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arbitrary closed subsets by the formula

where ^ is an arbitrary ideal of A.

If M is a finitely generated A-module we define

dim(M) = dim(Supp(M)) = dim(A/ann(M)) .

Here we use the fact, mentioned in the preliminaries, that

Supp(M) is the closure in Spec (A) of Ass(M), and Ass(M)

consists of the prime ideals associated to ann(M).

If N C M is another A-module we see trivially that

dim(N) = dim(M)

dim(M/N) = dim(M)

In fact ann(N) D ann(M), ann(M/N) D ann(M) .

A non- trivial statement, proved in Bourbaki's, chapter IV, §2,

is the following:

Theorem 1.2. dim(M) = 0 if, and only if, M has finite

length, in the composition series sense.

§2. HILBERT- SAMUEL POLYNOMIAL

Let H be a graded ring, i.e.

H = n f

where Hn are (additive) groups and hn'hm e
 H
n+m*

 for

nn e Hn* km e ^m* Clearly Hn is an HQ-module. We assume:

a) HQ is an artinian ring

b) H is generated (as an HQ- algebra) by finitely

many elements of H-j_.
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An H-module M is called graded if M = e Mn, where Mn are H -
n

modules and

If M is a finitely generated H-module, then Mn is a finitely

generated HQ-module and (since HQ is artinian) M has finite

length.

Definition 2.1. The Hilbert-Samuel Polynomial of M, x(M* n)

is given by

X(M, n) = length H M^ for large n.
o

Of course one needs to prove that x(M, n) is indeed a

polynomial. In fact

Theorem 2.1. (Hilbert) Let H, M be as stated above. Then

there exists a polynomial P(X) € Q[X], which achieves integer

values for integer values of X and such that, for all sufficient-

ly large n,

X(M, n) = P(n)

Proof ; Since H is finitely generated over H by IL, we

have a homogeneous epimorphism (of degree 0)

HQ̂ , ...,Xr] ̂ H -> 0

and M becomes a finitely generated ELfX.,, ...,X ]-module. Now

length H M is independent of whether we consider M as an H-
o

module or an Ĥ X-̂  . . ,,Xr]-module (since c is onto). Hence we

may assume H = H [X̂ , ...,X ].

We proceed by induction on r. When r = 0, H = H and, since
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M is finitely generated by, say, m.^ € Mn , we have Mn = 0 if

n = max {n.}. Hence x(M, n) = 0 for n sufficiently large.
i
Let q>r:M -» M be given by cpr(m) = Xr« m . Then <p is a

homogeneous morphism of degree 1 and we have

*r
0 -» N ->M ->M -> C -» 0

Since length H (•) is an additive function we have
o

X(M, n+1) - x(M, n) - x(C, n+1) - X(N, n)

For n e N, c e C we have Xr«n = 0, Xr« c =0, hence N and C are

Ho"-Xl' ' * •*xr-l-' modules' and^ bv induction, x(c^ n+l) - x(N, n)

is a rational polynomial in n, for sufficiently large n. A

standard argument now shows that x(M, n) is also a rational

polynomial, for n sufficiently large.

For the remainder of this section we assume that A is a

noetherian, semi- local ring.

Definition 2 -.2. Let ̂  be an ideal £f A. We say that <cp is

an ideal of definition of A, if the ring A/p is artinian.

We recall here that a ring A is called artinian if it

satisfies the descending chain condition or, equivalently, if

every prime ideal of A is maximal.

We assert:

Proposition 2.1. Let ̂  be an ideal of A. The following

three conditions are equivalent.

a) <& is an ideal of definition of A

b) A/y has finite length (in the composition series sense)
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c) ttf D y>Tkj where yf denotes the radical of A.

Proof ;

b) =^ a) is immediate, since A/^ satisfies both chain

conditions, a) =*=$> b) follows from the fact that an artinian

ring is also noetherian.

c) =?> a) follows from the following observation: if

x*k
V D W and a prime ideal p contains ^ , then p is one of the

maximal ideals of A. To see that a) ==> c) we observe first,

that since A/4/ is artinian, rad(A/W) = the set of nilpotents in

A/^ . Now, clearly, rad(A/y ) = cp(̂ T), where cp:A -> A/^ is the

canonical epimorphism.

If y is an ideal of definition of A and M is a finitely

generated A-module, M/# M is a finitely generated A/3" -module (in

fact M/^M - M ® A A/̂ ), hence M/^M has finite length.

Theorem 2.2. ( Hi Ibert- Samuel) Let A, W , M be as above.

Then

a) M/yn M has finite length

b) length A(M/*/
n M) = P. ,t (M, n) is a polynomial in n forA / y

n sufficiently large.

Proof ; We prove a) by induction on n. When n = 1 the

assertion is precisely the observation we made previous to the
i_ lc-l-1

statement of the theorem. Clearly, for all k, zy /^ is a

finitely generated A-module (A noetherian). Hence

(M/yM) <8) A ^
k/'£'k+1 is a finitely generated A-module. The

epimorphism

M) <8>X!/ k / k + 1 _> k M// k + 1 M

given by m <8> "q /v~>-~» qm (here m, "q denote the equivalence classes
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generated A-module. Finally the exact sequence

(* ) 0 -» ̂ n M/^n+1 M -» M/y n+1 M -» M/yn M -> 0

and the induction assumption prove a).

To prove b) we define

M, . gr(M) = ® ( M/^ M)
i = 0 / '

where M = A. Since H = A/& is artinian, H is generated over
P

HQ by finitely many elements of E^ = ^/^ (any A-basis of -^

will do) and M1 is a finitely generated H-module (any A-basis of

M will do)j we can apply Theorem 2.1 and get

length(^n M/^n+1 M) = a polynomial in n for n » 0.

(We write n » 0 for "...n sufficiently large".)

From the above exact sequence (*-) we get

length (M/̂ 11"4"1 M) - length (M/̂  n M) = length(^n M/Wn+1 M)

or

P^ (M, n + 1) - P 0 (M, n) = a polynomial in n for n » 0.

The theorem is proved.

Note ; The geometrical significance of the polynomial

P^ (M, n) was discovered by Serre, and it is the following.

Let H, Mf be as in the proof of the theorem. Let X = Proj(H),

Hj = the sheaf over Proj(H) associated to the graded module M ':

then for every n, P^ (MS n) = £ (-1)1 length Ĥ X,
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for n » 0 H^X, $(n)) = 0, which throws a better light on the

somewhat unsatisfactory statement of b), (for n » 0).

Let now A, -^ , M be as usual. A filtration

M = MQ D M-ĵ  3. . .D Mn D. . . is called a 4f - good filtration of

M if 4H MnC Mn+1, with equality holding for n = nQ.

We assert

Proposition 2 . 2 . Under the above hypotheses, for n » 0

length^ (M/Mn) = P((M ), n) = a polynomial in n of degree and

coefficient of the term of highest degree equaling those of

P^(M, n).

Proof ; As in the proof of theorem, we prove by induction

on n that M/M has finite length. In fact M/M, is an

module finitely generated, and

and tf (M /M _) = 0, whence M /M .. is an A/0 -module and has

finite length.

Consider now the module Mn . It is a finitely generated
o

A- module and Mn+n = -^nMn • Hence, by theorem 2.2
o ' o

length (Mn /Mn+n ) = a polynomial in n, for n » 0.
o o

The exact sequence

0 -> M

shows that length (M/M ) is a polynomial in n for n » 0. The
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inclusions

n+n

give exact sequences

0 "* Mn+n /^ ° M -» M / ^ o M -» M/M̂ n -> 0

0 -» V1 M/Mn+n -> M/Mn+n -> M/ ̂  n M -» 0
' o o '

0 -^ Mn/ ^
nM

whence

(M, n+n0) S P((Mn+n), n+nQ) S P (M, n) £ P((Mft)f n) ., 0 n+nQ, Q

Since P^y and P are polynomials, they must have the same degree

and the same highest degree coefficient, Q.E.D.

Proposition 2.3. Let <* , &* be ideals of definition of A,

M a finitely generated A-module. Then P^ , P^ , are polynomials

of the same degree.

Proof ; Since rad(*y!) = rad(̂ r ) = vf we have (A is

noetherian) ^ 3 &'^ and -^ f D ̂  m, for some m. Hence

0 -» A^' M/^ M

whence P^^M, n) = P (M, mn) and similarly
7 7

P (M, n) ^ P (M, pn)

and the proposition is proved.

Definition 2.3. Let A, M be given as above. Then deg P



(which, by the proposition above is independent of&) is

denoted by d(M).

Proposition 2.4. Let A be as usual, and let

0 -»M» -»M ->M" -> 0

be an exact sequence of finitely generated A-modules. Then, for

any ideal # of definition of A:

deg|J> (M) - P̂ (M') - P (M")] = d(M') - 1 = d(M) - 1

Proof; By the Artin-Rees lemma (B.C.A., Ill, 3, corollary

1) the submodules M1 -V1 MOM*of Mf form a ̂ - good filtration of

Mf. By proposition 2.2 we have (*) P (M1) and P(M«n) have

the same degree and the same highest degree coefficient.

The exact sequence

0 -» ̂  n M n M' -> ̂ n M -» #n M" -» 0

gives an exact sequence

. MI/ jkj M C*\ Mi s. M/ jit M & M*' / ^j iwr" ^ n—> ixi / <v jxi i i jyi —7 JKi/ car 1*1 "~* J.** / ^y ™* *~* v^

whence

P (M, n) - P (M", n) - P(M'n, n) - 0

or

Hence

and, by
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= P (M) - P (M!f) + a polyn. of degree

at most d(M!) - 1.

The first inequality is proved. The second follows immediately

from observing that 0 = P^ (Ml, n) = £ (M, n), for n » 0,

whence

deg P., (Ml) = deg P̂ (M).
7 7

Let M be a finitely generated A-module, and let

y-̂ , ...̂ ŷ  € iff be a set of generators of yf . Then

M/ŷ  M +...+ y^ M is an A/if -module and hence has finite length.

With this in mind we give the following:

Definition 2-.4. We denote by s(M) the smallest integer k

satisfying the following condition:

there exist k elements xv--«>xk *-n */" such that

M/x., M -*-...+ x, M has finite length

We are now in the position of proving the main result of

dimension theory, namely

Theorem 2.3. (Krull- Che valley- Samuel) Let A be a semi-

local noetherian ring, M a finitely generated A-module. Then

dim(M) = d(M) = s(M).

Proof; (Serre). We shall prove

1) dim(M) = d(M)

2) d(M) = s(M)

3) s(M) « dim(M).

We start with the following
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Lemma 2.1. Let x € W" , consider the exact sequence

0-»xM-»M^M-> M/xM -» 0

where cp(m) = xm. Then

i) s(M) = s(M/xM) + 1

ii) Let ( JO.̂  . . ., f>m) denote those points of Supp(M)

such that &±&(&/p±) = dim(M), i - 1, ...,m. If
m

x t U f>± then dim(M/xM) = dim(M) - 1

iii) deg[P^(xM) - P̂ (M/xM)] = d(M) - 1, where ^ is

any ideal of definition of A.

Proof ;

i) Let N = M/xM, and let y^...*?^ e vT such that

N/y-ĵ  N +...+ yk N has finite length and k = s(N).

The isomorphism

N/y-ĵ  N+. . ,+yfc N -» M/xM + y-ĵ  M+. . ,+yk M

proves i).

ii) We start with a word about the /̂ s. By definition

we have dim(M) = dim(A/ann(M)) . If p^ P2,...,pt,

t • m, denote the prime ideals associated to ann(M)

in A one easily sees that

dim(M) = max dim(A/p.).

Hence the prime ideals mentioned in the statement of ii)

are to be found among the points of Ass(M).
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We have to compare dim(A/ann(M/xM)) with dim(A/ann M)

Let $-*,...» 4f+ be those prime ideals in A associated to

ann(M/xM) and such that dim(M/xM) = dim(A/̂ .). Then, for

some i., 1 = i. = t, we have #. 3 JO. . Let
J J 'J ij

rn C "fl̂ T C ... C Vv be a chain of prime ideals of maximal\J f JL / Jx

length in A/ann(M/xM), i.e. k - dim(M/xM). The prime ideal

^Q corresponds to a prime ideal <y of A containing ann(M/xM)

and, from k = dim(M/xM) one sees that -^ = ^. for some j.

We proceed in steps.

Case 1. # . D Jt)4 , i. > m. Then

dim(M/xM) - dim A/̂ . - dim A/ p± < dim(M)
J

and ii) is proved in this case.

Case 2. <# . D ^ , i . « m. Then (since x €
u

#, D P, and the chain P, C #. C . . . shows that
1 J ̂  * J 1 J 4 /J ̂

dim(M) = k + 1 and ii) is proved in this case also.

iii). We have two exact sequences

0_» xM-»M->xM->0

0 -» xM -> M -* M/xM -^ 0

Now

(P̂ (M) - P^ (xM) - P

and, by proposition 2.2 the right hand side is the degree of the
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sum of two polynomials, one of degree = d( M) - 1 = d(M) - 1,x

the other of degree = d(xM) - 1 = d(M) - 1. The lemma is

proved. Now we return to the proof of the theorem.

1) dim(M) « d(M). We proceed by induction on d(M).

d(M) = 0. Then P^y (M) = constant, whence

length (M/Wn M) = length (M/̂ n+1 M) for n » 0.

The exact sequence

0 -» ̂ n M/<yn+1 M/ -^ M/^yn+1 M -» M/^n M -> 0

n+1shows length (# n M/̂ 114"1 M) = 0 whence ̂ n M = ̂ n+1 M. Now,

we take •# = vf , and then we have Q K/" n = (0), whence
' n = o

yfn M = 0 for n » 0. Hence M is an A/flfn-module, and since

A/yfn is artinian, its dimension is 0, whence dim(M) = 0.

Hence 1 holds when d(M) = 0.

Choose a prime p^ e Ass(M) such that dim(M) = dim(A/̂ Q).

Since /3Q is the annihilator of an element m e M, the submodule

N = Am C M is isomorphic to A//3Q. By proposition 2.4 we have

d(N) = d(M)

and

dim(N) = dim(M)

Hence it suffices to prove 1) for N. Let

j°0 C JP. C p 2 ... C pn be a chain of maximal length in A,

corresponding to a chain of maximal length in A/^OQ (note that

n = + oo is a priori possible). If ̂  H Hf C pQ, then JPQ D yf

whence is maximal (because A is semi-local), a contradiction.
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Choose x € t^n vf , x fc />0-

We have

N/xN - (A/xA) ® A N

and, from proposition 18 of B.C. A., II, §4 we get

Supp(N/xN) = Supp(N) nv(x).

Hence f)^, P2"*" Pn
 € Supp(N/xN), whence dim(N/xN) = n - 1

(in particular, if dim(N/xN) is finite, so is n). Now trivially

the hcmomorphism A/pQ -> A/ 50Q given by a" ~~v— » xa is inject Eve,

hence XN - 0. By lemma 2.1 we get d(N/xN) = d(N) - 1 = d(M) - 1,

and by induction dim(N/xN) - d(N/xN) (and we have proved that n

is finite). Now

dim(M) - n = dim(N/xN) + 1 = d(N/xN) + 1 = d(M)

and 1) is proved.

We observe here that we have actually shown dim(M) < + °°.

2) d(M) » s(M). Let (x^^i^n be elements of rT such

that, letting 41 = x-̂ ^ A +. . .+ xn A, we have length (M/-(XM)<-f- °°

and n = s(M). Let ̂ - tX + \f Cl ann(M). We have

arm(M/̂  M) J-tf£, hence the prime ideals in Ass(M/̂ M) are

maximal, and therefore 4f 3 kf for some k, i.e. 4fr is an ideal

of definition of A. Now clearly ^m M = -0£m M, whence

M - ^ M / " " M. Let z^ . . .,zp be a minimal set

of generators of M over A. Then the elements
v-, v

{x1 . . .xn v z±} 1 < i < r, v-j^ +...-»• vn = m are a set of

generators of *tm M/^tm+1 M over A/^ . Let length (A/-̂ ) =



33

a(a < + °° since A/tf is artinian). Now

length (^m M/^m+1 M) = length (^m M/^m+1 M)

/n+m-l\
a.r. ( I = a polyn. in m of degree n - 1.

V n-1 /

The exact sequence

0 -» » M / m + 1 M -* M/ X M -» M/m M -> 0

shows 2).

3) s(M) - dim(M). We proceed by induction on dim(M)

(which is finite by 1).

dim(M) = 0. Then length (M) < -t- °° (since A/ann M is artinian)

and no elements of vf are needed to have length (M/xJMH-. . ,+XjM)

< + °°. Hence s(M) = 0 and 3) holds. Let n = dim(M) = 1. Let

{ p^} -±< *<m be those elements of Ass(M) such that dim(M) =

dim(A/JD^). Since n « 1 the p. are not maximal. We assert:

W (t U p in fact, if yf C UP., then, by
T i=l 1 i=l 1

proposition 2 of B.C. A., II, §1, we have vf C fi* for some i, a

contradiction, since p. is not maximal. Hence we can choose

m
x € v f , x t U p4- By lemma 2 . 1 we have

1=1 ' 1

s(M) = s(M/xM) + 1

and dim(M/xM) = dim(M) - 1. Hence, by induction

s(M/xM) = dim(M/xM)

and finally

s(M) = s(M/xM) + 1 = dim(M/xM) -»• 1 = dim(M),
Q.E.D.
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We give a brief description of the geometrical meaning of

the three numbers dim(M), s(M), d(M).

We admit right off that d(M) is a far-reaching concept

leading in particular to certain results of intersection theory,

and we shall limit ourselves to a geometrical interpretation of

dim(M) and s(M).

dim(M) is the simplest of the two. It simply gives the

maximal length of irredundant descending chains of irreducible

subsets of Supp(M). (Such chains must necessarily terminate

with a closed point.)

s(M) has a somewhat more sophisticated interpretation.

Remembering that Supp(M/xM) = Supp(M) H V(x) and that

length (M) < -f- °° «=> dim(M) = 0 «=> dim(Supp(M)) = 0 <=>

(by above remark) < ! • •- > Supp(M) consists of a finite number of

closed points. We see that s(M) is the smallest number of

"hypersurfaces" (the V(x)'s) such that their intersection with

Supp(M) is zero dimensional.

There is a fourth integer that one should introduce in

this connection, but which is related to the previous three, in

general, by an inequality rather than equality.

Let A be a local ring, fft, its maximal ideal. The A-module

fft/*fl2 is (clearly!) annihilated by m, hence IH/^ 2 is an
"

module, i.e. a vector space over k = A/#k. dim, (^A 2) is the

fourth integer we wish to consider. We assert:

Proposition 2.5.

s(A)
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Proof ; Let x1, ...,xn be elements of 1tt, such that their
p

equivalence classes (mod 1tL ) form a basis of W/^ 2 over

We assert that x]_>--'*xn form a system of generators of H

Let

M = x., A © x2 A ©. . .© xn A

N ~WU

and let u:M -» N be defined by u(a-

Let 41 = ffc2 C rad(A) = tit. Now

N (8) A/^2 %

u (8) idA/ :M <8> A/ 2

is surjective, since we have the commutative diagram

n
M (8) A45 e k

f i=1 \*'/ X
M <8> A/m2 -* '>

u <8> idA / ^

and cp, ¥ are surjective. By Nakayamafs lemma we have that u is

surjective, which proves that x^, ...,xn form a system of

generators of tfl. Hence A/x-jA +...+ xnA = k and lengthA(k) <+ °°,

Hence s(A) = n = rankfc(W/ 2)^ Q.E.D.

We show with an example that s(A) < rank, (W/ 2) does happen.

We observe first of all that (trivially) any set of generators

of m, gives rise to a set of generators of 1H,/ o over k. Hence
#t

dim, (W'/ 2) = smallest number of generators of /Wt . Let now
til,



36

R - <C[X, Y]/2 _ 3 = <B[x, y]

p - xR + yR

A - Rp

n = PAp .

We make (without proof) the following assertions: (b), c)

have easy proofs)

a) dim R = 1

"b) R is an integral domain

c) p is prime

Hence it follows that *p is maximal and that s(A) =

dim(A) = 1. But Ht is not principal, in fact dimA / C^/

2. To see this, consider the diagram

We see that dlm.A (tw'/1|L2) = smallest no. of generators of

flx * 2 (x, y generate fit.). However, were -wtprincipal, so

would p be. Now were it so, the inverse image of p under

C[X, Y] -> R would be principal mod(Y2 - X3), which is easily

seen to be impossible. Hence dim«(ltt/ŵ 2) = 2. (Note that

A/m, = (C). Prom dim R = 1 one obtains dim(A) = 1, whence

s(A) - 1< dim̂ lft/̂ ).

When the local ring A is such that s(A) = dim./

we say that A is a regular local ring.
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The geometrical interpretation of the number

dimA/ C
111/̂ 2) is tne following: it is the number of linearly

independent linear forms (modulo forms of higher degree). This

corresponds to the classical concept of the dimension of the

tangent space.

If A is not a local ring, one can still talk about dim(A),

and one trivially gets the formula

dim(A)

where nt, ranges over the maximal ideals of A.

We give a brief description of the situation when

dim(A) = 0, 1.

dim(A) = 0. Then A is artinian, hence semi-local. Let

yf = nil radical(A). We get A/vf ? © A/fft,±, i.e. A/vf is a

direct sum of fields. Spec(A) consists of a finite number of

closed points, and the local rings are primary rings (i.e. some

power of the maximal ideal is 0). In fact, since A is artinian,

so is A^ , whence ( ̂  A^)11 = («i± A' )
n+1, n » 0, and

O (fft. A^ )n = (0). Furthermore we have
n 1 *V

A = T(Spec A, A) = e AHJ-L

which is easily seen from the fact that Spec (A) consists of a

finite number of closed points.

dim(A) = 1. In this case the prime ideals of A are

either minimal or maximal, and there are only finitely many

minimal primes, with at least one, say p , such that

dim (A/jo ) = 1. If A is local, all minimal primes have this
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property. There are infinitely many maximal primes, if A is

not semi-local.

A typical example of this case are the Dedekind rings, i.e.

noetherian, integrally closed domains A such that every prime

ideal p C A, p £ (0) is maximal. It follows that all local

rings Ap are valuation rings.

We note however that, while in the case A = <C[X] all local

rings A%j are isomorphic, when A = Z we obtain distinct local

rings, for distinct p .

One can get more one-dimensional examples in the following

way: Let A be a Dedekind ring, K its field of quotients, L a

finite extension of K. Then any ring B, with A C B C L, is

one dimensional (and need not be Dedekind). (Krull-Akizuki

theorem, B.C.A., VII, §2.) Other examples are the orders of A in

L, i.e. rings contained in A, with field of quotients L (hence

not integrally closed when they are different from A).

If A is one dimensional local ring which is a Dedekind domain

(i.e. integrally closed), then A is a valuation ring (See Lang,

"Introduction to Algebraic Geometry", theorem 1, p. 151, or

B.C.A., VI).

The geometrical interpretation of the notion of Dedekind

rings is seen by observing that, if A is a Dedekind domain, Spec(A)

consists of one minimal prime and maximal primes whose local rings

are integrally closed whence regular. Classically this

corresponds to the notion of an irreducible, non-singular curve.

Let A = <C[X, Y], and let f(X, Y) e <C[X, Y]. Then a

classical statement in Algebraic Geometry is that the irreduc-
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ible components (in the Zariski topology) of the variety of

zeros of f(X, Y) have codimension = IL We generalize the above

situation with the following:

Theorem 2.4. Let A be a noetherian ring, x^ ...,xn e A,

Uk = x-^ A +...+ xn A. Let p be a minimal prime in Ass(A/flt ).

Then codim(V(p)) = dimtAp ) = n

(When n = 1 this is the well-known "Hauptidealsatz") .

Proof. We have the inclusions A 3 A

Since p is minimal in Ass(A/0£), there are no primes of A

properly included between p and ft. , hence Ap/dKAp has a

unique prime ideal (namely p (Â  /tffcA^ ),), and is therefore

Artinian, whence of finite length. Now A

+...+ n Aw , whence codim(V(p)) = dim

s(Ap ) = n, Q.E.D.

Theorem 2.4 is an example of how we can apply our local

dimension theory to a global situation.

Some final results concerning the notion of dimension:

Theorem 2.5. (Artin-Tate) . Let A be a noetherian integral

domain. Then the following conditions are equivalent:

a) A is semi- local of dimension = 1

b) (0) is an isolated point in Spec (A)

c) there exists an f e A such that Af is a field.

Proof ; We give a cyclic proof.

a) ==> b). Since, A is integral, (0) € Spec(A). Since A

is semi- local, there are a finite number of closed points,

{titj},...̂ *̂ } in Spec(A). Since dim(A) = 1, Spec(A) consists

precisely of {(0)}, {ttt̂ , . . .,{Wn> and b) follows.



t>) ==> c) Since (0) is isolated in Spec (A), and the open

subsets {D(f )}.P€A form a basis for the Zariski topology of

Spee(A), there exists f € A such that D(f) = (0). But

D(f) = Spec Af, whence Af has only one prime ideal, namely (0),

and c) follows.

c) => a) Let JO + (0) be any point of Spec(A). The

injection A -» Af shows, since Af is a field, that 1 e p Af.

Hence f e b . We assert:

(*) every minimal prime ideal of A/fA is maximal.

In fact, since A/fA is noetherian, let f)<^9...9 A^ be the

minimal prime ideals of A/fA. Assume that one of them, say

p -^ is not maximal. Let fll "D p^ be maximal. Since )p . is

k
minimal, we have 4H + *p ., j = 2, ...,k. If 1tt C U &., then

j=l
4tt = p. for some j, which we have just shown not to be the

k

case. So tit C U ]D . i.e. there exists g1 e Ift such that

g1 k- p 4> J = lj...*k. 3̂ et g e A such that g1 = g + fA. Let

iV be a minimal ideal of Ass(A/gA). By theorem 2.4

Codim(V(̂ )) » 1, and clearly Codim(V(-ep )) = 1, since y + (0)

and A is an integral domain. Therefore ^ is a minimal prime

of A, hence f e & and ̂ -A/fA is a minimal prime of A/fA, i.e.

M'A/fA = to., for some j. Clearly g e-^ , hence gf e yb ., is

a contradiction. Therefore assertion (*) above is proved, and

every non zero prime ideal of A is hence maximal. Furthermore

the only prime ideals of A are (0) and the inverse images of

IP !*•••' Pfe' Hence A is semi- local and dim(A) = 1.



Proposition 2.6. Let A be a noetherian semi-local ring,

M a finitely generated A-module, x e vf = rad(A). Then

dim(M/xM) = dim(M) - 1

and equality holds if, and only if, x belongs to none of those

minimal primes p e Ass(M) such that dim(M) = dim(A/p ).

Proof; By theorem 2.3 and lemma 2.1 we have

dim(M/xM) = s(M/xM) = s(M) - 1 = dim(M) - 1.

Now assume that x belongs to none of those minimal primes

p e Ass(M) such that dim(M) « dim(A/p ). Again by theorem 2.4

and lemma 2.1 we have

dim(M/xM) - dim(M) - 1

whence equality holds. Conversely, assume that equality holds.

Let P!*---* /\ € Ass(M) such that dim(M) = dim(A/to.),

j = 1,...,k. Then clearly p. k Supp(M/xM) (since, for any M,

dim(M) = dim(Supp(M)) = Sup (dim A/p ) = Sup (dim

peSupp(M) peAss(M)

More quickly, since p. e Supp(M) and Supp(M/xM) =

Supp(M) HV(x), x I pj. Q.E.D.

We define a notion extensively used in Algebraic Geometry.

Definition 2.5. Let A be a noetherian semi—local ring.

A set of elements x.,, ...,x € yf is called a system of

parameters of the finitely generated A-module M if n = dim(M)



and M/x-ĵ  M +...+ xn M has finite length.

Note that, by the remark preceding definition 2.5 and

theorem 2.4 every A-module admits a system of parameters.

We prove

Proposition 2.7. Let A, M be as in the above definition.

Let x^ . . . ,xk € vf . Then

dimCM/x^ M -K ..+ xk M) = n - k

and equality holds if, and only if, the system x-̂ , ...,x, can be

imbedded in a system of parameters of M.

Proof ; We proceed by induction on k.

When k = 1 the inequality holds by Proposition 2.6.

Furthermore equality holds if and only if x belongs to none of

the primes p in Ass(M) with dim(M) = dim(A/p). Let

xl'""xn-l €vf such that s(M/xM) = n - 1, (M/xM)/x1(M/xM) +...+

xn-1(M/xM) has finite length. (See definition 2.5) Then

x, X.,, ...,x , is a system of parameters of M. Conversely, if

x can be imbedded in a system of parameters, say x, x]/-"*xn_i

then s(M/xM) = n - 1 and, by Proposition 2.6, dim(M/xM) = n - 1.

Q.E.D.

The equality

M+. . .+xfe M « (M/x-ĵ  M-K . •+xk__1 M)/xk(M/x]L M+. . •+xk__1 M)

shows, by the induction assumption, the desired inequality.

Assume now dim(M/x̂  M -K . .+ xk M) = n - k. Then, letting

N = M/x- M

dim(N/x2 N +...+ xfc N) = (n - 1) - (k - 1)

and



(n-l)- (k-1) = dim(N) - (k-1) = dim(M) - 1 - (k-1) = n-k

whence dim(N) - k + l = n - k o r dim(N) = n - 1. By the

induction assumption, txp,...,x,} can be imbedded in a system

of parameters of N, say {x2, ...,x,,
 xk+l'*""x ^ (here we must

use dim(N) = n - 1). Then clearly {x̂ , Xp,...,x } is a system

of parameters of M.

Conversely, if {x-L, xg, ...,xk,
 xk+l*'"'xn^ is a s^s^em

of parameters of M, let N = M/XI M. Then N/x2 N +...+X W has

finite length, whence s(N) = n - 1. By Proposition 2.6 we

have

n - 1 = dim(M) - 1 = dim(N) = s(N) = n - 1

whence dim(N) = n - 1. Hence {x2, .. ,,x, , ... ,x } is a system of

parameters of N, and, by the induction assumption

dim(N/x2 N +...+ xfc N) = (n - 1) - (k - 1) = n - k

The proposition is proved.

We finish this section with a few remarks about the nature

of the function ¥:Spec(A) -» N given by

where A is any noetherian ring. It is obviously not

continuous, otherwise it would have to be constant when Spec(A)

is connected (e.g. when A is an integral domain), and trivial

examples show this is not the case (say A = k[X, Y]).

We do nevertheless have some information, namely, by

proposition 1.1,

) = dim(A)



and

dim(A/p ) = dim(A).

The latter is geometrically interpreted as follows: If x e y,

then dim(V(Jx)) = dim(V(jy)).

Dimension is a very coarse invariant, i.e. were we to

consider the equivalence classes of affine varieties of a given

dimension* we would obtain huge classes of highly non isomorphic

varieties.

§3. DEPTH

The next numerical invariant we shall study in the notion

of depth. ¥e assume throughout this section that A is a

noetherian local ring with maximal ideal fft,, and that M is a

finitely generated A-module.

Definition 3.1. a) an element x e A is called M-regular

if the homomorphism <p:M -> M given by cp(m) = xm is injective.

b) a sequence {x-̂  ...,xn} of elements of A is called M-

regular if x^^ is M/x-ĵ  M +...+ ^_^ M regular, 1 = i = n.

Remark. Clearly every x £ m> being invertible is M-regular

for every module M. Hence we shall confine our attention to

those M-regular elements which belong to ffl,. With regard to b)

we state, without proof, the fact that the sequence {x̂ ,...,x }

is M-regular if, and only if all sequences "fx /^\, ... ,xo./x}

a e Sn are M-regular, where Sn denotes the group of permutations

on n symbols. (Grothendieck, E.G.A., Ch. 0, §15-1, I.H.E.S.

no 20) The above statement is false if A is not noetherian.


