, p

]
-convergence with re-

spect to a sequence of moduli.

Theorem 2.4 Let F = (fk) be a sequence of moduli then[
V λ, ∆m, p

]
⊂

[
V λ, F, ∆m, p

]
,

[
V λ, ∆m, p

]
0
⊂

[
V λ, F, ∆m, p

]
0

and [
V λ, ∆m, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ .

Proof. We consider only the case
[
V λ, ∆m, p

]
0
⊂

[
V λ, F, ∆m, p

]
0
.

Let x ∈
[
V λ, ∆m, p

]
0

and ε > 0. We choose 0 < δ < 1 such that fk(t) < ε for
every t with 0 ≤ t ≤ δ. We can write

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk

= λ−1
r

∑
1

[fk (|uk∆
mxk+s|)]pk + λ−1

r

∑
2

[fk (|uk∆
mxk+s|)]pk

≤ max (εh, εH) + max (1, (2fk(1)δ−1)H)λ−1
r

∑
2

|uk∆
mxk+s|pk

where the summation
∑

1 is over |uk∆
mxk+s| ≤ δ and the summation

∑
2 is over

|uk∆
mxk+s| > δ. Hence we obtain x ∈

[
V λ, F, ∆m, p

]
0
. ¤
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Theorem 2.5 Let F = (fk) be a sequence of moduli. If limt→∞
fk(t)

t
= β > 0, for

all k ∈ N, then
[
V λ, ∆m, p

]
=

[
V λ, F, ∆m, p

]
,

[
V λ, ∆m, p

]
0

=
[
V λ, F, ∆m, p

]
0

and[
V λ, ∆m, p

]
∞ =

[
V λ, F, ∆m, p

]
∞.

Proof. For any modulus function, the existence of a positive limit given with β
was introduced by Maddox [2]. Let β > 0 and x ∈

[
V λ, F, ∆m, p

]
0

. Since β > 0,

we have fk(t)
t

≥ β for all t > 0 and all k ∈ N. From this inequality, it is easy to
see that x ∈

[
V λ, F, ∆m, p

]
0
. In Theorem 2.4, it was shown that

[
V λ, ∆m, p

]
0
⊂[

V λ, F, ∆m, p
]
0
. This completes the proof. ¤

Theorem 2.6 If m ≥ 1, then the inclusions
[
V λ, F, ∆m−1, p

]
⊂

[
V λ, F, ∆m, p

]
,[

V λ, F, ∆m−1, p
]
0
⊂

[
V λ, F, ∆m, p

]
0

and
[
V λ, F, ∆m−1, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ are

strict. In general,
[
V λ, F, ∆i, p

]
⊂

[
V λ, F, ∆m, p

]
,
[
V λ, F, ∆i, p

]
0
⊂

[
V λ, F, ∆m, p

]
0

and
[
V λ, F, ∆i, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ for all i = 1, 2, 3, . . . ,m−1 and the inclusions

are strict.

Proof. We give the proof for
[
V λ, F, ∆m−1, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞. The oth-

ers can be proved in a similar way. Let x ∈
[
V λ, F, ∆m−1, p

]
∞. Then we have

supr,s λ−1
r

∑
k∈Ir

[fk (|uk∆
m−1xk+s|)]pk < ∞. By definition of fk for all k ∈ N , from

(1.1) we have

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk

≤ Kλ−1
r

∑
k∈Ir

[
fk

(∣∣uk∆
m−1xk+s

∣∣)]pk + Kλ−1
r

∑
k∈Ir

[
fk

(∣∣uk∆
m−1xk+s+1

∣∣)]pk

< ∞

for all s ∈ N. Thus
[
V λ, F, ∆m−1, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ .Proceeding in this way

one will have
[
V λ, F, ∆i, p

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ for all i = 1, 2, 3, . . . ,m − 1. Now

let λn = n for each n ∈ N . Then the sequence x = (km) (∆mxk = (−1)m m! and
∆m−1xk = (−1)m+1 m!

(
k + m−1

2

)
) for example, belongs to

[
V λ, F, ∆m, p

]
∞, but it

does not belong to
[
V λ, F, ∆m−1, p

]
∞ for fk = id , pk = 1 for all k ∈ N and u = e.

¤

We consider that (pk) and (qk) are any bounded sequences of strictly positive
real numbers. We are able to prove

[
V λ, ∆m, q

]
⊂

[
V λ, F, ∆m, p

]
,
[
V λ, ∆m, q

]
0
⊂[

V λ, F, ∆m, p
]
0

and
[
V λ, ∆m, q

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ only under additional condi-

tions.

Theorem 2.7 Let 0 < pk ≤ qk for all k ∈ N and let
(

qk

pk

)
be bounded. Then[

V λ, ∆m, q
]
⊂

[
V λ, F, ∆m, p

]
,
[
V λ, ∆m, q

]
0
⊂

[
V λ, F, ∆m, p

]
0

and
[
V λ, ∆m, q

]
∞ ⊂[

V λ, F, ∆m, p
]
∞.
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Proof. If we take tk,s = [fk (|uk∆
mxk+s|)]qk for all k, s ∈ N , then using the same

technique of Theorem 2 of Nanda [16], the proof is easy. ¤

Corollary 2.1 The following statements are valid:

(i) If 0 < infk pk ≤ 1 for all k ∈ N , then[
V λ, ∆m

]
⊂

[
V λ, F, ∆m, p

]
,

[
V λ, ∆m

]
0
⊂

[
V λ, F, ∆m, p

]
0

and [
V λ, ∆m

]
∞ ⊂

[
V λ, F, ∆m, p

]
∞ .

(ii) If 1 ≤ pi ≤ supi pi = H < ∞, then[
V λ, ∆m, p

]
⊂

[
V λ, F, ∆m

]
,

[
V λ, ∆m, p

]
0
⊂

[
V λ, F, ∆m

]
0

and [
V λ, ∆m, p

]
∞ ⊂

[
V λ, F, ∆m

]
∞ .

Proof. (i) follows from Theorem 2.7 with qk = 1 for all k ∈ N , and (ii) follows from
the same theorem with pk = 1 for all k ∈ N . ¤

Theorem 2.8
[
V λ, F, ∆m, p

]
0

is a paranormed space with

h∆m(x) = sup
r,s

(
λ−1

r

∑
k∈Ir

fk (|uk∆
mxk+s|)pk

) 1
M

,

where M = max (1, supk pk) < ∞.

Proof. Clearly h∆m (x) = h∆m (−x). It is trivial that ∆mxk = 0 for x = 0.Since
fk (0) = 0 for all k ∈ N , we get h∆m (x) = 0 for x = 0. Since pk

M
≤ 1 and M ≥ 1,

using the Minkowski’s inequality and definition of fk, for each r, s ≥ 1, we have(
λ−1

r

∑
k∈Ir

[fk (|uk (∆mxk+s + ∆myk+s)|)]pk

) 1
M

≤

(
λ−1

r

∑
k∈Ir

[(fk (|uk∆
mxk+s|) + fk (|uk (∆mxk+s)|))]pk

) 1
M

≤

(
λ−1

r

∑
k∈Ir

[fk (|uk∆
mxk+s|)]pk

) 1
M

+

(
λ−1

r

∑
k∈Ir

[fk (|uk∆
myk+s|)]pk

) 1
M

.
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Hence h∆m is subadditive. Finally, to check the continuity of multiplication, let us
take any complex number α. By definition of fk , we have

h∆m (αx) = sup
r,s

(
λ−1

r

∑
k∈Ir

[fk (|αuk∆
mxk+s|)]pk

) 1
M

≤ T
H
M h∆m (x)

where T is a positive integer such that |α| ≤ T . Now, let α → 0 for any fixed x
with h∆m (x) 6= 0. By definition of fk for |α| < 1, we have

λ−1
r

∑
k∈Ir

[fk (|αuk∆
mxk+s|)]pk < ε for r > ro. (2.2)

Also, for 1 ≤ r ≤ ro, taking α small enough, since fk is continuous for all k ∈ N ,
we have

λ−1
r

∑
k∈Ir

[fk (|αuk∆
mxk+s|)]pk < ε. (2.3)

Conditions (2.2) and (2.3) together imply that h∆m (αx) → 0 as α → 0. This
completes the proof. ¤

3. Strongly generalized difference Sλ (∆m)-statistical conver-
gence

In this section, we introduce natural relationship between strongly generalized dif-
ference

[
V λ, ∆m, p

]
-convergence with respect to a sequence of moduli and strongly

generalized difference Sλ (∆m)-statistical convergence. Fast [7] introduced the idea
of statistical convergence. This idea was later studied by Connor [1], Salat [18],
Savaş [19], Tripathy [17], Esi and Tripathy [4] and many others.

A sequence x = (xk) is said to be statistically convergent to the number L if

for every ε > 0, limn

∣∣∣A(ε)
n

∣∣∣ = 0, where |A(ε)| denotes the number of elements in

A(ε) = {k ∈ N : |xk − L| ≥ ε}.
In [9], Et and Nuray defined a sequence x = (xk) is ∆m-statisticaly convergent

to the number if for every ε > 0, limn

∣∣∣K(ε)
n

∣∣∣ = 0, where |K(ε)| denotes the num-

ber of elements in K(ε) = {k ∈ N : |∆mxk − L| ≥ ε}. The set of ∆m-statisticaly
convergent sequences is denoted by S(∆m).

Mursaleen [14] introduced the concept of λ-statistical convergence as follows:
A sequence x = (xk) is said to be λ-statistically convergent to L if for every
ε > 0, limr λ−1

r |C(ε)| = 0, where |C(ε)| denotes the number of elements in C(ε) =
{k ∈ Ir : |xk − L| ≥ ε}. The set of all λ-statistically convergent sequences is de-
noted by Sλ.

A sequence x = (xk) is said to be strongly generalized difference Sλ (∆m)-
statistically convergent to the number L if for any ε > 0, limr λ−1

r |C(ε, s)| =
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0, uniformly in s, where |C(ε, s)| denotes the number of elements in C(ε, s) =
{k ∈ Ir : |uk∆

mxk+s − L| ≥ ε}. The set of all strongly generalized difference gen-
eralized statistically convergent sequences is denoted by Sλ (∆m, s).

If uk = e for all k ∈ N , s = 0, and λr = r for r ≥ 1, then the space Sλ (∆m, s)
reduces to the space S (∆m), which was defined and studied by Et and Nuray [9]. If
uk = e for all k ∈ N , s = 0, m = 0 and λr = r for r ≥ 1, then the space Sλ (∆m, s)
reduces to the space of ordinary statistical convergence. If uk = e for all k ∈ N ,
s = 0, m = 0 and then the space Sλ (∆m, s) reduces to the space of λ-statistical
convergence which was defined and studied by Mursaleen [14].

Now we give the relation between strongly generalized difference Sλ (∆m)-statisti-
cal convergence and strongly generalized difference

[
V λ, ∆m, p

]
-convergence with

respect to a sequence of moduli.

Theorem 3.1 Let F = (fk) be a sequence of moduli then
[
V λ, F, ∆m, p

]
⊂ Sλ (∆m, s).

Proof. Let x ∈
[
V λ, F, ∆m, p

]
. Then

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s − L|)]pk

≥ λ−1
r

∑
1

[fk (|uk∆
mxk+s − L|)]pk

≥ λ−1
r

∑
1

[fk(ε)]
pk

≥ λ−1
r

∑
1

min
(
fk(ε)

h, fk(ε)
H

)
≥ λ−1

r |{k ∈ Ir : |uk∆
mxk+s − L| ≥ ε}|min

(
fk(ε)

h, fk(ε)
H

)
,

where the summation
∑

1 is over |uk∆
mxk+s − L| ≥ ε. Hence we obtain x ∈

Sλ (∆m, s). This completes the proof. ¤

Theorem 3.2 Let F = (fk) be a uniformly bounded sequence of moduli on the
interval [0,∞) . Then

[
V λ, F, ∆m, p

]
= Sλ (∆m, s).

Proof. By Theorem 3.1, it is sufficient to show that
[
V λ, F, ∆m, p

]
⊃ Sλ (∆m, s).

Let x ∈ Sλ (∆m). Since F = (fk) is uniformly bounded on the interval [0,∞), so
there exists an integer B > 0 such that fk (|uk∆

mxk+s − L|) ≤ B for all k ∈ N .
Then for a given ε > 0, we have

λ−1
r

∑
k∈Ir

[fk (|uk∆
mxk+s − L|)]pk

= λ−1
r

∑
1

[fk (|uk∆
mxk+s − L|)]pk + λ−1

r

∑
2

[fk (|uk∆
mxk+s − L|)]pk

≥ BHλ−1
r |{k ∈ Ir : |uk∆

mxk+s − L| ≥ ε}| + max
(
fk(ε)

h, fk(ε)
H

)
,
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where the summation
∑

1 is over |uk∆
mxk+s| ≤ δ and the summation

∑
2 is over

|uk∆
mxk+s| > δ. Taking the limit as ε → 0 and r → ∞, uniformly in s, we get

x ∈
[
V λ, F, ∆m, p

]
. This completes the proof. ¤

Theorem 3.3 If lim infr
λr

r
> 0, then S (∆m, s) ⊂ Sλ (∆m, s), where

S (∆m, s) =

{
x = (xk)

∣∣∣∣∣ lim
r

1

r
|{k ≤ r : |uk∆

mxk+s − L| ≥ ε}| = 0,

uniformly in s, for some L

}
.

Proof. Let x ∈ S (∆m, s). For given ε > 0, we get

{k ≤ r : |uk∆
mxk+s − L| ≥ ε} ⊃ C(ε, s).

Thus

1

r
|{k ≤ r : |uk∆

mxk+s − L| ≥ ε}| ≥ 1

r
|C(ε, s)| =

λr

r

1

λr

|C(ε, s)| .

Taking limit as r → ∞ and using lim infr
λr

r
> 0, we get x ∈ Sλ (∆m, s). This

completes the proof. ¤
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