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Definition 5.1. Let k be a field, A an overring of k.

The ring A is said to be geometrically regular if, for all

finite field extensions k1 of k, the ring A1 = A <8> k1 is
K.

regular.

Corollary 5«3* a) Every regular overring of a perfect

field is geometrically regular. .

b) Every regular overring of an algebraically closed

field is geometrically regular.

Remark. Let again A1 = A ® ̂ .k1. Some of the properties of

A1 can be deduced from those of A and of the field extension k1

of k. This process of deduction is known as ascent. Conversely,

some of the properties of A can be deduced from those of A1.

This latter process of deduction is known as descent.

§6. COMPLETION AND NORMALIZATION

^A- Completion. Let A be a noetherian local ring, Ht its

maximal ideal. It is well known(see Corollary after Proposition

5 in B.C.A., Ill, §3, no. 2) that H tn,n = (°)- Tnis implies

that the collection {t£n} can be taken as the basis of a filter

of neighborhoods of 0 in a (unique) Hausdorff topology which is

consistent with the ring structure of A (i.e. A is a Hausdorff

topological ring).

The set ft of (equivalence classes of) Cauchy sequencesof

elements of A can be given a topological ring structure which is

obviously complete (i.e. every Cauchy sequence in A is

convergent). We refer the reader to the third chapter of

B.C.A. for the proof of the above statements, as well as for the
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proof of the following ones, for which we give references to be

found in the above mentioned third chapter.

1) The canonical homomorphism

j:A -»!"

is a monomorphism (§2, no. 12, since A is Hausdorff).

2) A is a noetherian local ring, with unique maximal

ideal W = mA. (§3* no. 4, Corollary to Proposition

8, and §2, no. 12, Corollary 2)

A

9)

3) A is a faithfully flat A- module (§3, no. 5, proposition

, no. 6)

5) A/m, - /JH = /w£. (Apply equation (21) in §3,

no. 12, and 2) above. )

Example. Let P(X, Y) be the polynomial Y2 - X2 (X + 1)

whose variety of zeros in the affine plane is the cubic with

double point represented in the

figure. Let B = <E[X,Y]/(P) and

let 47t be the maximal ideal of

B generated by (the equivalence

classes of ) X and Y. Let

A = B^, . One easily sees that

A is an integral domain, but, as we shall see later, A is not

integral, it has in fact two distinct minimal prime ideals.

(See Theorem 6.5.)

We now consider the ascent and descent properties of the

local morphism A -»A.

Proposition 6.1. A noetherian local ring A is,
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respectively, regular or C-M if, and only if, its completion A

is regular or C-M. If A is, respectively, reduced or normal,

then so is A.

Proof ; The morphism A -» A is flat . Hence we can apply

the r.esults of §5. Since A/<m - A/ttt,, the first assertion of

our proposition is a consequence of theorem 5-5 and corollary

5-1 respectively. The second assertion follows from theorem 5-7-

The converse of the second statement in proposition 5-1 is

false, as shown by a counter example due to Nagata. If, how-

ever, the fibers of the morphism Spee(1£) -* Spec (A) (called

formal fibers ) are regular or geometrically regular, then a

simple application of theorems 5-4 and 5-6, and propositions 4.5

and 4.6 shows that, when A is either reduced or normal, then so

left.

Having introduced complete local rings, we turn our

attention to the study of some of their properties.

Definition 6.1. Let A, B be noetherian local rings, with

maximal ideals Wl^n, respectively. Let cp:A -» B be a local

homomorphism. B is called a Cohen algebra over A if the follow-

ing three properties hold:

i) B is complete

ii) B is A- flat

iii) B/WtB is a separable field extension of A/W-.

A trivial example of Cohen algebra is a separable field

extension of a field.

We state without proof two theorems, which will be used in

the proof of the main result of this section. (For the proofs see

E.G.A., Chap. OIY, 19-3.10 and 19-7-2.)
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Theorem 6.1. Let B be a Cohen algebra, over a noetherian

local ring A, and let C be a complete noetherian local ring

which is an A-algebra under a local homomorphism cp:A -> C. Let

J be a closed ideal in C. Then for any A-homomorphism

¥ :B -> C/J there exists a local A-homomorphism 0:B -» C such that

the following diagram commutes

B £ C

f\ /Y C/J

Theorem 6.2. Let A be a noetherian local ring, I7t its

maximal ideal, k = A/Ht, K a separable extension of k. Then

there exists a unique (up to A-isomorphisms) Cohen algebra B

over A, such that B/tftB - K.

We denote by Z the localization of the ring Z at the

principal prime ideal pZ. The rings Z are called the complete

prime local rings. One trivially sees that every local ring is

a Z -algebra for an appropriate prime p > 0, and contains it,

and that every complete local ring is a Z -algebra, again for an

appropriate prime p.

With this in mind we give the following

Definition 6.2. A ring B is called a Cohen ring if it is a

Cohen algebra over a complete prime local ring.

As an easy application of theorem 6.2 we obtain

Proposition 6.2. For each separable extension L of the field

TT = Z /pZ ( TT0 = Q) there exists a unique (up to

isomorphisms) Cohen ring B, over Z , having L as residual field.

This clearly describes all Cohen rings.
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We can now state and prove the main theorem of this

section, namely:

Theorem 6.3. (Cohen Structure Theorem for Complete Local

Rings). Let A be a complete, noetherian local ring. Then:

1) There exists either a Cohen ring W or a field k such

that A - W[ [T-j,... ,T ] ]/#£, for an appropriate ideal

*t C WftT^ ...,Tn]]. If A contains a field k one can

take W = k.

2) If in addition A is an integral domain, then there

exists a subring B C A such that the following

properties hold:

a) B is isomorphic either to k[[T,,...,T ]], where k =

A/77£, or to W[[T,, .. .,T ]], where ¥ is a Cohen ring.

b) A and B have the same residue field.

c) A is a finitely generated B-module.

3) If in addition A is regular, then A is isomorphic

either to k[[T1,.. .,Tn]], k = A/TTJJ., or to

W[[TX,...,Tn]], W a Cohen ring.

Remark. The above theorem classifies all complete

noetherian regular local rings, as we asserted in the section

on regular local rings.

Proof; If A contains a field, say k", let P denote its

prime field. ¥e have the diagram P -» A -» k = A/77Z. whence k is a

Cohen algebra over P, since P is perfect. Therefore, by theorem

6.1, we obtain the commutative diagram

\/
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and u is necessarily injective, i.e. A contains a copy k1 of k.

If A contains no field, then A is a Z -algebra, for some

appropriate prime p > 0, (otherwise A contains Z,Q% = Q), and

char(k) = p. By theorem 6.2 there exists a Cohen ring W over
s\
Z such that its residue field is isomorphic to k. Since A is

a Z -algebra and ttt is closed in A we can apply theorem 6.1 in

this case also, and obtain the commutative diagram

¥ -» A/m,

V
where u is a local homomorphism.

Let now x-^ ...,xn be a set of elements of m, • Define a

map viWftT.^ ...,Tn]] -» AfvikECT^ . . .,Tn]] -> A) according to the

following rules

1) v|¥ = u (v|k = u)

2) v(Ti) = xi, i = 1, ...,n

The completeness of A and the fact that the x. fs are trivially

topologically nilpotent, guarantee the existence and uniqueness

of the homomorphism v. (See B.C. A., Ill, §4, no. 5)

Having disposed of the above preliminaries, we proceed with

the proof of the three statements of the theorem.

1) Take {x.} i = 1, . . .,n to be a set of generators of m.

Let U, be the maximal ideal of WftT-^ . . .Tn]] (of k̂ T̂  . . .,Tn]]).

Consider the homomorphism
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Since ¥ -» A/f% (& -» A/wt) is surjective, the choice of

x^, ...,x shows that gr(u) is surjective. Then by Corollary 2

of B.C. A., Ill, §2, no. 8, we have that v is surjective, and 1)

is proved.

2) We consider two cases:

Case 1. A contains a copy kf of k = A/nt(see preliminary

remarks). Let dim A = n and let y,, ...,y efti* be a system of

parameters of A. Define B = k[[T.., ...,T ]] and consider the

homomorphism v:B -» A as constructed in the proof of 1).

Case 2. A does not contain a field. Since A is an

integral, local domain, for an appropriate prime integer p > 0,

A contains a copy of Z . (See remark preceding definition 6.2)

Identify Z with its image in A and note that p € -fit, and that p

is not a zero divisor of A, hence by proposition 3-3, P can be

imbedded in a system {p, y., , . . «*yn n} °f parameters of A. From

the commutative diagram (see preliminary remarks to proof)

W -» Ay\/
and the fact that u(l--) = 1. we see that pf + 0 where p1 denotes

the element p-1 of W. Since u is local, pf e ̂ S the maximal

ideal of W. Let B = W[[T,, . . .,T ]], and define the homomorphism

v:B -» A as in the proof of 1). Note that v(Tt) «= ŷ ,̂

i=l, . . ,,n-l, and v(pf) = p.

In either case 1) or case 2) we have obtained a

homomorphism v:B -» A, where B = W[[T, , . . .,T ]], r = n, n - 1, W

a field or a Cohen algebra over A respectively. We assert:
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i) B and A have isomorphic residue field k

ii) A is a finitely generated B-module

iii) v is injective.

Clearly the above three assertions imply 2) of the theorem.

We proceed to prove them.

i) We leave as an exercise to the reader the proof that,

for any local ring C, the two local rings C, CCtT.^ . . ,,Tn]]

have isomorphic residue fields.

ii) By the construction of v we clearly have, letting 1fo be

the maximal ideal of B,

fH C A

Furthermore, since ft,A is generated by a system of parameters

of A, ft A is an ideal of definition of A (Definition 2.5 and

Proposition 2.1), and therefore m D n A D 1ft for some integer

h > 0. We have A/ff,A = (A/̂ h)/(̂ A/-̂ h) .

Now, A/m> is (trivially) a finitely generated B-module,

and since tftVut^ is a finitely generated A/4tt-module,

fjtVtn5+ is a finitely generated B-module for all q > 0. Prom

the exact sequences

0 -» W,/1tl2 -» A/m,2 -» A/IK, -» 0

0 -» Ht2/ 4ft 3 -> A/fli,3 -> A/m,2 -> 0

o -* ̂h~Vin,h -» A/mh -> A/m11""1 ̂ > o

we obtain (proceeding by induction), that A/fK, is a finitely

generated B-module, and therefore A/%, A, as a quotient module

of A/m, , is also a finitely generated B-module.
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Let {a.} ._T , be a set of generators of A/<n*A over B,
J d~-J-J • • • "

and let a. e A such that a. = a. + tLA, j = 1,...,t. Let F "be

the submodule of A generated over B by a-,, ...,a., . Then

tt A + F = A. Since B is complete we can apply (ii) of

Corollary 3 of B.C.A.'s, III, §2, no. 9, and obtain that A is a

finitely generated B-module, and assertion ii) is proved.

To prove (iii) we observe first of all that, since A is an

integral domain, ker(v) is a prime ideal of B. Furthermore,

since ¥ is an integral domain, B is an integral domain. Finally,

both in case 1 and case 2 we have dim(B) = dim(A). This is seen

by observing that, in case 1, T^ ...,Tn is a system of

parameters of B, while in case 2, pf, T.., ...,T ., is a system

of parameters of B. Therefore ker(v) = 0, otherwise

dim(B) > dim(A). Assertion 2) of the theorem is proved.

3) Let y^ ...*y be a regular system of parameters of A,

with y, «= p If A contains no field. (See case 2 in the proof of

2)). ¥e obtain a homomorphism

v:W[[Tr...,Tr]] -»A

where r = n or n - 1 and ¥ is either the field k or a Cohen ring

over Z , according as A does or does not contain a field. By

the proof of 1) v is surjective, and by the proof of 2) v is

injective, whence 3) follows. The theorem is proved.

6B. Normalization-. In this part of the present section all

rings shall be assumed to be integral domains unless otherwise

specified. If A is one such ring and L is a field containing A
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(and containing a fortiori the field of fractions K of A), we

denote by A1-, the integral closure of A in L, i.e. the subring

of L consisting of all those elements of L satisfying an

equation of integral dependence over A. A1,, is called the

normali zat ion of A in L.

In particular A is called normal (integrally closed) if

A1^ = A. From now on we shall write A1 for A'̂ .-
IV IV

Examples of normal and not-normal ringsabound in Algebraic

Geometry. The following two rings are easily seen to be not

normal (in both cases the element T is integral over the given

ring, but outside it):

Let RJL = <C[T2,T3], Rg = <U[T
2-1, T(T2-l)],

o
ltl/2 = (T -l)R2- Then A.̂  = (R-̂ ffti*

In both cases we have

K = (C(T), and

A«2 = A2[T]

In the case of A' we see that it

has two maximal ideals, namely (T-1)A!2 and (T+1)A
!
2 (see

figure). In this case the number of maximal ideals in A'

equals the number of minimal primeideals in the completion A2 of

A2- (See example on page 101). This is in fact a situation

that repeats itself in many cases as we shall later see.

With reference to the above two examples, if L is a finite

extension of K one easily sees that in these cases A1, is a
1L

finitely generated A^module. In fact it is well known (E.



110

Noether) that if A is noetherian and char(K) = 0, then for any

finite extension L of K the ring A'T is a finitely generatedit

A-module.

If char(K) + 0 however, the situation is completely

different. Nagata has given examples where, respectively, A is

a discrete valuation ring, a noetherian local ring of dimension

2, a noetherian local ring of dimension 3> [L:K] < °° and,

respectively A1,, is not a finite A-module, A1.^ is not noetherian,

A1 is not noetherian.

We are therefore led to the following

Definition 6.3. An integral domain A, with field of

fractions K, is said to be Japanese if, for every finite

extension L of K, [L:K] < °°, A'yis a finitely generated A-

module. A is said to be universally Japanese if every finitely

generated algebra over A (in particular A itself) is Japanese.

Proposition 6".3* Let A be a noetherian integral domain, K

its field of fractions. If, for every finite, purely insepa-

rable field extension Kf of K, A!K, is a finitely generated

A-module, then A is Japanese.

Proof: The proof is based on the following two statements:

a) For every finite, field extension L of K there exists

a finite field extension U of L such that every polynomial

f (X) € K[X] with a root in T factors completely in H.

b) If L is the field constructed in a) above there exists

a field K1, KC K1 C 1 such that K1 is purely inseparable over

K and L is separable algebraic over K1.

See Theorem 14 of Zariski-Samuel "Commutative Algebra",
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Volume I, Chapter II. Now, by assumption Af
KI is a finitely

generated A-module, and by proposition 18 of B.C. A., V, §1,

no. 6, the integral closure of A1^., in L is a finitely

generated A!KI-module.

Clearly such integral closure is A!-j-, and we have there-

fore proved that AV is a finitely generated A- module. Since

A!T C AV* and A is noetherian, AfT is a finitely generatedLI LI LI
A-module, and the proposition is proved.

When char(K) = 0 every normal ring is (trivially!) Japanese.

The following theorem, the main one in this section, gives

us a large class of Japanese rings.

Theorem 6.4. (Nagata) Every noetherian complete, local,

integral domain is Japanese.

The proof uses two lemmas, the second due to Tate, which we

proceed to state and prove.

Lemma 6.1. Let A be a ring and x an element of A which is

not a zero divisor. If p = x • A is a prime ideal of A, then the

inverse image of the ideal xn Ap under the canonical

homomorphism cp:A -> A is the ideal xn A.

Proof ; Clearly cp(xnA) C xnAb , whence x
nA C cp"1(xn A b ).

r r
To prove xnA D cp~ (xnAp ) we proceed by induction. If n = 1 and

y e A is such that i = 2£, f k p > then, for some g k p

gfy = gxa. Since p is prime gf t f> > whence y e to = x A and we

are done in this case. For the general case, let b e A such

that b/1 = xna/s, s £ p . Then for some s f t p, sfsb = sfxna,

whence b e p and therefore b = x b f . Therefore

x(s!sbf - sfxn~ a) = 0 and since x is not a zero divisor in A,
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- s'x11"1 a = 0, whence bf/l e xn -1 Ap . By induction we

have b1 e xn~ A and the lemma is proved.

Lemma 6.2. (Tate) Let A be a noetherian integral domain,

x =1= 0 an element of A. Assume that the following conditions

hold:

i) A is integrally closed

ii) The ideal p = x«A is a prime ideal of A and A is

complete and Hausdorff for the p -adic topology

iii) A/xA is Japanese.

Then A is Japanese.

Proof; Let K be the field of fractions of A, Kf a finite

extension of K. By Proposition 6.3 it suffices to show that

Afj£, is a finitely generated A-module when Kf is a purely

inseparable extension of K, say (Kf)^C K, q = pe,

0 < p = char(K). (As we remarked after Proposition 6.3> if

char(K) = 0 A is trivially a Japanese ring.) Let K(y) be a

purely inseparable extension of K such that yq = x. Then, if

K" = K» • K(y), we have (Kf!)qC K. Furthermore, if A!Kll is a

finitely generated A-module, so is A* . Hence we can assume

that there exists y e K! such that y^ = x. Denote Af
K, by A

1.

Since A is integrally closed we have A1 O K = A, whence

Af = {xf e K'lx1*1 e A}

Let now V = A^ ; 1ft = pAy, = xAp . Since the maximal ideal of

V is generated by one regular element (A is an integral domain)

V is a discrete valuation ring. In fact, by part d) of theorem

4.1, V is a regular, one dimensional local ring, hence by
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proposition 9 of B.C.A., Chapter VT, §3, Vis a discrete valua-

tion ring. Let V1 be the integral closure of V in Kf. Since V

is integrally closed (Corollary 4.1), V1 O K = V, and therefore

Vf = {x1 e K'|xfq e V}.

By Corollary 2 of B.C.A., Chapter VT, §8, ' yl

no 6, V1 is a valuation ring, and by Corollary i |

3, Chapter VT, §8, no 1, Vf is a discrete A A'

valuation ring. Letting fftf denote the maximal ideal of Vf, by

Proposition 5> Chapter VT, §8, no 5* v"f/?7l! is an extension of

finite degree of V/w,, and

e K'|x'q

We prove the following three statements :

a) tfl,' nnA» = y n A'

b) The x Af-adic topology on A1 is Hausdorff

c) A!/xA! is a finitely generated A- module.

To prove a) we observe first that, since yq = x e ftt, ,

y ewJ* and that clearly y e A1. Hence yn A1 C fft,|iriOAf.

Conversely, let x1 e tlt^HA1, and let x1 = yn z f , z f e K1 . We

need to show z1 e A1 . Now, since x1 e m?n , we can write

x- = St'....tA t- e W-

whence (xf)q = 2(tJ )q. . . . (tn)
q and by the above characterization

of tft,1, (t1.)̂  efft, whence (x1)̂  e -»tn. Furthermore, by the

characterization of A1, (xf)q e A, whence (xf)q e fft^OA.
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By lemma 6.1 fftj1 (~\ A = xnA, and we therefore obtain

y
nq(Z')

q= (x')1 e xnA

whence xn(zf)^ e xnA, and, from the fact that A is an integral

domain, (z!)q € A. Therefore z! e A1 and statement a) is proved.

We now prove b). Since xA! = y^Af, the xA'-adic topology

on A1 and the yAf-adic topology on A1 clearly coincide. Further-

more, by a) the yA'-adic topology on A1 is induced by the ffc1-

adic topology on V1, which is Hausdorff since V1 is a local ring.

Therefore the xA!-adic topology of A1 is Hausdorff.

Next, we prove c). We have y^ = x, and therefore Af/xAf =

A'/y^A1. The exact sequences

0 -̂ ŷ A'/ŷ Â' -» A'/yk+1A' -»A'/ykAf -» 0

show that it suffices to show that A'/yAf and

k = 1,...,q-l are finitely generated A-modules. The diagram

0

.'I,
—where cp(?) = y £ and q>" is the induced homomorphism, shows that cp

is an isomorphism, since cp is. Hence it suffices to show that

A!/yAf is a finitely generated A-module. Now, by a)

yA» = ̂  n A1, whence A'/yA1 - A'/frtJ HA1 and A»/tftf HA1 is a

submodule of Vf/Htf . Also, since A1 is integral over A,

A!/fn; HA1 is integral over A/p . Since Vf/m*f is a finite

extension of V/HV* and A/p is Japanese by assumption, the

integral closure of A/p in VVtft1 is a finitely generated
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A/p -module, since clearly V/flt is the field of fractions of

A/p . Therefore Af/wJ HA1 is contained in a finitely generated

A/p -module, and is hence itself finitely generated A/p -module

(A is noetherian). Therefore Af/-fltf HA1 is a finitely

generated A-module, and c) is proved.

Let now A1 denote the completion of Af in the xAf-adic

topology which, by b) is Hausdorff. Therefore we have that A1

contains an isomorphic copy of A1, and we identify the two, i.e

we have A1 C Af. By statement 6) at the beginning of section

6A we have A'/xf* - A!/xAf, and in the proof of c) we actually

showed that A!/xAf is a finitely generated A/xA-module. Since A

is complete and Hausdorff in the xA-adic topology, we can apply

part ii) of Proposition 14 of B.C.A., Chapter III, §2, no 11,

and obtain that A1 is a finitely generated A-module. Therefore

A1 C A1 is also finitely generated over A, and the lemma is

proved.

We now proceed with the proof of theorem 6.4, namely that

every complete noetherian local domain is Japanese.

By Cohen's Structure theorem, since A is an integral domain,

A contains a ring B which is regular and such that A is a

finitely generated B-module. Therefore A is integral over B,

and hence it suffices to prove that B is Japanese, since for

every finite extension L of the field of fractions K of A we

have A!L = B', and L is a finite extension of the field of

fractions F of B. Therefore it suffices to prove the theorem

with the additional assumption that A is regular.

We proceed by induction on n = dim(A). If n = 0, since A
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is integral, it follows that A is a field, ^

trivially a Japanese ring. Assume n > 0 I

and let x e A be an A-regular element, _
15

x t W, • Then A/xA is again regular

(Corollary 4.2) and complete and dim(A/xA) = n-1. Since A/xA is

regular, xA is a prime ideal. By the induction assumption A/xA

is Japanese. Furthermore, A being complete and Hausdorff in the

ffl-adic topology, it is so a fortiori in the xA-adic topology.

Since A is regular, it is integrally closed, and by lemma 6.2

A is Japanese. The theorem is proved.

Corollary 6.1. Let A be a complete, local, noetherian

integral domain, K the field of fractions of A, K1 a finite field

extension of K. The integral closure A1 of A in K1 is a local

ring.

Proof. By theorem 6.4 A1 is a finitely generated A-module.

Therefore A1 is complete in the tltA!-adic topology (B.C.A.

Chapter III, §2, no 12, Corollary 1), and semi-local (B.C.A.

Chapter IV, §2, no 5, Corollary 3)* and -wtA1 is an ideal of

definition of A1. Therefore the tttA!-adic topology on A1 is

equivalent to the tf-adic topology, where iT denotes the

radical of A1. By proposition 18 of B.C.A., Chapter III, §2,

no 13, (applied to A1) we have Af = I \ &\> where each A1^ is a
i=l

local ring, i = 1, ...,q. Since A1 is an integral domain, q = 1

and A1 is a local ring, q.e.d.

If A is a noetherian, local, integral domain, it need not
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be a Japanese ring. However, A is Japanese if two certain

conditions hold for the completion A of A. Namely

Proposition 6.4. Let A be a noetherian local, integral

domain, A the completion of A in the 1^-adic topology, K the

field of fractions of A, K» a finite field extension of K, A1

the integral closure of A in K1. Let R be the total ring of

fractions of ̂. If

i) A is reduced

ii) R <8> K K
! is reduced

then A1 is a finitely generated A-module.

Proof; Let p.,, . .., /^ be the minimal prime ideals of A,

and let L± be the field of fractions of B± = &/p±, i=l, ...,t.

Since A is reduced we have C\ Pi = (0) and a sequence of
1~~inclusions

with

A

R = TTLi.

Now let A-j^ = A", Af
x = A' <g> AA^ K'1 = K! <8> AA;L, ^ = K <8> ^^

We therefore have K^ = K! <8> KK][. Since A-ĵ  is a faithfully flat

A-module, it suffices to prove that A' is a finitely generated

A-j-module. Furthermore, again by the flatness of A, over A we

have A'C K'. Finally, letting S denote the multiplicatively

closed subset of A consisting of the non zero divisors of A, we

clearly have K = Ŝ A, and ̂  = S^A ® ̂  = S~1A1, since S

consists of non zero divisors of A-j_ also. Clearly S~ A-|_ C R,
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whence K., C R- We therefore have the inclusion diagram

where K* C K1 <g> KR is seen from 1C C H and the flatness of K
f

over K.

By proposition 5 of B.C.A., Chapter V, §1, no 2, A1^ is

integral over A-^ and is therefore contained in the integral

closure C of A-ĵ  in Kf <8> .̂.R.

If a e A is not a zero divisor, then a is not a zero

divisor in A-,. From this we see that the L̂ 's are vector spaces

over K. Since R = TTl̂ , we have Kf <8> RR = TTK
1 ® -gL^ and,

since K1 ® ,-R is reduced, so are the K1 ® KLJL.' ^ = 1* •••**'•

Furthermore, since [K1 :K] < °°, K1 <g> KL± is finitely generated
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over 1, i = 1,...,t. Since Kf <8> L has no nilpotent elements

and, again, [K! :K] < °°, Kf <8> -L. is a product TTM- •* where the
K. 1 j 1J

M. . are fieIds, which are actually finite field extensions of L. .

Therefore the integral closure B!. of B. in Kf ® ,,L. is, by

theorem 6.4, a finitely generated B^module, i = 1, ...,t, and

hence a finitely generated A^-module. Since A1., is integral
t

over A., we have Af..C~] T B%^ an(* therefore A1,, being

contained in a finitely generated A-j-module, is itself a finitely

generated A^-module, and the proposition is proved.

Theorem 6.3. Let A be a reduced noetherian local ring with

geometrically regular formal fibers. Then:

1) A is reduced

2) The integral closure A1 of A in its total ring of

fractions is a finitely generated A-module

3) The completion A1 of A1 is isomorphic to the integral

closure of A in its total ring of fractions

4) There exists a 1-1 correspondence between the maximal

ideals of A1 and the minimal prime ideals of A given by

AW
where ttt is a maximal ideal in A1 and <p the correspond-

ing minimal prime ideal in A.

Proof; 1) This is a direct result of theorem 5.7. Note

that here we only need the formal fibers to be regular.

2) Let to, i = 1,...,t be the minimal prime ideals of A,
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and let B. = A/ p., i = 1, ...,t.

We assert that BI is reduced, i = 1, ...,t. In fact, let

B^/4»~B^, <y€ Spec(Bi) be a formal fiber of B.̂ . Then, letting

*f denote the unique prime ideal of A corresponding to ̂  we

have B./̂ Bi - A/ft A. I.e. that the formal fibers of B. are

isomorphic to formal fibers of A. As B^ is reduced, by

proposition 5.7, "B^ is reduced, i = 1, ...,t. If L. denotes

the field of fractions of B. , i = 1, ...,t, then

A C Tf B± C IT I^. Apply proposition 6.4, with K = K
1 = 1^.

It follows that the integral closure B!. of B. in L. is a

finitely generated B. -module, hence a finitely generated A-

module. Now clear lyTT L.. is the total ring of fractions of A,

whence A1 =TTBfi, and 2) is proved.

3) We let X = Spec(£), Y = Spec (A), Z = Spec(Af). Then

we have canonical morphisms cp:X -> Y, Y:Z -»Y.

By 2) A1 is a finitely generated A-module, and by part

(ii) of Theorem 3 of B.C. A., Chapter III, §3, no 4, IT* ^ ̂  ®
s>*

Therefore, if we let W = Spec A1 we have the commutative

diagram

Let w e W, z = q(w), y = ¥(z), x = p(w). Then cp(x) = y and
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°x ® o
 k(z) = (°x®0

 k(y)) ® k(y) MS)y y
is the local ring of w in q" (z).
Since A1 is a finitely generated A-module, it follows

[k(z):k(y)] < °°, and since 0 <8> o k(y) is geometrically
y

regular, so is 0 ® Q k(z). Therefore the formal fibers of A1

y
are geometrically regular . Let 1ft̂ , • • • > W^ denote the maximal

ideals of A1 (Af is semi- local). By the corollary to proposition

19 of B.C. A., Chapter III, §2, no 13, AJ = TT AVi . There-
j mj

fore, since Af has geometrically regular formal fibers, so do

the A' , J = 1, ...,t.
TOJ
Since A1 is normal and has (geometrically) regular formal

N̂ -A
fibers, it follows from theorem 5-7 that A1 is normal. Since A

if faithfully flat, over A, the inclusions AC A1 C R imply, by

tensoring with A, the inclusion relations A C A1 C R ® A. Now

R <8> .A is clearly contained in the total ring of fractions R"

of ̂ . Therefore A1 is a normal ring containing A and contained

in the total ring of fractions of A. It follows that Af is the

normalization of A in R", and 3) is proved.

4) With the same notations as in the proof of 3), we have

xx _** ̂ — \
Af = "[""]" A1^, . Let <f •,,... , 4f denote the minimal prime ideals

j=l J

S\ s\
of A. Since A is reduced, we have the inclusions

'AC TT V<y. C R". It follows that the integral closure of ̂

s
in R" is given by | I B. , where B. denotes the integral closure

1=1 1 i
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of A/4J± in its field of fractions. By corollary 6.1, B± is a

local ring, i = 1, ...,s, and by 3)

Therefore s = t, and up to a reordering A' = (A/# -) f- The

J
theorem is proved.

We complete this work with a definition and a theorem of

Grothendieck, which we shall leave unproved.

Definition 6.*K A noetherian local ring A is said to be

excellent if

i) A has geometrically regular formal fibers

ii) Every finitely generated A algebra is catenary

(i.,e. A is universally catenary)

Theorem 6.6. (Grothendieck) Let A be an excellent local

ring. Then every localization of a finitely generated algebra

over A is excellent. (E.G.A., IV, 7-4.4).


