STRONGLY GENERALIZED DIFFERENCE $[V^{\lambda}, \Delta^{M}, P]$ -SUMMABLE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

AYHAN ESİ

ABSTRACT. We introduce the strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences and give the relation between the spaces of strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences and strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences with respect to a sequence of moduli. Also we give natural relationship between strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}(\Delta^m)$ -statistical convergence.

1. Introduction

Let l_{∞} , c and c_o denote the Banach spaces of bounded, convergent and null sequences $x = (x_k)$, normed by $||x|| = \sup_k |x_k|$, respectively.

Let $\lambda = (\lambda_r)$ be a non-decreasing sequence of positive numbers tending to infinity and $\lambda_{r+1} \leq \lambda_r + 1$, $\lambda_1 = 1$. The generalized de la Vallee-Poussin mean is defined by $t_r(x) = \lambda_r^{-1} \sum_{k \in I_r} x_k$, $I_r = [r - \lambda_r + 1, r]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_r(x) \to L$ as $r \to \infty$, [10]. If $\lambda_r = r$, then the (V, λ) -summability is reduced to (C, 1)-summability. We write $[V, \lambda] = \{x = (x_k) : \lim_{r \to \infty} \lambda_r^{-1} \sum_{k \in I_r} |x_k - L| = 0$, for some L for set of sequences $x = (x_k)$ which are strongly (V, λ) -summable to L.

The notion of modulus function was introduced by Nakano [15]. The notion was further investigated by Ruckle [13] and many others. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that (i) f(x) = 0 if and only if x = 0, (ii) $f(x + y) \le f(x) + f(y)$ for $x, y \ge 0$, (iii) f is increasing, (iv) f is continuous from the right at 0. It is immediate from (ii) and (iv) that f must be continuous on $[0, \infty)$. Also from condition (ii), we have $f(nx) \le nf(x)$ for all $n \in N$. A modulus function may be bounded or unbounded. Ruckle [13], Connor [1], Maddox [12], Esi [2], Esi and Tripathy [3] and several authors used a modulus f to contruct some sequence spaces. For a sequence of moduli f is given the following conditions: f if f is f in f is f in f i

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 40C05, 46A45.

Key words and phrases. De la Vallee-Poussin mean, modulus function, difference sequence, statistical convergence.

that in case $f_k = f$ $(k \ge 1)$, where f is a modulus, the conditions (C1) and (C2) are automatically fulfilled.

The difference sequence space $X\left(\Delta\right)$ was introduced by Kizmaz [8] as follows: $X\left(\Delta\right)=\{x=(x_k):\ (\Delta x_k)\in X\},\ \text{for}\ X=l_\infty,c\ \text{and}\ c_o,\ \text{where}\ \Delta x_k=x_k-x_{k+1}\ \text{for all}\ k\in N.$ Later, these difference sequence spaces were generalized by Et and Çolak [6] as follows: Let $n\in N$ be fixed, then $X\left(\Delta^n\right)=\{x=(x_k):\ (\Delta^n x_k)\in X\},\ \text{for}\ X=l_\infty,\ c\ \text{and}\ c_o,\ \text{where}\ \Delta^n x_k=\Delta^{n-1}x_k-\Delta^{n-1}x_{k+1}\ \text{and}\ \Delta^0 x_k=x_k\ \text{for}\ \text{all}\ k\in N.$ The generalized difference has the following binomial representation: $\Delta^n x_k=\sum_{i=0}^n \left(-1\right)^i\binom{n}{i}x_{k+i}\ \text{for each}\ k\in N.$

Let X be a sequence space. Then X is called solid (or normal) if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in N$. A sequence space X is called monotone if X contains preimages of all its step spaces. If X is normal, then it is monotone.

In the present note we introduce the new definitions of strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences and give the relation between the spaces of strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences and strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences with respect to a sequence of moduli. Also we give natural relationship between strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}(\Delta^m)$ -statistical convergence.

The following inequality will be used throughout the paper:

$$|x_k + y_k|^{p_k} \le K(|x_k|^{p_k} + |y_k|^{p_k}) \tag{1.1}$$

where x_k and y_k are complex numbers, $K = \max(1, 2^{H-1})$ and $H = \sup_k p_k < \infty$, [11].

2. Strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequences

Let $u = (u_k)$ is any sequence such that $u_k \neq 0$ (k = 0, 1, 2, ...) and $p = (p_k)$ be a bounded sequence of positive real numbers $(0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty)$ and $F = (f_k)$ be a sequence of moduli and $m \ge 0$ be fixed integer then, we define

$$\begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix} = \begin{cases} x = (x_{k}) & \lim_{r \to \infty} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k}(|u_{k}\Delta^{m}x_{k+s} - L|) \right]^{p_{k}} = 0 \\ & \text{uniformly in } s, \text{ for some } L \end{cases} \},$$

$$\begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{0} = \begin{cases} x = (x_{k}) & \lim_{r \to \infty} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k}(|u_{k}\Delta^{m}x_{k+s}|) \right]^{p_{k}} = 0 \\ & \text{uniformly in } s \end{cases},$$

$$\begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{\infty} = \begin{cases} x = (x_{k}) & \sup_{r, s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k}(|u_{k}\Delta^{m}x_{k+s}|) \right]^{p_{k}} < \infty \end{cases}.$$

If $u=e=(1,1,1,\ldots)$, s=0, $\Delta^m x_k=x_k$, $f_k=f$ and $p_k=1$ for all $k\in N$ then the sequence space $[V^\lambda,F,\Delta^m,p]$ reduce to well-known sequence space $[V,\lambda]$.

If u = e = (1, 1, 1, ...), s = 0, $f_k = f$ for all $k \in N$ then the sequence spaces $\begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}$, $\begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_0$ and $\begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_{\infty}$ reduce to

$$[V, \lambda, f, p] (\Delta^m), [V, \lambda, f, p]_0 (\Delta^m), \text{ and } [V, \lambda, f, p]_{\infty} (\Delta^m)$$

which were defined and studied by Et, Altin, and Altinok [5].

Theorem 2.1 Let $F = (f_k)$ be a sequence of moduli then the sequence spaces $\begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}, \begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_0$ and $\begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_{\infty}$ are linear spaces over the complex field \mathbb{C} .

Proof. We give the proof only for $[V^{\lambda}, F, \Delta^{m}, p]_{0}$. Since the proof is analogous for the spaces $[V^{\lambda}, F, \Delta^{m}, p]$ and $[V^{\lambda}, F, \Delta^{m}, p]_{\infty}$, we omit the details. Let $x, y \in [V^{\lambda}, F, \Delta^{m}, p]_{0}$ and $\alpha, \beta \in \mathbb{C}$. Then there exist integers T_{α} and T_{β} such that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq T_{\beta}$. We therefore have

$$\begin{split} & \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} \left(\alpha x_{k+s} + \beta y_{k+s} \right) | \right) \right]^{p_{k}} \\ & = \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|\alpha u_{k} \Delta^{m} x_{k+s} + \beta u_{k} \Delta^{m} y_{k+s} | \right) \right]^{p_{k}} \\ & \leq K \left[T_{\alpha} \right]^{H} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s} | \right) \right]^{p_{k}} + K \left[T_{\beta} \right]^{H} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} y_{k+s} | \right) \right]^{p_{k}} \\ & \to 0 \text{ as } r \to \infty, \text{ uniformly in } s. \end{split}$$

This proves that the sequence space $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$ is linear.

Theorem 2.2 Let $F = (f_k)$ be a sequence of moduli then the inclusions

$$\left[V^{\lambda},F,\Delta^{m},p\right]_{0}\subset\left[V^{\lambda},F,\Delta^{m},p\right]\subset\left[V^{\lambda},F,\Delta^{m},p\right]_{\infty}$$

hold.

Proof. The inclusion $[V^{\lambda}, F, \Delta^m, p]_0 \subset [V^{\lambda}, F, \Delta^m, p]$ is obvious. Now let $x \in [V^{\lambda}, F, \Delta^m, p]$. By using (1.1), we have

$$\sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s}| \right) \right]^{p_{k}} \\
= \sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s} - L + L| \right) \right]^{p_{k}} \\
\leq K \sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s} - L| \right) \right]^{p_{k}} + K \sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s} - L| \right) \right]^{p_{k}} \\
\leq K \sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m} x_{k+s} - L| \right) \right]^{p_{k}} + K \max \left(f_{k} \left(|L| \right)^{h}, f_{k} \left(|L| \right)^{H} \right) \\
\leq \infty.$$

Hence $x \in [V^{\lambda}, F, \Delta^m, p]_{\infty}$, which shows that $[V^{\lambda}, F, \Delta^m, p] \subset [V^{\lambda}, F, \Delta^m, p]_{\infty}$. This completes the proof.

Theorem 2.3 The sequence spaces

$$[V^{\lambda}, F, \Delta^{m}, p], [V^{\lambda}, F, \Delta^{m}, p]_{0}, \text{ and } [V^{\lambda}, F, \Delta^{m}, p]_{\infty}$$

are solid and hence monotone.

Proof. Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$, for all $k \in N$. Since f_k is monotone for all $k \in N$, we get

$$\lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^m \alpha_{k+s} x_{k+s}| \right) \right]^{p_k} \leq \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(\left| \sup_{k,s} \alpha_{k+s} \right| |u_k \Delta^m x_{k+s}| \right) \right]^{p_k} \\ \leq \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^m x_{k+s}| \right) \right]^{p_k},$$

which leads us to the desired result.

Now we give the relation between strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -convergence and strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -convergence with respect to a sequence of moduli.

Theorem 2.4 Let $F = (f_k)$ be a sequence of moduli then

$$[V^{\lambda}, \Delta^m, p] \subset [V^{\lambda}, F, \Delta^m, p], \quad [V^{\lambda}, \Delta^m, p]_0 \subset [V^{\lambda}, F, \Delta^m, p]_0$$

and

$$\left[V^{\lambda},\Delta^m,p\right]_{\infty}\subset \left[V^{\lambda},F,\Delta^m,p\right]_{\infty}$$

Proof. We consider only the case $[V^{\lambda}, \Delta^m, p]_0 \subset [V^{\lambda}, F, \Delta^m, p]_0$.

Let $x \in [V^{\lambda}, \Delta^m, p]_0$ and $\varepsilon > 0$. We choose $0 < \delta < 1$ such that $f_k(t) < \varepsilon$ for every t with $0 \le t \le \delta$. We can write

$$\begin{split} & \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^m x_{k+s}| \right) \right]^{p_k} \\ & = \ \lambda_r^{-1} \sum_{1} \left[f_k \left(|u_k \Delta^m x_{k+s}| \right) \right]^{p_k} + \lambda_r^{-1} \sum_{2} \left[f_k \left(|u_k \Delta^m x_{k+s}| \right) \right]^{p_k} \\ & \leq \ \max \left(\varepsilon^h, \varepsilon^H \right) + \max \left(1, \left(2 f_k (1) \delta^{-1} \right)^H \right) \lambda_r^{-1} \sum_{2} |u_k \Delta^m x_{k+s}|^{p_k} \end{split}$$

where the summation \sum_{1} is over $|u_{k}\Delta^{m}x_{k+s}| \leq \delta$ and the summation \sum_{2} is over $|u_{k}\Delta^{m}x_{k+s}| > \delta$. Hence we obtain $x \in [V^{\lambda}, F, \Delta^{m}, p]_{0}$.

Theorem 2.5 Let $F = (f_k)$ be a sequence of moduli. If $\lim_{t\to\infty} \frac{f_k(t)}{t} = \beta > 0$, for all $k \in \mathbb{N}$, then $\begin{bmatrix} V^{\lambda}, \Delta^m, p \end{bmatrix} = \begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}$, $\begin{bmatrix} V^{\lambda}, \Delta^m, p \end{bmatrix}_0 = \begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_0$ and $\begin{bmatrix} V^{\lambda}, \Delta^m, p \end{bmatrix}_{\infty} = \begin{bmatrix} V^{\lambda}, F, \Delta^m, p \end{bmatrix}_{\infty}$.

Proof. For any modulus function, the existence of a positive limit given with β was introduced by Maddox [2]. Let $\beta > 0$ and $x \in \left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. Since $\beta > 0$, we have $\frac{f_{k}(t)}{t} \geq \beta$ for all t > 0 and all $k \in N$. From this inequality, it is easy to see that $x \in \left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. In Theorem 2.4, it was shown that $\left[V^{\lambda}, \Delta^{m}, p\right]_{0} \subset \left[V^{\lambda}, F, \Delta^{m}, p\right]_{0}$. This completes the proof.

Theorem 2.6 If $m \geq 1$, then the inclusions $\begin{bmatrix} V^{\lambda}, F, \Delta^{m-1}, p \end{bmatrix} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}$, $\begin{bmatrix} V^{\lambda}, F, \Delta^{m-1}, p \end{bmatrix}_{0} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{0}$ and $\begin{bmatrix} V^{\lambda}, F, \Delta^{m-1}, p \end{bmatrix}_{\infty} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{\infty}$ are strict. In general, $\begin{bmatrix} V^{\lambda}, F, \Delta^{i}, p \end{bmatrix} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}$, $\begin{bmatrix} V^{\lambda}, F, \Delta^{i}, p \end{bmatrix}_{0} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{0}$ and $\begin{bmatrix} V^{\lambda}, F, \Delta^{i}, p \end{bmatrix}_{\infty} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^{m}, p \end{bmatrix}_{\infty}$ for all $i = 1, 2, 3, \ldots, m-1$ and the inclusions are strict.

Proof. We give the proof for $[V^{\lambda}, F, \Delta^{m-1}, p]_{\infty} \subset [V^{\lambda}, F, \Delta^{m}, p]_{\infty}$. The others can be proved in a similar way. Let $x \in [V^{\lambda}, F, \Delta^{m-1}, p]_{\infty}$. Then we have $\sup_{r,s} \lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(|u_{k} \Delta^{m-1} x_{k+s}| \right) \right]^{p_{k}} < \infty$. By definition of f_{k} for all $k \in N$, from (1.1) we have

$$\lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^m x_{k+s}| \right) \right]^{p_k} \\
\leq K \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^{m-1} x_{k+s}| \right) \right]^{p_k} + K \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^{m-1} x_{k+s+1}| \right) \right]^{p_k} \\
\leq \infty$$

for all $s \in N$. Thus $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty} \subset \left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$. Proceeding in this way one will have $\left[V^{\lambda}, F, \Delta^{i}, p\right]_{\infty} \subset \left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$ for all $i = 1, 2, 3, \ldots, m-1$. Now let $\lambda_{n} = n$ for each $n \in N$. Then the sequence $x = (k^{m}) \left(\Delta^{m} x_{k} = (-1)^{m} m!\right)$ and $\Delta^{m-1} x_{k} = (-1)^{m+1} m! \left(k + \frac{m-1}{2}\right)$ for example, belongs to $\left[V^{\lambda}, F, \Delta^{m}, p\right]_{\infty}$, but it does not belong to $\left[V^{\lambda}, F, \Delta^{m-1}, p\right]_{\infty}$ for $f_{k} = id$, $p_{k} = 1$ for all $k \in N$ and u = e.

We consider that (p_k) and (q_k) are any bounded sequences of strictly positive real numbers. We are able to prove $\left[V^{\lambda}, \Delta^m, q\right] \subset \left[V^{\lambda}, F, \Delta^m, p\right]$, $\left[V^{\lambda}, \Delta^m, q\right]_0 \subset \left[V^{\lambda}, F, \Delta^m, p\right]_0$ and $\left[V^{\lambda}, \Delta^m, q\right]_{\infty} \subset \left[V^{\lambda}, F, \Delta^m, p\right]_{\infty}$ only under additional conditions.

Theorem 2.7 Let $0 < p_k \le q_k$ for all $k \in N$ and let $\left(\frac{q_k}{p_k}\right)$ be bounded. Then $\left[V^{\lambda}, \Delta^m, q\right] \subset \left[V^{\lambda}, F, \Delta^m, p\right], \left[V^{\lambda}, \Delta^m, q\right]_0 \subset \left[V^{\lambda}, F, \Delta^m, p\right]_0$ and $\left[V^{\lambda}, \Delta^m, q\right]_{\infty} \subset \left[V^{\lambda}, F, \Delta^m, p\right]_{\infty}$.

Proof. If we take $t_{k,s} = [f_k(|u_k\Delta^m x_{k+s}|)]^{q_k}$ for all $k,s \in N$, then using the same technique of Theorem 2 of Nanda [16], the proof is easy.

Corollary 2.1 The following statements are valid:

(i) If $0 < \inf_k p_k \le 1$ for all $k \in N$, then

$$[V^{\lambda}, \Delta^m] \subset [V^{\lambda}, F, \Delta^m, p], \quad [V^{\lambda}, \Delta^m]_0 \subset [V^{\lambda}, F, \Delta^m, p]_0$$

and

$$[V^{\lambda}, \Delta^m]_{\infty} \subset [V^{\lambda}, F, \Delta^m, p]_{\infty}$$
.

(ii) If $1 \le p_i \le \sup_i p_i = H < \infty$, then

$$\begin{bmatrix} V^{\lambda}, \Delta^m, p \end{bmatrix} \subset \begin{bmatrix} V^{\lambda}, F, \Delta^m \end{bmatrix}, \quad \begin{bmatrix} V^{\lambda}, \Delta^m, p \end{bmatrix}_0 \subset \begin{bmatrix} V^{\lambda}, F, \Delta^m \end{bmatrix}_0$$

and

$$\left[V^{\lambda}, \Delta^m, p\right]_{\infty} \subset \left[V^{\lambda}, F, \Delta^m\right]_{\infty}.$$

Proof. (i) follows from Theorem 2.7 with $q_k = 1$ for all $k \in N$, and (ii) follows from the same theorem with $p_k = 1$ for all $k \in N$.

Theorem 2.8 $[V^{\lambda}, F, \Delta^m, p]_0$ is a paranormed space with

$$h_{\Delta^m}(x) = \sup_{r,s} \left(\lambda_r^{-1} \sum_{k \in I_r} f_k \left(|u_k \Delta^m x_{k+s}| \right)^{p_k} \right)^{\frac{1}{M}},$$

where $M = \max(1, \sup_k p_k) < \infty$.

Proof. Clearly $h_{\Delta^m}(x) = h_{\Delta^m}(-x)$. It is trivial that $\Delta^m x_k = 0$ for x = 0. Since $f_k(0) = 0$ for all $k \in N$, we get $h_{\Delta^m}(x) = 0$ for x = 0. Since $\frac{p_k}{M} \le 1$ and $M \ge 1$, using the Minkowski's inequality and definition of f_k , for each $r, s \ge 1$, we have

$$\left(\lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(\left| u_{k} \left(\Delta^{m} x_{k+s} + \Delta^{m} y_{k+s} \right) \right| \right) \right]^{p_{k}} \right)^{\frac{1}{M}} \\
\leq \left(\lambda_{r}^{-1} \sum_{k \in I_{r}} \left[\left(f_{k} \left(\left| u_{k} \Delta^{m} x_{k+s} \right| \right) + f_{k} \left(\left| u_{k} \left(\Delta^{m} x_{k+s} \right) \right| \right) \right) \right]^{p_{k}} \right)^{\frac{1}{M}} \\
\leq \left(\lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(\left| u_{k} \Delta^{m} x_{k+s} \right| \right) \right]^{p_{k}} \right)^{\frac{1}{M}} + \left(\lambda_{r}^{-1} \sum_{k \in I_{r}} \left[f_{k} \left(\left| u_{k} \Delta^{m} y_{k+s} \right| \right) \right]^{p_{k}} \right)^{\frac{1}{M}}.$$

Hence h_{Δ^m} is subadditive. Finally, to check the continuity of multiplication, let us take any complex number α . By definition of f_k , we have

$$h_{\Delta^m}\left(\alpha x\right) = \sup_{r,s} \left(\lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(\left| \alpha u_k \Delta^m x_{k+s} \right| \right) \right]^{p_k} \right)^{\frac{1}{M}} \le T^{\frac{H}{M}} h_{\Delta^m}\left(x \right)$$

where T is a positive integer such that $|\alpha| \leq T$. Now, let $\alpha \to 0$ for any fixed x with $h_{\Delta^m}(x) \neq 0$. By definition of f_k for $|\alpha| < 1$, we have

$$\lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|\alpha u_k \Delta^m x_{k+s}| \right) \right]^{p_k} < \varepsilon \quad \text{for} \quad r > r_o.$$
 (2.2)

Also, for $1 \le r \le r_o$, taking α small enough, since f_k is continuous for all $k \in N$, we have

$$\lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|\alpha u_k \Delta^m x_{k+s}| \right) \right]^{p_k} < \varepsilon. \tag{2.3}$$

Conditions (2.2) and (2.3) together imply that $h_{\Delta^m}(\alpha x) \to 0$ as $\alpha \to 0$. This completes the proof.

3. Strongly generalized difference $S^{\lambda}(\Delta^m)$ -statistical convergence

In this section, we introduce natural relationship between strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -convergence with respect to a sequence of moduli and strongly generalized difference $S^{\lambda}(\Delta^m)$ -statistical convergence. Fast [7] introduced the idea of statistical convergence. This idea was later studied by Connor [1], Salat [18], Savaş [19], Tripathy [17], Esi and Tripathy [4] and many others.

A sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$, $\lim_n \left| \frac{A(\varepsilon)}{n} \right| = 0$, where $|A(\varepsilon)|$ denotes the number of elements in $A(\varepsilon) = \{k \in N : |x_k - L| \ge \varepsilon\}$.

In [9], Et and Nuray defined a sequence $x=(x_k)$ is Δ^m -statistically convergent to the number if for every $\varepsilon>0$, $\lim_n\left|\frac{K(\varepsilon)}{n}\right|=0$, where $|K(\varepsilon)|$ denotes the number of elements in $K(\varepsilon)=\{k\in N: |\Delta^m x_k-L|\geq \varepsilon\}$. The set of Δ^m -statistically convergent sequences is denoted by $S(\Delta^m)$.

Mursaleen [14] introduced the concept of λ -statistical convergence as follows: A sequence $x = (x_k)$ is said to be λ -statistically convergent to L if for every $\varepsilon > 0$, $\lim_r \lambda_r^{-1} |C(\varepsilon)| = 0$, where $|C(\varepsilon)|$ denotes the number of elements in $C(\varepsilon) = \{k \in I_r : |x_k - L| \ge \varepsilon\}$. The set of all λ -statistically convergent sequences is denoted by S^{λ} .

A sequence $x=(x_k)$ is said to be strongly generalized difference $S^{\lambda}(\Delta^m)$ -statistically convergent to the number L if for any $\varepsilon>0$, $\lim_{r}\lambda_r^{-1}|C(\varepsilon,s)|=$

0, uniformly in s, where $|C(\varepsilon, s)|$ denotes the number of elements in $C(\varepsilon, s) = \{k \in I_r : |u_k \Delta^m x_{k+s} - L| \ge \varepsilon\}$. The set of all strongly generalized difference generalized statistically convergent sequences is denoted by $S^{\lambda}(\Delta^m, s)$.

If $u_k = e$ for all $k \in N$, s = 0, and $\lambda_r = r$ for $r \ge 1$, then the space $S^{\lambda}(\Delta^m, s)$ reduces to the space $S(\Delta^m)$, which was defined and studied by Et and Nuray [9]. If $u_k = e$ for all $k \in N$, s = 0, m = 0 and $\lambda_r = r$ for $r \ge 1$, then the space $S^{\lambda}(\Delta^m, s)$ reduces to the space of ordinary statistical convergence. If $u_k = e$ for all $k \in N$, s = 0, m = 0 and then the space $S^{\lambda}(\Delta^m, s)$ reduces to the space of λ -statistical convergence which was defined and studied by Mursaleen [14].

Now we give the relation between strongly generalized difference $S^{\lambda}(\Delta^{m})$ -statistical convergence and strongly generalized difference $[V^{\lambda}, \Delta^{m}, p]$ -convergence with respect to a sequence of moduli.

Theorem 3.1 Let $F = (f_k)$ be a sequence of moduli then $[V^{\lambda}, F, \Delta^m, p] \subset S^{\lambda}(\Delta^m, s)$.

Proof. Let $x \in [V^{\lambda}, F, \Delta^m, p]$. Then

$$\lambda_r^{-1} \sum_{k \in I_r} [f_k (|u_k \Delta^m x_{k+s} - L|)]^{p_k}$$

$$\geq \lambda_r^{-1} \sum_{l} [f_k (|u_k \Delta^m x_{k+s} - L|)]^{p_k}$$

$$\geq \lambda_r^{-1} \sum_{l} [f_k(\varepsilon)]^{p_k}$$

$$\geq \lambda_r^{-1} \sum_{l} \min (f_k(\varepsilon)^h, f_k(\varepsilon)^H)$$

$$\geq \lambda_r^{-1} |\{k \in I_r : |u_k \Delta^m x_{k+s} - L| \geq \varepsilon\}| \min (f_k(\varepsilon)^h, f_k(\varepsilon)^H),$$

where the summation \sum_1 is over $|u_k \Delta^m x_{k+s} - L| \geq \varepsilon$. Hence we obtain $x \in S^{\lambda}(\Delta^m, s)$. This completes the proof.

Theorem 3.2 Let $F = (f_k)$ be a uniformly bounded sequence of moduli on the interval $[0, \infty)$. Then $[V^{\lambda}, F, \Delta^m, p] = S^{\lambda}(\Delta^m, s)$.

Proof. By Theorem 3.1, it is sufficient to show that $[V^{\lambda}, F, \Delta^{m}, p] \supset S^{\lambda}(\Delta^{m}, s)$. Let $x \in S^{\lambda}(\Delta^{m})$. Since $F = (f_{k})$ is uniformly bounded on the interval $[0, \infty)$, so there exists an integer B > 0 such that $f_{k}(|u_{k}\Delta^{m}x_{k+s} - L|) \leq B$ for all $k \in N$. Then for a given $\varepsilon > 0$, we have

$$\begin{split} & \lambda_r^{-1} \sum_{k \in I_r} \left[f_k \left(|u_k \Delta^m x_{k+s} - L| \right) \right]^{p_k} \\ & = \lambda_r^{-1} \sum_{1} \left[f_k \left(|u_k \Delta^m x_{k+s} - L| \right) \right]^{p_k} + \lambda_r^{-1} \sum_{2} \left[f_k \left(|u_k \Delta^m x_{k+s} - L| \right) \right]^{p_k} \\ & \geq B^H \lambda_r^{-1} \left| \left\{ k \in I_r : |u_k \Delta^m x_{k+s} - L| \geq \varepsilon \right\} \right| + \max \left(f_k(\varepsilon)^h, f_k(\varepsilon)^H \right), \end{split}$$

where the summation \sum_1 is over $|u_k \Delta^m x_{k+s}| \leq \delta$ and the summation \sum_2 is over $|u_k \Delta^m x_{k+s}| > \delta$. Taking the limit as $\varepsilon \to 0$ and $r \to \infty$, uniformly in s, we get $x \in [V^\lambda, F, \Delta^m, p]$. This completes the proof.

Theorem 3.3 If $\liminf_{r} \frac{\lambda_r}{r} > 0$, then $S(\Delta^m, s) \subset S^{\lambda}(\Delta^m, s)$, where

$$S\left(\Delta^{m},s\right) = \left\{ x = (x_{k}) \left| \begin{array}{c} \lim_{r} \frac{1}{r} \left| \left\{ k \leq r : \left| u_{k} \Delta^{m} x_{k+s} - L \right| \geq \varepsilon \right\} \right| = 0, \\ \text{uniformly in } s, \text{ for some } L \end{array} \right\} \right.$$

Proof. Let $x \in S(\Delta^m, s)$. For given $\varepsilon > 0$, we get

$$\{k \le r : |u_k \Delta^m x_{k+s} - L| \ge \varepsilon\} \supset C(\varepsilon, s).$$

Thus

$$\frac{1}{r} \left| \left\{ k \le r : |u_k \Delta^m x_{k+s} - L| \ge \varepsilon \right\} \right| \ge \frac{1}{r} \left| C(\varepsilon, s) \right| = \frac{\lambda_r}{r} \frac{1}{\lambda_r} \left| C(\varepsilon, s) \right|.$$

Taking limit as $r \to \infty$ and using $\liminf_r \frac{\lambda_r}{r} > 0$, we get $x \in S^{\lambda}(\Delta^m, s)$. This completes the proof.

References

- [1] J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., **32**(2) (1989), 194–198.
- [2] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turkish J. of Math., **21** (1997), 61–68.
- [3] A. Esi and B. C. Tripathy, On some generalized new type difference sequence spaces defined by a modulus function in a seminormed space, Fasciculi Mathematici, Fasc. Math., 40 (2008), 15–24.
- [4] A. Esi and B. C. Tripathy, Strongly almost convergent generalized difference sequences associated with multiplier sequences, Math. Slovaca, 57 (2007), 339–348.
- [5] M. Et, Y. Altin, and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat, 17 (2003), 23–33.
- [6] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J.Math., **21** (1995), 377–386.
- [7] H. Fast, Sur la convergence statistique, Collog. Math., 2 (1951), 241–244.
- [8] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169– 176.

- [9] M. Et and F. Nuray, Δ^m -statistical convergence, Indian J. Pure and Appl. Math., $\mathbf{6}(32)$ (2001),961–969.
- [10] L. Leindler, Über die la Vallee-Pousinche summierbarkeit allgemeiner orthogonalchen, Acta Math. Hung., **16** (1965), 375–378.
- [11] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser.2, 18 (1967), 345–355.
- [12] I. J. Maddox, Sequence spaces defined by a modulus function, Math. Proc. Camb. Phil. Soc., **100** (1986), 161–166.
- [13] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., **25** (1973), 973–978.
- [14] Mursaleen, λ -statistical convergence, Math. Slovaca, **50** (2000), 111–115.
- [15] H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27 (1951), 508–512.
- [16] S. Nanda, Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung., 49(1-2) (1987), 71–76.
- [17] B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex space, Soochow J. Math., **29**(3) (2003), 313–326.
- [18] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 2 (1980), 139–150.
- [19] E. Savaş, Some sequence spaces and statistical convergence, Int. J. Math. and Math. Sci., **29**(5) (2002), 303–306.

(Ayhan Esi) Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey

 $E ext{-}mail\ address: aesi23@hotmail.com}$

Received January 20, 2009 Revised August 3, 2009