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the unique maximal ideal of A, Spec (A) - -trt is a scheme, but

not affine (that it is a prescheme is seen by Spec (A) - fft =

tetrt
We shall hence study the inner properties of local rings A.

More specifically, we shall study:

•0 DkP-ension theory . (Dimension, Depth, Regularity)

^) Behavior under local morphisms (Flatness, Ascent, and

Descent)

3) Operations on a, local ring (Completion, Normalization,

Henselization)

)̂ Stability under the operations in 3,. (Excellent rings)

Most of the topics covered will be found, under different

treatments, in M. Nagatafs book "Local Rings", or J.P. Serrefs

Alge'bre locale, Mult Ip licit es, Springer-Verlag, 1965, or E.G. A., IV.

We again remind the reader that we shall limit ourselves

to noetherian rings.

§1. DIMENSION THEORY - GENERAL NOTIONS

Let A be a ring. The prime ideals ( pQ, jp-̂  ..., p ) of A

are said to form a chain of length n if J°0 C /^i C ... C p .

t + *

Definition 1.1. (Krull) The dimension of A, dim(A) is

equal to the l.u.b. of the lengths of the chains of prime ideals

in A.

Clearly dim(A) need not be finite. For example, if
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A = kfX-^ X2,..,,Xn...] there are clearly chains of arbitrary

length.

In fact, even when A is noetherian, an example of Nagata

shows that dim(A) need not be finite. It is^ however, if A is a

local ring. (See theorem 2.3 ahead)

Definition 1.2. Let f> e Spec(A). Then we define

dim V(p ) = dim(A/p )

Codim V(p ) = dim(Ap )

Proposition 1.1. a) dim V(p ) = dim(A); b) Codim V(p) =

dim(A); c) dim V( p ) + Codim V( p ) = dim(A).

Proof; We have two canonical morphisms

A —» A/p ; A -» Ap

and we immediately get a) from the first, b) from the second.

Note that a) and b) hold also when the left-hand sides are °°.

Hence c) holds if either of the summands on the left is °°.

Now, any chain in A/p gives rise to a chain of equal length in

A* of Prime ideals containing p , and any chain in A^ gives

rise to a chain of equal length in A, of prime ideals contained

in p .

Furthermore, we may assume that the chain in A/p of

length dim(A/jo ) start with (0), and the ones in A^ of length

dim(Ap ) ends with pA^ . Hence the corresponding combined

chain in A consists of (dim V(p ) + Codim V(p ) + 1) distinct

prime ideals, which proves c).

Equally simple is the proof of the following two state-

ments, proof which we leave to the reader.
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1) If 4L is any ideal of A, dim(A/€£) = dim(A).

2) If -^ is not contained in any minimal prime ideal of

A, then dim(A/flt) < dim(A).

Let jo,̂  € Spec(A), f> C ̂  . A chain JP C f> x C ... C ^

is called a saturated chain connecting p and ̂  if its length

cannot be increased by insertion of some prime ideals.

Definition 1.3. If. for all pairs f> , y £ Spec(A), all

saturated chains connecting lo and «r have the same length, A

is said to be a catenary ring.

An example of Nagata shows that noetherian local rings

need not be catenary.

Proposition 1.2. Let A be an integral local ring.

Then

i) If A is catenary for all to € Spec (A),

dim(A) = dim(Av, ) + dim(A/p ).

ii) A is catenary if, and only If, for all p , ̂ e Spec(A)

with IP C *l , dim A^ = dim Ato + dim(A^ /toA^ ).\ I 7 f ^ <j r y '

Proof. i) Since A is an integral local ring, the follow-

ing statements hold:

a) A/jp , A£ are integral local rings, hence all

dimensions involved are finite.

b) Any chain in A of length equal to dim(A) is a saturated

chain connecting (o) and 1ft. (*#.£ denotes the unique

maximal ideal of A).

c) Statement b) above holds for A^ and A/to . Note that
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*V - PAp and

Statement i) now follows immediately from a), b), c)

above .

ii) We begin by observing that, if A is an arbitrary

catenary ring, and jp e Spec (A), then Au, and A/p are catenary.

This is easily seen from the 1-1 onto correspondences that

exist between the prime ideals of Ap and A/p respectively,

and the appropriate prime ideals of A.

Let now p , "Of e Spec (A), J9 C^ and A an integral, local,

catenary ring. Then A<y is a local, integral catenary ring,

and we may apply i) to the ideal pA . So

The morphism cp^A^ ) A -» Ab given by cp( (a/s)/(b/t)) =
7 pRy r

at/bs, a e A, s,t ?& , b £ jp is well defined (bs i p ) and

easily seen to be an isomorphism. One part of ii) is proved.

To prove the converse, we observe first that any

saturated chain, in A, connecting b and y gives rise to a

saturated chain of equal length in Ay/jpAy connecting (0)

and <H A* /pA^ . Hence the length s of any saturated chain in

A connecting p and ^ is at most r = dim(A^ / toA^ ). We assert

s = r. When r = 0, 1 the assertion is trivially true, and we

proceed by induction on r. Let

p c j^c ....c
¥ + +

be a saturated chain of length s in A connecting p and -Of
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We have dim(A^ / pQ_± Ay ) = 1. Now

dim(A £ / P A t o ) = dim(A to ) - dim(A to ) =
rs-1 ' Ps-1 J s _ i r

dim^ ) - dim(A^/ p^ A ) - dim(Ap ) =

dim(A~ /pA ) - 1 = r - 1.

By induction s - 1 = r - 1 and we are done.

If cp:A -» B is a homomorphism, B can be considered as an

A-algebra by a-b = cp(a)-b. We say that B JLs_ integral over A

if every b e B satisfies an equation of integral dependence

over A, i.e. bn + a , bn +...+ aQ = 0, a. e A, n > 0.

Theorem 1.1. (Going-up theorem). Let cp:A -> B be a ho-

momorphism, B integral over A. Then

i) dim(B) = dim(A) (lame going-up theorem) .

ii) If cp is mono, dim(A) «= dim(B).

Proof ; i) Let & be a proper prime ideal of B. We assert:

a) 9""1(ty ) 4= A

^) f~1(^r) t ker(cp) if <y k (0),

and B is an integral domain, a) is trivial, since cp(l) = 1 and

{y is proper.

To prove b) assume cp" (4f) = ker cp. Then Im A d iy = (o).

Let b e <jr , b k 0. Let

be an equation of integral dependence of minimal degree. Now

C0 e Im(A) and clearly CQ e Of . Hence CQ = 0, and
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this is a contradiction, since B is an integral domain.

To prove i) from a) and b), let to C *V be prime ideals of

t
B. From A -» B -» B/p we see that B/to is an integral domain,

cp c r

integral over A, and that

qj" ( jp ) = ker(c o cp)

(cocp)'1 (ty-B/p) and 7 B/p ± (0).

Hence, from b) above cp" (tV)Ccp~ (P)> and i) follows.

' ±
Note ; i) holds under the weaker assumption that B is

algebraic over A.

ii) Let p C ty be prime ideals of A. By theorem 1

of Chapter V, 2 of B.C. A., there exists a prime ideal fa1 in

B such that cp" •( p1) = b - Then cp(jp ) C p f * the morphism

cp':A/p -»B/J3'

is mono, and B/p' is integral over A/p . Now ty(A/i? ) =|= (0)

is a prime ideal of A/*P , and hence there exists a prime ideal

*y " of B/b • such that cpI~1(<y!I) = ^ (A/̂ 3 ). We have

<H " = -oj f • B/p ', where tyf is a prime ideal of B, and clearly

cp~ ( <w f ) = <M . Since <y (A/ jo ) =1= (0) and cp1 is mono, we have

<y " + (0), whence <y ' D b f . This implies

dim (A) = dim(B) whence ii) follows.

Definition 1.2. gives the notion of dimension for an

irreducible closed subset of Spec (A). We extend this notion to
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arbitrary closed subsets by the formula

where ^ is an arbitrary ideal of A.

If M is a finitely generated A-module we define

dim(M) = dim(Supp(M)) = dim(A/ann(M)) .

Here we use the fact, mentioned in the preliminaries, that

Supp(M) is the closure in Spec (A) of Ass(M), and Ass(M)

consists of the prime ideals associated to ann(M).

If N C M is another A-module we see trivially that

dim(N) = dim(M)

dim(M/N) = dim(M)

In fact ann(N) D ann(M), ann(M/N) D ann(M) .

A non- trivial statement, proved in Bourbaki's, chapter IV, §2,

is the following:

Theorem 1.2. dim(M) = 0 if, and only if, M has finite

length, in the composition series sense.

§2. HILBERT- SAMUEL POLYNOMIAL

Let H be a graded ring, i.e.

H = n f

where Hn are (additive) groups and hn'hm e
 H
n+m*

 for

nn e Hn* km e ^m* Clearly Hn is an HQ-module. We assume:

a) HQ is an artinian ring

b) H is generated (as an HQ- algebra) by finitely

many elements of H-j_.


