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§4. REGULAR RINGS

We let A be a noetherian local ring, ML its maximal ideal,
k= Am. We denote by SK(M/m2) the symmetric algebra of the
k-vector space M/, 2. If rankk(m/m2) = r one trivially has
sk(m/me) = k[T;,...,T,] = where T,,...,T are indeterminates
over k.

We proceed to define a homomorphism
0:5, (M) 2) »gr, () = & mi/ i1
15y 'm g " i=om m

as follows:
Let fl,...,fr be a k-basis of m/mE, and let KyseeesX, €M be

their representatives. By Nakayama's ILemma (see the remark on

page 35) KyseeesXy, forms a set of generators of #L. Hence ﬁt,i

is generated by elements of the form xg_" e x:"with
— Oy

a
@ +...+ @, = 1.6 is defined by 6(X; ... X, ') = the class of

a a

xq 1 cee X, T mod mi"'l. Trivially € is a homogeneous

homomorphism of degree O, and an epimorphism.

Theorem 4.1. ILet A be a noetherian local ring of
dimension n, 4L its maximal ideal k = A/M. The following four
conditions are equivalent.

a) e:sk(m/mz) - grm(A) is bijective
b) rankk(m/’n 2) =n
c) M is generated by n elements

d) There exists an A-regular system which generates M.



58

Proof: b) == c) follows from the remark above that every
k-basis of‘nt["tz 1lifts back ( in #) to a set of generators of
M, (by Nakayama's ILemma). Conversely, any set of generators of
Mm gives rise (mod ﬂmz) to a set of generators of 4n/5!2 over
k, whence rankk(ﬂl/atz) = n. But, by proposition 2.5,
rank, (#/y, 2) = n, whence c) == b). We have proved

b) <> c).

a) =>d). Let z;,...,Z € 4"2”02 be a basis of #L/,,2

a
over k. We use the symbol 7% for Ei 1 ee. z. T, and

r
[al =ay +o0ot ar. Let zl,...,zr € M be representatives of
Ei,...,i}. We already know that Zys...sZ, generate M

(Nakayama's Lemma), and shall show that they form an A-regular

sequence. We begin by asserting that, obviously,

—_ =0y _ a J+1
6( = T, z)= = c z (modm’ ")
lal=3 lal=3
where Eﬁ € k=AM, cy € A, their representatives. Hence,
since @ is injective, the relation s c. z% ¢ ﬂtj+1, c. €A

a a

lal=3
implies 6( = ¢, z%) = 0, whence c, €.
lal=3
Assume now that ZseeesZy do not form an A-regular sequence.
Then, for some j, 1 = J g r, there exists an x € A,
x Az, +..+ A 2y 1 8nd xz; € A z) +..t Az
have an equation of the form

-1 That, is we

Xz 4 = Yp Zq Feeot yj—l Zj—l'

Since 6 is surjective, we have, for some t,
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xzy= b} cazJ.z(1 (mod. 12

lal=t

t+2
)

where at least one Cy for an o with a, =0, =...=a =0 is

j-1
such that Cq km However, in the expression of

Y121 +eeot Y4 1251 @S b daza (mod. mt+2), all the

|a| St+1
coefficients da such that da k 71 correspond to multiindices o

for which al, °"2’ . "a;j—l are not all O. We thus reach a

contradiction.
d) = c). Let ZyseeesZ, be an A-regular sequence which
forms a set of generators of 4. Then, by proposition 2.5,
r 2 rankk(m/ma) Z2n
and by the definition of depth (A) and theorem 3.1
n £ depth (A) 2 r.

Hence r = rankk(‘m-/mz) = n, and c) follows:

c) => a). We proceed by contradition, i.e. we assume
ker 6 ¥ 0. For brevity's sake we write S = Sk(m/me);

G (A). We have the exact sequence

= grm

o—>:] ss8a50
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with 3 + 0. Since 6 is homogeneous, 3 is a homogeneous ideal
ins, and J =, =0, since 5, = G, =k, 5; = G =M/, 2.
Let h be the smallest positive integer such that Uh + 0. ILet
ued,, ut 0. Then clearly, S being an integral domain,

Sg_p = USg_ps 8 Z2h(a - ua) and us,_, C Js' Hence, (since
rankk(m/ma) = n, by c) == b)),

length, (J ) & length (S, ;) = (S'hnfln'l)

The exact sequence
0»d, -8, 506, 50
shows length, (G;) = length,(S.) - lengthk(as) =

s+n-1 s+n-1 s-h + n-1
= ( n-1 ) - lengthk(gs) = ( 1 )" ( n-1 )

and (® +ni11- 1) - (s—hni-ln—l) is a polynomial in s of degree at
most (n - 2).

From the exact sequence
0 -Gy~ A/ms+l - A/ms -0
we have, with the notations of section 2,

length(Gg) = (A, s+1) - Pm(A, 8).

P
m
By theorem 2.3 and a well-known result of polynomial theory we
have

s+n s+n-1
Pm_(A, 8) = c (Cp) + ey (Cp77) +eet e

with c; € Q (actually, since (A, s) € Z one easily sees that

P
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s+n
n-1

terms of lower degree. Hence 1ength(GS) is a polynomial of

c; € 2), and ¢, ¥ 0. Hence Pay (85 s+1) - Py (A, 8) = cp(p77) +

degree n - 1 for s >> 0. We have reached a contradiction and
a) is proved. If dim(A) = 0, M = (0) and the theorem is

trivial. The theorem is proved.

Definition 4.1. A local ring A is said to be regular if it

satisfies either a), b), c), or d) of theorem 4.1.

Corollary 4.1. Iet A be a regular local ring. Then
i) A is an integral domain
i1) A is C-M
iii) A is integrally closed.

Proof: 1) Sk(1n["12) is trivially an integral domain; by

a) of theorem 4.1 so is grﬂl(A). Hence A cannot have zero

divisors. (B.C.A., III, 2,3).

ii) In the proof of d) =D c) in theorem 4.1 we showed

<

r = depth(A) = dim(A) = rank, (M/,,2) = r

where r is the number of elements in an A-regular sequence which
generates M. Hence depth(A) = dim(A) and A is C-M.

111) Sk(fn{"L2) is trivially integrally closed B.C.A, V., §1
Corollary 3. Hence so is grﬂt(A), and by proposition 15 of
B.C.A., V, §1, A is integrally closed.

We glve some examples of regular local rings. It is clear
from c) of theorem 4.1 that if dim(A) = O, then the regularity
of A implies that A is a field, and conversely.

If A is a regular local ring and dim(A) = 1, then A is a

discrete valuation ring. 1In fact, by theorem 4.1, # is
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principal, and we can apply proposition 9 of B.C.A., VI, §3.
Finally, any ring A of power series in n variables
Tl""’Tn over a field is a regular local ring. This follows
from the fact that Tl,...,Tn generate #¢ and form an A-regular

sequence.
We globalize the notion of ‘regular rings as follows:

Definition 4.2. A ring A is said to be regular if, for

every maximal ideal MM of A, the local ring A,H_is regular.
We shall show later on that the polynomial ring in n
variables over a field k is a regular ring.

Definition 4.3. Iet A be a regular local ring. A set of

generators of M which forms an A-regular sequence is said to be

& regular system of parameters of A.

Remark. Theorem 4.1 guarantees the existence of regular
systems of parameters in any regular local ring A.

We also observe that, due to linguistical shortcomings,
not every system of parameters of A which forms an A-regular
sequence is necessarily a regular system of parameters, (see
Definition 2.5) while every regular system of parameters is a
system of parameters and an A-regular sequence.

We investigate the properties of regularity under quotient
operations. We have

Proposition 4.1. ILet A be a noetherian local ring,

Xy € MM, i=1,...,7r, :7 =X A +...+ X, A. The following
three conditions are equivalent:
a) A is regular and {xl,...,xr} is contained in a regular
system of parameters.

b) A is regular and the equivalence classes of Xj,...,Xy
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in *"L/mQ are linearly independent
c) {xl, . ..,xr} is contained in a system of parameters,

and A/J is regular.

Furthermore the above three conditions imply that J is
prime.

Proof: a) <==> b). By Nakayama's lemma and the proof of
theorem 4.1, any regular system of parameters gives rise to a
k-basis of m/mz and conversely.

a) ==>c). Letf = m-A/J, the maximal ideal of A/J.

Consider the exact sequence

O—)(m2+3 )/mz-)m/mE—) ﬂf/n2-+0

(since we have the exact sequence 0 — ‘"L2 +3 - M- 41'41’2 - 0,
we have m/(mz +J ) = ‘n/n 2).

Let n = dim(A). Now, by a) and proposition 2.7 we have
dim(A/J ) = n - r, and by b) (which has been shown to follow
from a)) :r'a.nkk((‘m.2 +J )/m2) = r (since the equivalence
classes of X;,...,X, in (411,2 +d )/m2 clearly generate it).
Hence rankk(n/nZ) =n-r=dimn(A/J), and A/J 1is regular.
Hence c) is proved, since it is already assumed in a) that
{xl,...,xr} is contained in a system of parameters.

c) ==> a). Since A/J 1is regular, by proposition 2.7
and theorem 4.1 applied to A/J we have

n - r=dim(A/J ) = rank(/y 2)

Since Xp,...,X, generate((m> +3J )/ 2) we have
ra.nk((-m_2 +J )/mz) < r. Hence rank(m/mz) < n. But
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ra.nk(m/mz) > n always, whence rank(m/m2) =n and A is
regular.

Trivially, if A/J is regular, {J is a prime ideal, since
A/J 1is an integral domain. The proposition is proved.

Corollary 4.2, ILet A be a noetherian local ring, t € m.
Then the following conditions are equivalent:

a) A is regular, t ¢ m?

b) A/tA is regular and t does not belong to any minimal

prime of A.
Proof: Apply propositions 4.1 and 3.1.

By proposition 4.1, we have that, if A is regular, and U
is generated by a subset of a regular system of parameters, then
A/§ 1is regular. We sharpen this result in the following

Proposition 4.2. ILet A be a noetherian regular local ring,

J an ideal of A. Then A/J 1is regular if, and only if, J is
generated by a subset of a regular system of parameters.

Proof: The "if" part has been proved in proposition 4.1.
Assume now that A/J is regular, and let n = dim(A), n- r =
dim(A/J ). Again we consider the exact sequence

0 = ((Z +3)/p2) > M/ 2 > My 2 50

where 4L is as in the proof of proposition 4.1. We know that
rank( 4y 2) = n, and ra,nk(ﬂ—/n2) =n- r. Hence

ra.nk(('m,2 +d )/m2) =r. ILet x,...,x, be elements of J
which are linearly independent mod ‘m,2 and whose equivalence
classes mod Mm> form a k-basis of ((1‘)1,2 +J )/mz). By

extending the set of such equivalence classes to a k-basis of
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m/mz, and using theorem 4.1 we see that {xl,...,xr} is
contained in a regular system of parameters. ILet

g' =% A+...+ x A Clearly J!' CJ . By proposition 4.1
$' is a prime ideal and dim(A/gJ') = n - r. But J 1is also a
prime ideal (since A/YJ 1s regular) and we have

dim(A/J ) = dim(A/J'). The exact sequence
0 - 5/3' A/ ' >A/J -0

shows that & = £J' (otherwise {J-A/J' is a non zero prime
ideal of A/ and dim(A/g') > dim(A/J)).

pa— S

We now wish to show that, in the classical case, the
notion of regularity we have given is equivalent to the classical
one given in terms of the rank of a certain Jacobian.

We let B = €[X;,...,Y ], 9t C B an ideal, M D2 a
maximal ideal, A = B/fgr. Then L is generated by n linear
polynomials of the form Xi - Oy, i=1,...,n. Iet @A be

generated by the polynomials

P.

\’ A= 1,.-.,t-

Let dim AWO(, =n-r. We assert:

Proposition 4.3. Am/ﬂl. is regular if, and only if, the

rank of the matrix (-g-}P{)\(al, ..e5a)) is r.
i

: =
Proof: We have AWOL Bm/aBm. By proposition 4.2

it follows that Am/u is regular, if, and only if, “Bm, is
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generated by r elements, which can be imbedded in a Bm:regular
system of paremeters (since Bm can be seen to be regular,

mBm being generated by {Xl = Qys.n "Xn - an}). Furthermore

we may assume that such r elements are actually in B, say
Qps~.5Q,. Since both sets {Q;,...,Q,} and {P,} A = 1,...,t gen

erate ouBm one easlily sees that the ranks of the two matrices
P.
((g%;(al,...,an))), ((%ig(al,...,an))) are equal.
Now, if D:Bm - B is any derivation, then clearly
D(1n,2) Cm. Hence if ¢ denotes the composition
Ban ]-; B = By /mB,, = ¢
we have cp(m2) = 0, and hence ¢ defines a C-linear form

5:‘"!-/",_2 ->C

If 95 = .a_i_ , Q(Xl,...,Xn) € M , then one immediately sees
J

that 9.(Q) = %9 (@)5++.52 ). Also it is clear that
J X . n

0 dJ
{aj} j=1,...,n is a set of n linearly independent forms over

'ﬂlr/m2. Since the equivalence classes of Ql”"’Q'r in m/me
are linearly independent, it follows that rank ((EJ.(Qi))) =r,

whence rank ((g§3‘(°‘l""’an))) = r.

Conversely, if rank ((gzk(al, «++50,))) = r, then r of the
X

J
P)\'s are linearly independent mod ‘m,2, and by theorem 4.1

(since Bm is regular of dimension n), they are a subset of a
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regular system of generators of #4.. Furthermore they generate
oL +m2/m2. Hence, by Nakayama's lemma, they generate QB”L
and we are done.

Classically, a point (al, .o .,an) € tl!n, belonging to the
algebraic set defined by the ideal #¢ is called simple if the

: oP
matrix ((-a—xg(czl, «++50,))) has rank equal to n- dim(Am/q’ ).

Thus we have that a point is simple if, and only if, its local

ring is regular.

We recall briefly the definition of a parametric
representation of a variety, again in the classical case.

Iet o C w[Xl,...,Xn] be an ideal, and let V be the subset
of ¢ consisting of the common zeros of 9¢. We say that V

admits the parametric representation by polynomials

X, = B (Tys005Ty)

X, = Py (TyseensTy)
™) 1: :

if the homomorphism qJ:C[Xl, cee ,Xn] - G[Tl, s ,Tm] defined by
o(X;) = Py(Ty5...,T ) has kernel @¢. Using the Hilbert
Nullstellensatz one easily sees that this means that exactly all
points of V are obtained by substituting some appropriate

values for Ty,...,T in (*). Let now M C C[Xl,...,Xn] be a
maximal ideal with Mt D¢, and let dim(A "/ ) = n - r, where
A= C[Xl,...,xn]/o; . Let (al, ...,an) be the point of V

A

>
A
ct

corresponding toML, and let €¢ be generated by {Q?\} 1
Let (t,...,t,) € € such that P,(ty,...,ty) = a;. If the

matrix ((Z—Pi(tl, .«+»t;))) has rank n - r, then the
T.
dJ
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homomorphism

e:caxl ®...0 ¢an-4 CdT1 ®...0 CdTm

(2 )= 3 ¢ 3L )
gilven by 6( £ c;, dX,) = = ¢ S L (tys..0t dT; has
=1 *+ 41 19Ty L LA

image of dimension n - r and kernel generated by

n
z 3, (25...5a,) dX,. Hence rank (ég% (@gs+eesa))) = r, and
i=1 aXi axi

{al,...,an} is a regular point of V. The example

n n
H 4

where n = 3, r = 2, easily show (take X=Y=2="T-= O) that
the converse of the above statement is false. (In fact here V
is the line X = Y = Z, and proposition 4.1 shows that the
origin is a simple point on such line, while rank ((0,0,0)) = 0).

Remark. The concept of regularity enables us to solve the
problem of distinguishing the local ring of the three examples
given in the introduction. In fact, while the third local ring
is regular, the first two are not (apply Proposition 4.3).

We introduce one last numerical notion to be attached to a

local ring.

Definition 4.4, 1Iet A be a ring, M an A-module. A

projective resolution of M of length n is an exact sequence

0—)Ln—>Ln_l—>...—>Ll—>L0-—>M—>O
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where Li is a projective A-module, i = 0,...,n.

Definition 4.5. Let M be an A-module. Then the projective

dimension of M, dim. proj. (M) is defined as the infimum of the
lengths of all projective resolutions of M. The cohomological
dimension of A, coh. dim(A), is defined as the supremum of the

projective dimensions of all A-modules.

We state, without proof, two of the fundamental theorems
concerning the notion of coh. dim(A). The proofs involve tools
whose introduction would take us far afield, and of which we

shall have no need in the remaining part of this work.

Theorem 4.2. (Hilbert-Serre) Iet A be a noetherian local
ring. Then one (and only one) of the following two alternatives
hold

1) coh. dim(A) = =
2) A is regular and coh. dim(A) = dim(A)

Corollary 4.3. If A is a noetherian regular local ring,
and p e Spec(A), then AP is regular.

Proof: The homomorphism A — AP shows that every AP -module
is an A-module. Now, for noetherian local rings the notions of
projective and flat modules are equivalent. Since A P is A-flat,
if L is AP—flat and

O->M->N

is an exact sequence of A-modules, we have

0->AP ®AM—>AP®AN is exact

and
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O-—)L®AP (AP ®AM)->L®AP (AP ® ,N) 1is exact
or

0-—>L®AM—>L®AN is exact,

and L is A-flat. Hence every projective resolution of an
AP -module M is a projective resolution of the A-module M, and we
obtain the following inequality

coh dim(AP ) < coh dim(A)

from which the corollary follows immediately via Theorem 4.2,

Theorem 4.3. (Auslander-Buchsbaum) Every noetherian
regular local ring is a unique factorization domain.

For the proofs of Theorems 4.2 and 4.3 we refer the reader
to A. Grothendieck's "Elements de Geometrie Algebrique",
Chapter Ory (The portion of Chapter O preceding Chapter IV),
section 17.3, and Chapter IV, section 21.11.

The problem of classifying all regular local rings is at
the moment unsolved, and probably unsolvable as stated. In
fact, if X, Y, are two irreducible schemes and ¢:X - Y a

morphism such that, for some x € X, Oxx':oq)(x) v and both are
2 2

regular, then, under certain appropriate finiteness conditions,
¢ is birational. Hence to classify regular local rings requires
first a classification of birationally equivalent schemes, a
very tall order at the moment.

We complete this section with some results concerning the
two notions of depth and regularity.

We call a noetherian ring A normal if A is the direct

sum of integrally closed integral domains, and reduced if its
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nilradical is O.
Definition 4.6. ILet A be a noetherian ring, k a non-

negative integer.

1) We say that A satisfies condition (s) if, for every
P e Spec(4)

P)]

2) We say that A satisfies condition (R;) if, for every

depth(AP ) & min[k, dim(A

p € Spec (A)

dim ArJ 2 k implies A? is regular.

Corollary %.4. a) S, always holds:
b) A satisfies (S,) if, and only if, for every ) Spec(A),

depth AP Z k and, if dim(AP) = k, then Ap 1s C-M.

Proof: a) 1is obvious. To prove b) we recall that
depth(Ap) < dim(AP). Therefore, if k < dim(AP),
depth(AP) £ k is equivalent to the requirement of (), and
if k dim(AP), then depth(AP) = dim(AP) (i.e. AP is C-M) is

again equivalent to the requirement of (Sk)'

Proposition 4.4. (Sk) is equivalent to the following

condition: For every t € A and every At-regula.r sequence
{xl, . ..,xr}, r < k, the A;-module At/xlAt +...+ x A, has no

immersed primes.

Proof: k = 1, whence r = 0. We will show that Sl is
equivalent to saying that A has no immersed primes. ILet P be a
prime of A which is not minimal. Then dim(AP) Z 1, whence by
(s,) depth(Ap) Z1,

Hence P & Ass(A) (if P is the annihilator of a € A,
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then I+ 0 in A p 2nd PAp is the annihilator of it).
Conversely, if A has no immersed primes, let P e Spec(A).
If P € Ass(A), then P is minimal, hence

min[l, dim Ap] = O and depth(Ap) 20. If p & Ass A, then P

is not minimal and min[l, dim AP]

1. If depth(Ap) = O, then
by theorem 3.1, p AP € Ass(A P) whence P € Ass(A), a contradic-
tion. Hence A satisfies (8,).

We proceed by induction on k. Iet k > 1.

Let A satisfy (S,), and let {x;,...,x.}, r < k be an A -
regular sequence. ILet B = At/xlAt‘ From proposition 3.1 and
theorem 3.1 we see that B satisfies (S, ;) (since, for every
P € Spec(A;) with x; e 73, x, 1s AP—regular) hence
B/x2 B+...+ x,B= At/xlAt +...+ x A, has no imbedded primes.
Conversely, assume that for t € A, the At—module At/xlAt+" .+xrAt
has no immersed primes, for every A ,-regular sequence {xl, . ..,xr}
with r < k.

By the induction assumption, A satisfies (S, ;). ILet
P € Spec(A). We proceed in steps.

Case 1. dim(AP) = r < k. Since A satisfies (Sk—l) we have

v

depth(AP) min(k-1, r) = r

whence depth(Ap) Z min(k, dim(Ap)).

Case 2. dim(Ap) =r 2 k. Again, since A satisfies (S, ;)
we have depth(AP) 2 min(k-1, r) = k - 1. Hence there exists a
sequence X,,...,X, 1 € PAP which is AP—regula.r, and we may
assume X; € p . Then KyseeosXy 4 is an At—regular sequence for

some t § P . Therefore, by assumption
Bt = At/xlAt tooot X 4 At has no immersed primes. Since
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dim(BPB) = dim(AP /xl AP oot X g AP) = dim(AP) - (k-1)21,
and B, has no immersed primes, it follows that P ¢ Ass(Bt).
Hence depth(BP) 2 1. We then obtain

18 depth(AP /%) Bp Heeot Xy AP) = depth(A},) - (k-1)

whence depth(AP) 2 k, and (S,) is proved.
We are now in the position of obtaining two criterions for

A to be normal, and reduced respectively.

Proposition 4.5. A is reduced if, and only if, A satisfies

both (8;) and (R;).

Proof: We observe that clearly (Ro) is equivalent to say-
ing that, for all minimal primes }9 of A, (whence dim(A},) = 0)
A 7) is a field.

Now assume that A is reduced. Then, if P is a minimal

prime of A, PAP = (0) (since 0 = (N *7/, and tyAP = 0 for
7Ca
7m1nimal

O/=|= P and minimal), whence A}, is a field and (R,) follows.

To prove that A satisifes (Sl) we proceed by contradiction. If

A does not satisfy (Sl) then, by proposition 4.4, there exists a

prime 4’7(—: Ass(A) which is not minimal. ILet P }92,..., Fk

_be the minimal primes of A. Thenﬁ/([ iL=Jl Pi’ (since —7 is not

minimal) whence there exists x € 4-7, x & ilzjl }71. Since

X € 0/ € Ass(A), x is a zero divisor in A. Iet X, be the image
9?1

of x under A —>' A'Pi i= 1,...,k. We have xt = O

for some non zero t. Then xicpi(t) = 0. Since
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x ¢ Pi» x; is a unit in APi, whence g, (t) = 0, i =1,...,k.

Then (by the definition of AP )t e py,1=1,...,k. Since A
i
k
is reduced, N P, = 0, whence t = O a contradiction.
=1 ' 1
Assume, conversely, that A satisfies both (S,) and (R)).

Let Pl’ cees Pk be again the minimal prime ideals of A. We

k
wish to show that A is reduced, i.e. that M Pi = 0. Assume
i=1

k
that there exists a non zero z € N Pi' By (Ro), A
i=1

is a
Pi

field, whence PiA Pi =0, 1=1,...,k, whence q)i(z) = 0,

i=1,...,k. Therefore, for every i, there exists S5 é pi
such that sj.z = 0, i.e. ann(z) € p,, 1 = 1,...,k, whence
ann(z) q 16-{)1 P:L' By (Sl), since A has no imbedded primes,

k
)
i=1

U P = the set of zero divisors of A. We have

pi ) p eAss(A)

that, for a z + 0, there exists a non zero divisor of A which

annihilates z, clearly a contradiction, Q.E.D.

Proposition 4.6. (Serre) Iet A be noetherian. Then A is

normal if, and only if, A satisfies both (S,) and (R,).
Proof: We remark first of all that A satisfies both (S,)
and (Rl) if, and only if, the following holds:
(*) Iet pe Spec(d). If dim(AP) = 1, then Ap 1is
regular. If dim AP 2 2, then depth(AP) 2 2.
We leave the verification of our remark to the reader.
Now, if A is normal, so is AP . Hence, if dim(AP) 21,

then Ap is elther a field (which is regular) or, by the
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discussion on page 38, a valuation ring, hence by proposition 9
in B.C.A., VI, §3, no. 6, A is a discrete valuation ring. Hence
1\P is regular, and (R;) is satisfied.

To prove that (SQ) is satisfied we have to prove, in

[}
\V]

addition to the above, that depth(Aiy) 2 2 when dim(A}D) =
This was proved during the proof of remark 3) after
definition 3.3.

Assume now that (*) above is satisfied. We remark first
of all that, trivially (Rk) implies (Rk—j)’ J=0,...,k, and
also that (Sk) implies (skrj)’ J=0,...,k. Hence, since (S,)
and (R;) hold, so do (Sl) and (Ro), and A is reduced by
proposition 4.5.

Let { P }; 1 be the minimal primes of A. Note that I is

finite and that, since A is reduced M f)i
iel

(0). ILet K be

the field of fractions of A/]Di, and let R ' l Ki' Then the

iel
canonical homomorphism A - R is an injection. Identifying A with
its image, we see that we have to prove that A is integrally
closed in R, ILet h € R be integral over A. Since R is the
total ring of fractions of A, h = f/g for some f, g € A, g is
not a zero divisor of A.

From an equation of integral dependence of h over A we get,
by multiplication by an appropriate power of g
(*) £+ 3 a, fd gd = o aj €A

dJ
Let 7.’) € Spec(A) be such that dim(AP) =1

By (Rl) Alg is regular, whence, by corollary 4.1, it is
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integrally closed. ILet fP B gP denote the images of f, g
under A —->AP . Note that gP is not a zero divisor in AP’
hence fP /gp belongs to the field of fractions of AP . From
(*) above, first localizing at P and then dividing by g; we
see that fy / is integral over A hence f € A d
P SP g p: P/gP Pan
f)o A‘P C gPAP » Whence (fA)P C (gA)P . Now, since g is not
a zero divisor of A, g is A-regular and, by proposition 4.4,
A/gA has no immersed primes containing gA. If 71, cees qr
denote the minimal primes of A/gA, by the Hauptidealsatz we

have dim AO/ = 1, and by the previous discussion

(fA)O/ C (g,A)7 Let py:A ~9qu be the canonical

homomorphisms. Iet gA =0 73 be a primary irredundant
J

decomposition of gA in A. Then {9':]} = Ass(A/q:j) and the (y,j
are minimal in Ass(A/gA), j = 1,...,r. Then, by proposition 5
of B.C.A., 4, §2, no. 3, we have ¢/} = u.‘l[(g_A)’]_, 1.e.

gA =(J] HJ-l[(gA)?j]. Clearly fAC? u [(fA)qJ]’ whence,

by (fA)qjC (gA)qj, fAC gA, i.e. h = f/g € A, Q.E.D.

< >

We end this section with a few examples from classical
Algebraic Geometry. Iet A = b[xl,...,xn]/o; be reduced
(whence (Rj) and (S;) hold). In this case the geometrical
interpretation of the fact that Rl holds for A is that the local
ring of the generic point of any irreducible subvariety of
codimension 1 of Spec(A) is regular, hence a valuation ring. If

R, does not hold, then there exists a prime p e Spec(A) such
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that dim(AP) = 1 and AP is not regular. In this case V(p)
consists entirely of singular points, i.e. points whose local
rings are not regular. To see this let o« V(p) and assume
Aq is regular. We have ¢ D p, whence AP = (Aq)PAV .
If Ao/ is regular, it follows from corollary 4.3 that AP is
regular, contrary to assumption. In particular, all closed
points M of'V(P) must be singular, and the problem of
determining whether A satisfies (Rl) or not is reduced, via
proposition 4.3, to the examination of the rank of the Jacobian

of a set of generators of v¢.

We illustrate the above by studying the following example:

Let
T, = x*
T, = XY
T, = X°Y?
T, = xy3
T, = v

be the parametric representation of a cone in five dimensional
affine space, i.e. we consider the inclusion

3 2,2

erx’, 3y, x&2, xv3, Y] - erx, ¥1.

Let V denote such a cane. The ideal of V is the kernel ot of
the homomacrphism q):d![To,Tl, .. "TH] - ¢[X, Y] given by
o(r;) = x 1yt

It is a rewarding exercise for the reader to check that o¢
is generated by (T, T, - T,%), (T, Ty - T,0), (T, Ty - T5°), and

that V is a two-dimensional cone. The discussion after



78

proposition 4.3 tells us that the origin is the only possible
singular point of V. whence (Rl) holds for

~

O[Ty Ty Tpo T5u Ty 1 /00 = elx’,x3y,x%v?,xv3,v4].

To see that (S,) also holds, we need only check that the
depth of the local ring of every closed point of V is 2. This
is clear for non singular points, since the local ring is then
regular, and it is also true at the origin, since Xu, Y4 €
elxt,x37,x%2,xv3,v%] 1s a elxt, 3v,x%v%,xv3,v*1,, - regular
sequence, where m denotes the maximal ideal generated by
x*,x3v,x%2,xv3, ¥

Consider now A = C[Xq,X3Y,XY3,YA] C ¢[X,Y]. Here Spec A
is a two dimensional cone in 4-dimensional space, and the
discussion after proposition 4.3 tells us that the origin is the
only possible singular point of Spec(A). Hence (R;) holds for
A.

Now (X2Y2)2 = x*v* shows that x%¥2 1s integral over A.
However one easily checks X2Y2 ¢ A, whence A is not integrally
closed, and (S,) does not hold for A. Note that this implies
depth(AmL) < 1, where m denotes the maximal ideal of the origin
in Spec(A).

Finally consider A = ¢[x',x3y,x3y,x¥3,v%,2] C €[X,Y,z].
Here Spec(A) is a three dimensional variety infive dimensional
space, and, again by the discussion after proposition 4.3, (Rl)
holds for A.

If p e Spec(A) and dim(Ap) = 2, then Spec(A/p ) + {m,}
where M, denotes the maximal ideal of the point (0, O, a).

Hence.Ap is regular and depth(AP ) = 2.
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If dim(AP) =3, and P # M, then AP is again regular
and depth(AP) = 3. At ma we have dim(A ma) = 3, and

depth(An) > 2, since clearly Yu, Z - a form an A -regular
a

T2 o,
sequence. Hence (S,) holds for A.

Actually depth(A = 2, which gives us an example of a
77:'.a

local integral domain which is not a C-M ring, whence A itself
is not a C-M ring.

That depth(!—\_ﬂZ ) = 2 is proved as follows. One can take
a

n=0. Iet A' = ¢[x*,x3v,xv3,Y"]. Then A/ZA = A'. Iet 7' be the
maximal ideal of A' corresponding to the origin of Spec(A'). We
know from above that depth(A'y,,) < 1, and depth(Amo) > 2.

Furthermore we have

Al /ZA

= A
m "t

and since Z is Amo—regular, 1> depth(A'Tn,) = depth(A,mb) -1,

whence depth(A, ) < 2. We are done.
my =

It is a rewarding exercise for the reader to check that the
kernel #¢of the homomorphism 9:€[T;,T,T5,T,] - e, X3y, xv3, v
- defined by o(T;) = xt, o(T,) = X%, o(T3) = X¥3, (1) = " is
generated by T,° Ty - T23, T, T,% - T33, T, Ty - T34, and that

no two of the above three polynomials generate 0Z.

§5. BEHAVIOR UNDER LOCAL HOMOMORPHISM
In this section we let A, B be local rings, unless other-

wise specified, with unique maximal ideals 72, 7?7 respectively.

We recall that a homomorphism ¢@:A — B is called local if



