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Abstract. In [5], M. Tahara and Y. Watanabe constructed a family of almost
Hermitian structures (J,G) on the tangent bundle TM of a Riemannian manifold
and constructed a family of Hermitian and Kähler structure on the tangent bundle
on a space form. It is well-known that there are sixteen classes of almost Hermitian
manifolds ([3]). In this paper, we give the conditions for (J,G) such that TM

belongs to each of these sixteen classes.

1. Canonical almost Kähler structure on TM

Let M = (M, g) be an n-dimensional Riemannian manifold and π : TM → M the

tangent bundle of M . It is well-known that TM is a 2n-dimensional manifold. At

each point u ∈ TM , the n-dimensional subspace

Vu = ker(dπ)u

of Tu(TM), the tangent space of TM at u, is called the vertical subspace. If (x̃i) be

a local coordinates about π(u) ∈ M , then (xi, ξi) = (x̃i◦π, dx̃i) is a local coordinates

about u and Vu is of the form

Vu =

{
n∑

i=1

Ai ∂

∂ξi

∣∣∣∣ Ai ∈ R
}

.

Thus, the vertical subspace Vu is naturally identified with Tπ(u)M , the tangent space

of M at π(u), via

ι : Vu → Tπ(u)M ; ι

(
n∑

i=1

Ai ∂

∂ξi

)
= Ai ∂

∂x̃i
.

We denote by Hu the horizontal subspace of Tu(TM) with respect to the Riemannian

connection ∇̃ of g. Then, we have a direct sum decomposition Tu(TM) = Hu ⊕ Vu,
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which defines smooth distributions on TM . With respect to the local coordinates

(xi, ξi) about u, the horizontal subspace Hu is of the form

Hu =

{
n∑

i=1

Ai

(
∂

∂x̃i
−

n∑
j,k=1

Γk
ij(π(u))ξj(u)

∂

∂ξk

) ∣∣∣∣ Ai ∈ R
}

,

where Γk
ij is the connection coefficient of ∇̃. For each X ∈ Tp(M) and u ∈ TM with

π(u) = p ∈ M , there exists unique vector XH
u ∈ Hu (resp. XV

u ∈ Vu), called the

horizontal lift (resp. vertical lift) of X, such that dπ(XH
u ) = X (resp. ι(XV

u ) = X).

The connection map K : TTM → TM is defined by K(A) = ι(AV ), where

AV is the vertical component of A. The map K is a homomorphism of the two

vector bundles TTM → TM (the tangent bundle of TM) and dπ : TTM → TM .

Moreover, K|Vu = ι, Hu = ker(K|Tu(TM)) and if we regard a vector field X ∈ X(M)

as a C∞-map X : M → TM , we have

K(dX(u)) = ∇̃uX

for u ∈ TM .

Proposition 1.1. Let X,Y ∈ X(M). For each u ∈ TM , we have

[XV , Y V ]u = 0, (1.1)

[XH , Y V ]u = (∇̃XY )V
u , (1.2)

dπ([XH , Y H ]u) = [X,Y ]π(u), (1.3)

K([XH , Y H ]u) = −R(Xπ(u), Yπ(u))u, (1.4)

where R is the curvature tensor of M defined by R(X,Y ) = [∇̃X , ∇̃Y ] − ∇̃[X,Y ].

The canonical symplectic structure ω0 on TM is defined by

ω0(A,B) = g(K(A), dπ(B)) − g(K(B), dπ(A))

for A,B ∈ X(TM). With respect to the local coordinates (xi, ξi) of TM , ω0 is given

by

ω0 = −
n∑

i,j=1

dxi ∧ d((gij ◦ π)ξj).

By means of the metric g, we can identify TM with the cotangent bundle T ∗M of

M . Then, ω0 can be regarded as the canonical symplectic structure on T ∗M .

The Sasaki-metric G0 is a Riemannian metric on TM defined by

G0(A, B) = g(dπ(A), dπ(B)) + g(K(A), K(B)),

for A,B ∈ X(TM), or equivalently,

G0(X
H
u , Y H

u ) = G0(X
V
u , Y V

u ) = g(Xπ(u), Yπ(u)), G0(X
H
u , Y V

u ) = 0,
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for X,Y ∈ X(M) and u ∈ TM . Then π : (TM,G0) → (M, g) is a Riemannian

submersion. On one hand, the canonical almost complex structure J0 on TM is

defined by

J0X
H
u = XV

u , J0X
V
u = −XH

u

for X ∈ X(M) and u ∈ TM , which is characterised by

dπ(J0A) = −K(A), K(J0A) = dπ(A)

for A ∈ X(TM). The pair (J0, G0) is an almost Hermitian structure on TM and

the corresponding Kähler form coincides with the canonical symplectic form ω0.

Therefore, (TM, J0, G0) is an almost Kähler manifold.

Theorem 1.2 ([2]). An almost Kähler manifold (TM, J0, G0) is integrable if and

only if (M, g) is locally flat.

Proof. Let N be the Nijenhuis tensor of J0. Then, for any X,Y ∈ X(M) and u ∈
TM , we have N(XH

u , Y H
u ) = −N(XV

u , Y V
u ), N(XH

u , Y V
u ) = J0N(XV

u , Y V
u ). Thus, it

suffices to show that N(XV
u , Y V

u ) = 0 is equivalent to R = 0. By Proposition 1.1,

we have

N(XV
u , Y V

u ) = [XH
u , Y H

u ] − (∇̃XY )H
u + (∇̃Y X)H

u ,

and thus dπ(N(XV
u , Y V

u )) = 0, K(N(XV
u , Y V

u )) = −R(X,Y )u, which completes the

proof. ¤

2. A family of almost Hermitian structure on TM

In this section, we introduce a family of almost Hermitian structure (J,G) on TM

defined by M. Tahara and Y. Watanabe ([5]) and compute the covariant derivative,

exterior derivative and coderivative of the Kähler form of (J,G).

Let (M, g) be a Riemannian manifold of dimension n. We define an almost com-

plex structure J = J(f, h) on the tangent bundle TM of M by

JXH
u = fXV

u +
h − f

t
g(X, u)uV

u ,

JXV
u = − 1

f
XH

u +
h − f

tfh
g(X, u)uH

u ,

for X,Y ∈ Tπ(u)(M) and u ∈ TM , where t = ‖u‖2 and f, h : [0,∞) → R are

positive C∞-functions such that (f(t)−h(t))/t is C∞ at t = 0. Moreover, we define
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a Riemannian metric G = G(α, β, f, h) on TM by

G(XH
u , Y H

u ) = αg(X,Y ) + βg(X, u)g(Y, u),

G(XV
u , Y V

u ) =
α

f2
g(X,Y ) +

α(f 2 − h2) + tf 2β

tf2h2
g(X, u)g(Y, u),

G(XH
u , Y V

u ) = 0,

for X,Y ∈ Tπ(u)(M) and u ∈ TM , where C∞-functions α, β : [0,∞) → R satisfy

α(t) > 0 and α(t)+ tβ(t) > 0. It is easy to verify that (J,G) is an almost Hermitian

structure on TM . In particular, (J(1, 1), G(1, 0, 1, 1)) coincides with the almost

Kähler structure (J0, G0). Also, (J,G) includes the almost Hermitian structure

constructed in [1] and [4], see [5] for more details.

We denote by ∇ and Ω the Riemannian connection of G and the Kähler form of

(J,G), where Ω( · , · ) = G( · , J · ). Furthermore, we put

ψ1 = 2h(log α)′ − fβ

α
,

ψ2 = 2h(log f)′ − h − f

t
,

ψ3 = ψ1 − ψ2 = 2h

(
log

α

f

)′

− fβ

α
+

h − f

t
.

By direct (and tiresome) calculation, we obtain the following three propositions.

Proposition 2.1. For X,Y, Z ∈ Tp(M), u ∈ TM (π(u) = p), the covariant deriv-

ative ∇Ω is given by

(∇XH
u

Ω)(Y H
u , ZH

u ) =
αψ1

2
{g(X,Y )g(Z, u) − g(X,Z)g(Y, u)} (2.1)

+
α

2f
g(R(Y, Z)X, u),

(∇XH
u

Ω)(Y V
u , ZV

u ) = −αψ1

2fh
{g(X,Y )g(Z, u) − g(X,Z)g(Y, u)} (2.2)

+
α(h − f)

2tf3h
{g(R(X, u)Y, u)g(Z, u)

− g(R(X, u)Z, u)g(Y, u)} − α

2f 3
g(R(Y, Z)X, u),

(∇XV
u
Ω)(Y H

u , ZV
u ) =

α

2fh
(ψ1 − 2ψ2)g(X,Y )g(Z, u) (2.3)

− α

2f 2
(ψ1 − 2ψ2)g(X,Z)g(Y, u)

+
α(h − f)(ψ1 − 2ψ2)

2tf2h
g(X, u)g(Y, u)g(Z, u)
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+
α(h − f)

2tf3h
g(R(X, u)Y, u)g(Z, u)

− α

2f 3
g(R(Y, Z)X, u),

(∇XH
u

Ω)(Y H
u , ZV

u ) = (∇XV
u
Ω)(Y H

u , ZH
u ) = (∇XV

u
Ω)(Y V

u , ZV
u ) = 0. (2.4)

In particular, if M is a space of constant curvature c, we have

(∇XH
u

Ω)(Y H
u , ZH

u ) =
α

2

(
ψ1 −

c

f

)
{g(X,Y )g(Z, u) − g(X,Z)g(Y, u)}, (2.5)

(∇XH
u

Ω)(Y V
u , ZV

u ) = − α

2fh

(
ψ1 −

c

f

)
{g(X,Y )g(Z, u) − g(X,Z)g(Y, u)}, (2.6)

(∇XV
u
Ω)(Y H

u , ZV
u ) =

α

2fh

(
ψ1 − 2ψ2 +

c

f

)
g(X,Y )g(Z, u) (2.7)

− α

2f 2

(
ψ1 − 2ψ2 +

c

f

)
g(X,Z)g(Y, u)

+
α(h − f)

2tf 2h

(
ψ1 − 2ψ2 +

c

f

)
g(X, u)g(Y, u)g(Z, u).

Proposition 2.2. For X,Y, Z ∈ Tp(M), u ∈ TM (π(u) = p), the exterior derivative

dΩ is given by

dΩ(XH
u , Y V

u , ZV
u ) = −αψ3

fh
{g(X,Y )g(Z, u) − g(X,Z)g(Y, u)}, (2.8)

dΩ(XH
u , Y H

u , ZH
u ) = dΩ(XH

u , Y H
u , ZV

u ) = dΩ(XV
u , Y V

u , ZV
u ) = 0. (2.9)

Proposition 2.3. For X ∈ Tp(M), u ∈ TM (π(u) = p), the coderivative δΩ is

given by

δΩ(XH
u ) = −(n − 1)ψ3 g(X, u), (2.10)

δΩ(XV
u ) = 0. (2.11)

3. Conditions for each classes

First, we recall the sixteen classes of almost Hermitian manifolds established in [3].

Let M = (M,J, g) be an almost Hermitian manifold and Ω the corresponding Kähler

form. We denote by W the set of all almost Hermitian manifolds of dimension 2n.

Making use of the invariant subspaces W1, . . . , W4 of the unitary representation, we

can classify W (dimension 2n ≥ 6) into following sixteen classes.

(1) K = Kähler manifolds: ∇Ω = 0.

(2) W1 = NK = nearly Kähler manifolds: (∇XΩ)(X,Y ) = 0.

(3) W2 = AK = almost Kähler manifolds: dΩ = 0.
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(4) W3 = H ∩ SK = Hermitian semi-Kähler manifolds:

(∇XΩ)(Y, Z) − (∇JXΩ)(JY, Z) = δΩ = 0.

(5) W4:

(∇XΩ)(Y, Z) = − 1

2(n − 1)
{g(X,Y )δΩ(Z) − g(X,Z)δΩ(Y )

− g(X, JY )δΩ(JZ) + g(X, JZ)δΩ(JY )}.

(6) W1 ∪W2 = QK = quasi-Kähler manifolds: (∇XΩ)(Y, Z) + (∇JXΩ)(JY, Z) = 0.

(7) W1 ∪ W3: (∇XΩ)(X,Y ) − (∇JXΩ)(JX, Y ) = δΩ = 0.

(8) W1 ∪ W4:

(∇XΩ)(X,Y ) = − 1

2(n − 1)
{‖X‖2δΩ(Y ) − g(X,Y )δΩ(X) − g(JX, Y )δΩ(JX)}.

(9) W2 ∪W3: S
X,Y,Z

{(∇XΩ)(Y, Z)− (∇JXΩ)(JY, Z)} = δΩ = 0, where S denotes the

cyclic sum.

(10) W2 ∪ W4: S
X,Y,Z

{(∇XΩ)(Y, Z) − g(X, JY )δΩ(JZ)/(n − 1)} = 0.

(11) W3 ∪ W4 = H = Hermitian manifolds:

(∇XΩ)(Y, Z) − (∇JXΩ)(JY, Z) = 0.

(12) W1 ∪ W2 ∪ W3 = SK = semi-Kähler manifolds: δΩ = 0.

(13) W1 ∪ W2 ∪ W4:

(∇XΩ)(Y, Z) + (∇JXΩ)(JY, Z) = − 1

n − 1
{g(X,Y )δΩ(Z)

− g(X,Z)δΩ(Y ) − g(X, JY )δΩ(JZ) + g(X, JZ)δΩ(JY )}

(14) W1 ∪ W3 ∪ W4: (∇XΩ)(X,Y ) − (∇JXΩ)(JX, Y ) = 0.

(15) W2 ∪ W3 ∪ W4: S
X,Y,Z

{(∇XΩ)(Y, Z) − (∇JXΩ)(JY, Z)} = 0.

(16) W = almost Hermitian manifolds: No condition.

In case dimension 2n = 4, W can be classified into following four classes.

(1) K = Kähler manifolds.

(2) W2 = AK = almost Kähler manifolds.

(3) W4 = H = Hermitian manifolds.

(4) W = almost Hermitian manifolds.

Now, we return to our almost Hermitian manifold TM = (TM, J,G) and examine

the conditions for (J,G) such that TM belongs to each of these classes. For a

constant c, we may consider next four conditions:

(C0) M = (M, g) is a space of constant curvature c,

— 30 —



(C1) 2h(log α)′ − fβ

α
− c

f
= 0 (⇐⇒ ψ1 = c/f),

(C2) 2h(log f)′ − h − f

t
− c

f
= 0 (⇐⇒ ψ2 = c/f),

(C3) 2h

(
log

α

f

)′

− fβ

α
+

h − f

t
= 0 (⇐⇒ ψ1 = ψ2).

From (2.8)–(2.11), (C3) is equivalent to dΩ = 0 and δΩ = 0.

Theorem 3.1. For almost Hermitian manifold TM = (TM, J(f, h), G(α, β, f, h)),

we have the following:

(1) TM ∈ K if and only if (C0), (C1), (C2) and (C3).

(2) TM ∈ W1 = NK if and only if (C0), (C1), (C2) and (C3).

(3) TM ∈ W2 = AK if and only if (C3).

(4) TM ∈ W3 = H ∩ SK if and only if (C0), (C1), (C2) and (C3).

(5) TM ∈ W4 if and only if (C0) and (C2).

(6) TM ∈ W1 ∪ W2 = QK if and only if (C3).

(7) TM ∈ W1 ∪ W3 if and only if (C0), (C1), (C2) and (C3).

(8) TM ∈ W1 ∪ W4 if and only if (C0) and (C2).

(9) TM ∈ W2 ∪ W3 if and only if (C3).

(10) TM ∈ W2 ∪ W4 for any f, h, α, β.

(11) TM ∈ W3 ∪ W4 = H if and only if (C0) and (C2).

(12) TM ∈ W1 ∪ W2 ∪ W3 = SK if and only if (C3).

(13) TM ∈ W1 ∪ W2 ∪ W4 for any f, h, α, β.

(14) TM ∈ W1 ∪ W3 ∪ W4 if and only if (C0) and (C2).

(15) TM ∈ W2 ∪ W3 ∪ W4 for any f, h, α, β.

Proof. (1): First, we consider the case dim TM ≥ 6 (dim M ≥ 3). Assume that

M is not a space of constant curvature. Then, from (2.1), the condition ∇Ω = 0

requires α = 0. Thus, M must have a constant curvature c. The, form (2.5)–(2.7),

we observe that ∇Ω = 0 if and only if ψ1 − c/f = 0 and ψ1 − 2ψ2 + c/f = 0, namely

(C1), (C2) and (C3). If dim TM = 4 (dim M = 2), the curvature tensor R is of the

form

g(R(X,Y )Z,W ) = k(p){g(X,W )g(Y, Z) − g(X,Z)g(Y,W )},

for X,Y, Z,W ∈ Tp(M). Therefore, the equalities (2.5)–(2.7) are valid if we replace

c with k(p). Then, form (2.5), we may show that k(p) must be constant. So, the

argument comes down to the case of constant curvature. Hence, (1) follows.

Using (2.1)–(2.11) and making a similar argument as above if necessary, we can

prove (2)–(15). ¤
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