
DIOPHANTINE APPROXIMATION
AND THE THEORY OF HOLOMORPHIC CURVES

Pit-Mann Wong

In the last few years, due to the works of Osgood [Ol,2], Lang
[Ll,2,3], Vojta [Vl,2,3,4] and others, there appear to be evidences
that the Theory of Diophantine Approximation and The Theory of
Holomorphic curves (Nevanlinna Theory) may be somehow related.
Currently, the relationship between the two theories is still on a for-
mal level even though the resemblance of many of the corresponding
results is quite striking. Vojta has come up with a dictionary for trans-
lating results from one theory into the other. Again the dictionary
is essentially formal in nature and seems somewhat artificial at this
point, it is perhaps worthwhile to begin a systematic investigation. Re-
cently, I began to study the Theory of Diophantine Approximations,
with the motivation of formulating the theory so that it parallels the
theory of curves. These notes is a (very) partial survey of some of the
results in diophantine approximations and the corresponding results in
Nevanlinna Theory.

(I) Diophantine Approximation

The theory of diophantine equations is the study of solutions of
polynomials over number fields. Typically, results in diophantine equa-
tions come in the form of certain finiteness statements; for instance
statements asserting that certain equations have only a finite number
of rational or integral solutions. We begin with a simple example.

Example 1 Consider the algebraic variety X2 + Y2 = 3Z2 in P2, we
claim that there is no rational (integral) points (points with rational
(integral) coordinates; on projective spaces a rational point is also an
integral point) on this variety. To see this, suppose P = [x, y, z] be
a rational point on the variety with #, y, z E Z and gcd(x, y,z) = 1.
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116 Diophantine Approximation

Then z2 + y2 = 0 (mod 3) so that x = y = 0 (mod 3). Thus x2 and y2

are divisible by 9 and it follows that z is divisible by 3, contradicting
the assumption that gcd(x, y, z) = 1. This example illustrates one of
the fundamental tools in diophantine equation:

"To show that a variety has no rational point, it is sufficient to show
that the homogenous defining equation has no non-zero solutions mod
pfor one prime p"

The converse to this statement, the so called "Hasse Principle " is not
valid in general. The following example, due to Selmer:

has no rational points and yet for any prime p, the corresponding
equation mod p admits non-trivial solutions.

Example 2 The algebraic set y2 = x3 + 17 in A2 has many rational
points, for example (-2, 3), (-1, 4), (2, 5), (4, 9), (8, 23), (43, 282),
(52, 375), (5234, 378661) are integral points; (-8/9, 109/27); (137/64,
2651/512) are rational points (unlike the projective varieties, a rational
point on an affine variety may not be integral). In fact V(Q) is infi-
nite. If we homogenize the equation (replace x by X/Z, y by Y/Z),
we get

Y2Z = X* + 17Z3

this defines a variety in P2. It has one point at infinity: [0, 1,0]. The
rational points are given by {(x, y) G A2(Q)\y2 = x3+17}U{[0, 1, 0]}.
It can be shown that the line connecting any two g-rational points
intersects the variety again in a (^-rational point. In this way one can
show that there are infinitely many Q-rational points. The variety is
an example of an elliptic curve. There are two fundamental theorems
concerning elliptic curves: The Mordell-Weil theorem asserts that the
set of rational points on an elliptic curve is finitely generated. The
Siegel theorem asserts that the set of integral points on an elliptic curve
is finite. In this example there are exactly 16 integral points, consisting
of the eight points listed above and their negative (negative in the
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sense of the group law of an elliptic curve). For further discussions
concerning elliptic curves we refer the readers to [Sil].

Example 3 Consider the equation

x3 -2y3 = n

where n is any fixed integer. We claim that such an equation has only
a finite number of integral solutions. First we reduce the problem to
an estimate.

The left hand side of the equation can be factorized as

(x - V2y)(x - 9^2y)(x - 92^2y)

where 0 is the primitive cube root of unity. Dividing the equation by
2/3 we get

y J \y
Since 0 is non-real, the absolute value of the second and third terms on
the left above are clearly bounded away from zero and we can choose
the lower bound to be independent of x and y (take the smaller of the
distances to the real axis from 0^2 and 0*^2 for instance), so that

(1) - -^<^ j3y Iz/r
for some constant C independent of x and y. The problem is reduced
to the problem of approximating irrational numbers by rationals. We
shall see shortly that the inequality above can have only finitely many
rational solutions.

First we recall a classical result of Liouville (cf. [Schm 2]).

Theorem 1 (Liouville 1851) Let a be an algebraic number of degree
d>2 over Q; i.e., [Q(a) : Q] = d. Then there is a constant C > 0
(depending on a) so that for any rational number p/q (p,q integers
and q > OJ,

(2)
p--aq
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Proof. Let f ( X ) G Z[X] be the minimal polynomial (of degree d) of
a. For any rational number p/q, clearly qdf(p/q) is a non-zero integer
(non-zero because / has no rational roots). Thus we get a lower bound
for |/(p/«)|:

(3) |/(p/g)| > l/qd

On the other hand, if \p/q — a\ < 1 then we can estimate \f(p/q)\
from above:

/(«)! = l/'(c)| IP/? - «| < tflp/9 - a|

where C" = sup|a;_Q!|<1 |/'(x)|. Combining with (3) we get

\p/q-Gt\>C/qd

where C = 1/C", as claimed. If p/q — a\ > 1 then the theorem is
trivially verified by taking c = 1 for instance. QED

Remark 1 The assumption that a be algebraic is crucial. In fact, this
theorem is used by Liouville to construct transcendental numbers. For
example, let

then

2~n! < 2q^k~l < cqld

*k *k

for any given c and d, for all k sufficiently large. Thus a cannot
be algebraic by the theorem. For more details concerning Liouville
numbers and criterion of transcendence see Mahler [Ma] and Gelfond
[Ge].

Remark 2 Liouville's theorem implies the following statement. Let a
be an algebraic number of degree d > 2, then for any e > 0 there are
at most finitely many rational numbers p/q (p, q integers and q > 0)
such that
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(4)

Suppose otherwise, then there are rational numbers p/q with arbi-
trary large q satisfying (4). Such rational numbers clearly violates (2)
because for any c > 0, g~(d+e) < cq~d for q sufficiently large.

Returning to the example, the number a = v/3 is algebraic of
degree d = 3. Comparing inequality (1) with (2) we see that Liou-
ville's theorem is almost but not quite strong enough to guarantee the
finiteness of integral solutions of the equation in example 3. Before
we recount the history of the improvements of Liouville's theorem,
we should mention that for algebraic numbers of degree d = 2, Liou-
ville's estimate is essentially sharp. This is a consequence of a very
well-known result of Dirichlet ([Schm2]):

Theorem 2 (Dirichlet 1842) For any irrational number a there exists
infinitely many rational numbers p/q (p, q integers and q > 0) such
that

*P- — a
q

Remark 3 It follows that there are infinitely many rationals p/q with
p and q relatively prime and satisfy the estimate above.

Remark 4 Dirichlet's theorem holds for any irrational number, alge-
braic or transcendental.

Thus for algebraic number a. of degree 2, the exponent in (4)
cannot be improved to 2. For algebraic numbers of higher degree the
exponent d + e was improved to

1 + ]-d (Thue, 1901)

(Siegel, 1921)

V2d + e (Dyson, also Gelfond, 1947)

and finally to 2 + e by Roth (1955). Roth was awarded the Fields
medal for this achievement.
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Theorem 3 (Roth 1955) Let a be an algebraic number of degree
d > 2. Then for any e > 0 the inequality

Pa. > '
holds with the exception of finitely many rationals p/q where p, q are
integers and q > 0.

Remark 5 In the case where the degree of a is 2, Liouville's theorem
is stronger than Roth's theorem.

Lang (LI]) conjectured that perhaps the estimate in Theorem 3
can be improved to

>
q2 Iog1+e q

The conjecture is still open at this time (the corresponding statement
of this conjecture in Nevanlinna Theory is due to Wong [2], see also
[S-W]). However, this estimate had been verified for some special
numbers. There is also the theorem of Khinchin that this estimate
holds for all but a set of numbers of zero Lebesgue measure (cf.
Khinchin [Kh]). More precisely:

Theorem 4 (Khinchin) Let (pbea positive continuous function on the
positive real line such that x(p(x) is non-increasing. Then for almost
all (Le., except on a set of zero Lebesgue measure) irrational number
a, the inequality

'P_
Q

holds for all but a finite number of solutions in integers p, q (q > 0) if
and only if the integral

oo

/<(p(x)dx

converges for some positive constant c.
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Using his improvement of Thue's theorem, Siegel proved the
following finiteness theorem:

Theorem 5 (Siegel) On an affine curve (over any number field) of
positive genus there can only be a finite number of integral points.

In the projective case, Mordell proved that

Theorem 6 (Mordell) The set of rational points on an elliptic curve
(i.e., a curve of genus one) is a finitely generated abelian group.

Mordell also made the famous conjecture (solved by Falting
in the affirmative, cf. Endlichkeitssdtze fur abelsche Varietdten uber
Zahlkorpern, Invent. Math. 73, 183):

MordelPs Conjecture There are only finitely many rational points on
a curve of genus > 1.

Remark 5 Unlike the affine case, there is no distinction between
integral and rational points on a complete curve.

Fairing's original proof of the Mordell's conjecture is geometric
and did not use the theorem of Thue-Siegel-Roth. Vojta (1988) proved
the Mordell conjecture over function fields and, more recently Falting
gave a proof of the general case of the Mordel conjecture, using the
Thue-Siegel-Roth's theorem. So far (essentially) all the known results
in diophantine equations are consequences of the Thue-Siegel-Roth's
theorem,

The extension of Roth's theorem to approximation of p-adic
numbers by algebraic numbers, handling several valuations at the same
time, is due to Ridout ([Ri]) and Mahler ([Ma]). First we recall the
product formula of Artin-Whaples. Let k be a number field and v a
valuation on k. Denote by kv the completion of k with respect to v
and by nv = [kv : Qv] the local degree. Define an absolute value
associated to an archimedean valuation v by

||x||t, = |x| ifKv=R

\\x\\v = \x\ ifKv = C

If v is non-archimedean then v is an extension of p-adic valuation on
Q for some prime p, the absolute value is defined so that
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r —^v —

if x G Q — {0}. With these conventions, there exists a complete set
Mk of inequivalent valuations on k such that the product formula is
satisfied with multiplicity one; i.e.,

(Artin-Whaples) \\x\\v = I

for all x G k — {0}. Extend || ]!„ to the algebraic closure kv of kv.
Let k be a field of characteristic zero, denote by k[X] and k(X)

the polynomial ring and the rational function field over k respectively.
Fix an irreducible polynomial p(X) in k(X ), define the order at p of
a rational function r(X) in k(X) to be a if r = pas/t where s and t
are polynomials relatively prime to p. A p-adic valuation on k(X) is
defined by

| — p-(ordr)(degp)
IP ~~ c

For r(X] in £(J£), there exists polynomials / and g in k[X]9 where
3 is not the zero element, such that r = f / g . Define a valuation on
k(X] by

Moo = \f/g\oo = e**f-**°.

Denote by fc(-X")oo the completion of k(X) with respect to the valuation
| |oo and k(X)p the completion of k(X) with respect to | |p. The
Artin-Whaple Product Formula is satisfied for k(X) (and also its finite
algebraic extension).

We now give an analytic interpretation of the product formula.
Consider the special case of k = C, the complex number field, there
is also the field 3ft of meromorphic functions defined on' a domain G
in the Riemann sphere CP1. If G = CP1 then 2ft = C(X] = the field
of rational functions in one variable. Fix a point ZQ ̂  oo in G and for
a function / G Sft, we may write
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where g is meromorphic with g(zo) ^ 0 or oo. For a positive constant
c, a valuation is defined by

Thus ord^0 / > 0 if ZQ is a zero of / and ord^ / < 0 if ZQ is a pole.
If ZQ = oo, we may write

where g is meromorphic with g(zu) ^ 0 or oo. A valuation is defined
by setting

I/loo = C°rd°°'.

In the case of G — CP1, the valuation \f\ZQ coincides with \f\p where
p(z) = z — ZQ is an irreducible polynomial and |/|oo = |/Lo- In this
case it is clear that

n _ Jt of zeros - # of poles
-

and the Product Formula for C(X ) is equivalent to the following well-
known theorem in complex analysis:

"For a rational Junction on CP the number of zeros and the number
of poles are equal"

It is understood that the numbers of zeros and poles are counted
with multiplicities.

The generalization of the above statement to meromorphic func-
tions is the Argument Principle:

Argument Principle Let f be a junction meromorphic on a domain
G containing the closed diskAr or radius r. Assume that there are no
zeros nor poles on the boundary dAr of the disk, then

1 r f
n(0, r) - n(oo, r) = — / — dz

dAr
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where n(0, r) and n(oo,r) are respectively the number of zeros and
poles of f inside Ar.

If / is a rational function then there are only finitely many zeros
and poles of /. We may choose sufficiently large r so that all zeros
and poles of /, with the exception of the point at infinity, are inside
the open disk Ar. Then

dAT

and

e/(/) = I/U.

With this interpretation, it is clear that we recover the Product Formula.
Another way of relating zeros and poles of meromorphic functions is
through Jensen's Formula which will be discussed in the next section.

Roth's Theorem can be restated as follows:

Theorem 7 Let k be a number field (a finite algebraic extension of
Q), and {av G Q \ v G S} where Q is the algebraic closure of Q
and S is a finite set of valuations on k containing all the archimedean
valuations. Then for any positive real numbers c and e, the inequality

^\x-av\\v}>cH(xY(M*

holds for all but finitely many x in k. Here H is the (multiplicative)
height.

The analogue in function fields of Liouville's theorem is due to
Mahler ([Mai]). He also showed that Liouville's theorem cannot be
improved if the characteristic of the field of constant k is positive.

Theorem 8 (Mahler) Let a = a(X) be an element ofk(X)oo alge-
braic, of degree d>2, overk(X). Then there exists a constant C such
that

pa --
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for any polynomials p and q (q not the zero element) G k[X]. If the
characteristic ofk is positive, the exponent d cannot be improved.

The p-adic case is due to Uchiyama ([U]):

Theorem 9 (Uchiyama) Let a = Oi(X) be an element ofk(X}p al-
gebraic, of degree d > 2, over k(X). Then there exists a constant C
such that

a
s

>
; \s\p})d

for any polynomials r and s (q not the zero element) G k[X], If the
characteristic ofk is positive, the exponent d cannot be improved.

However, if the characteristic of k is zero, the function field
analogue of Roth's theorem is valid.

Theorem 10 (Uchiyama) Assume that char k — 0. Then

(i)Let a. = a(X] be an element ofk(X)uQ algebraic, of degree
d>2, over k(X). Then for any e > 0, there exists a constant C such
that

>^S-
for all but a finite number of pairs of polynomials p and q (q not the
zero element) G k[X],

(ii)Let a = a(X] be an element ofk(X}p algebraic, of degree
d > 2, over k(X). Then for any e > 0, there exists a constant C such
that

Cr
a

s

for all but a finite number of pairs of polynomials r and s (q not the
zero element) G k(X).

In the positive characteristic case, Armitage ([Ar]) found a con-
dition for which Roth's theorem holds.
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Theorem 11 (Armitage) Assume that char k > 0. Then the conclu-
sions of Uchiyama's theorem hold for those algebraic a which does
not lie in a cyclic extension ofk(X).

Remark Armitage actually proved the theorem for fields more general
than function fields. But the conditions on these fields are somewhat
technical to state at this point. One of these conditions is that the
Artin-Whaples product formula holds. In the language of Nevanlinna
theory, this means that the First Main Theorem holds).

Roth's theorem is extended to simultaneous approximations by
W. M. Schmidt ([Schml,2]) and later by Schlickewei ([Schl]) to the
non-archimedean case. Fkst we recall some terminologies. For a lin-
ear form L of (n + l)-variables with algebraic coefficients, (we shall
also identified L with a hyperplane of jP71), the Weil function XV-L is
defined by

where for a linear form L(x) = Y^Q<j<n
a3x^\\^\\v — maxo<i<n

{lloiHt,}. Hence \VjL(x) > 0.
Given a hyperplane L of F71 and a point x E JP^fc) but x £ L,

the proximity and counting functions are defined by

m(x, L) - J A^(z); N(x, L) = J Xv,L(x).

Note that both the proximity and the counting functions are > 0.
By the definition of height we have the analogue of the Fkst

Main Theorem in Nevanlinna Theory ([VI], [R-W]:

Theorem 12 (Fkst Main Theorem) If L is a linear form and L(x) ^
0, then

where h(x) is the logarithmic (additive) height.
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The Theorem below (cf. Schmidt [Schml] Theorem 2) is an ana-
logue of the Second Main Theorem of Nevanlinna Theory for holo-
morphic curves. We shall use the same notation for a linear form
and the hyperplane it defines. The following version of the subspace
theorem is due to Schlickelwei [Schl] (see also Schmidt [Schml],
Theorem 3) and [Schm2]). The formulation below is due to Vojta
([Vol] Theorem 2.2.4).

Theorem 13 (Subspace Theorem) Let {LVj \v£S,l<i<n + l}
be linear forms in n-variables with algebraic coefficients. Assume that
for each fixed v £ S ( a finite set of valuations on k containing all
archimedean valuations) the n + 1 linear forms !/„,!, • • • > A;,n+i ore
linearly independent. Then for any e > 0 there exists a finite set J of
hyperplanes ofk71^1 such that the inequality

< ssize fx\\y
- V ;/n

«eflf \\Lv,i(x)\\v

holds for all S -integral points x = (SCQ, . . . , xn) E Ogn+i —
Here

size (x) = maxuG$maxo^<n{||&j||w.}.

It is more convenient to formulate the Subspace Theorem pro-
jectively and express the estimate in terms of height rather than size.

Theorem 14 Let {LVti \ v E 5, 1 < i < q} be linear forms of
(n + ^-variables (or hyperplanes in F™) with algebraic coefficients.
Assume that for each fixed v E S, the hyperplanes L^i, . . . , LVjQ are
in general position. Then for any e > 0 there exists a finite set J of
hyperplanes ofPn(k] such that the inequality

holds for all points x G Pn(k] — \JLejL.

The Subspace Theorem of Schmidt can be extended to the case
of hyperplanes in sub-general position by using the Nochka weight
(cf. [No]). This extension is due to Ru and Wong [R-W]. First we
recall the definition of sub-general position due to Chen (cf. [Ch]).
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Definition Let V be a vector space over F (a field of characteristic
0) of dimension (over F) k + 1. Denote by V* the dual of V. For
1 < k < n < q, a collection of non-zero vectors A = {vi, . . . , vq}
in V* is said to be in n-subgeneral position iff the linear span of any
(distinct) n + 1 elements of A is V*. If n = k the concept coincides
with the usual concept of general position.

Remarks (i) It is clear that {i?i,. . .,vq} is in n-subgeneral posi-
tion iff {ai^i, . . . , aqvq} is in n-subgeneral position where each QJ
is a unit of F (i.e., ay G F - {o}). Denote by P(F*) the projec-
tive space of V*. Then the elements of P(V*) are identified as hy-
perplanes of the projective space P(V). A collection of hyperplanes
{ttj G P(V*) | 1 < j < q} is said to be in n-subgeneral position
iff {vij . . . , Vg} is in n-subgeneral position where Vj G V* satisfies
P(VJ) = dj. For n = fc this concept agrees with the usual concept of
hyperplanes in general position.

(i"0 If A = {vi, . . . , vg} is in n-subgeneral position then it is also in
m-subgeneral position for all m > n provided that m < q.

(Hi) Let (bj G P(W*) \ 1 < j < q} be hyperplanes in general
position, where W is a vector space over F of dimension n + 1.
Let V be a vector subspace of W of dimension fc + 1; then A =
{a,j = bj fl P(V) \ 1 < j < q} is a set of hyperplanes in P(V], not
necessarily in general position but is in n-subgeneral position.

Lemma (Nochka-Chen) Let A = {^i, . . . , vq} be a set of vectors in
V* in n-subgeneral position. Then there exists a function, called the
Nochka weight associated to A, w : A — > R and a constant 0 with the
following properties:

(0 fc + 1 <g<*±l.W 2n-fc + l~ ~ n + l
(ii) 0 < u(a) <0fora£A,

0") Ea£A w(o) = k + 1 + 0(#A - 2n + k + 1),

(iv) /or any swfosef B o/A wM # B < ra + 1, Ea£j4
u;(a) ^

= dimension of the linear space spanned by elements ofB.
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The generalization of The Subspace Theorem to the case of hy-
perplanes in sub-general position takes the following form (cf. [R-W]):

Theorem 15 Let {LVii \ v E S, 1 < i < q} be linear forms of
(k + l)-variables (or hyperplanes in I*) with algebraic coefficients.
Assume that for each fixed v £ S, the linear forms A;,i? • • • 5 LVjq <*re

in n-subgeneral position (1 < k < n < q) with associated Nochka
weights IL^I, . . . , u>v,q- Then for any E > 0 there exists a finite set J of
hyperplanes ofPk(k] such that the inequality

holds for all points x E Pk(k) -

In terms of the proximity function, Theorem 15 takes the fol-
lowing forms:

Corollary Let {Li, . . . , Lq} be linear forms in (k + 1) -variables with
algebraic coefficients, in n-subgeneral position ( 1 < k < n and q >
2n— k+ 1). Then for any e > 0 there exists a finite set J of hyperplanes
ofPk(k] such that

i<m(x> A) < (A + 1+ e) h(x)

holds for all points x E Pk(k) — U^jL and where u)i are the Nochka
weights.

Corollary Let {Li, . . . , Lq} be linear forms in (k + l)-variables with
algebraic coefficients, in n-subgeneral position (1 < k < n). Given
any e > 0, there exists a finite set J of hyperplanes ofPk(k] such that

. m(x,Li) < (In- fc + l+e) h(x)

holds for all points x G Pk(k) — Uj^^jL.

Corollary Let {Li,...,I/g} be hyperplanes of P"(k), in general
position. Then for any e > 0 and 1 < k < n, the set of points of

such that

E m(a?, LA > (2n - k + 1 + e) h(x)l<i<
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is contained a finite union of linear subspaces, U^jL, of dimension
k — 1. In particular, the set of points ofPn(k) — Ui<i<qLi such that

is a finite set of points.

For a finite subset S of M# of valuations containing the set SQQ of
all archimedean valuations of k. Denote by Os the ring of S-integers
of k, i.e., the set of x G k such that

for all v £ S. A point x = (xi, . . . , o^) G fcn is said to be a S -integral
point if #i G Os for all 1 < i < n. Let D be a very ample effective
divisor on a projective variety V and let 1 = ZQ, EI, . . . , XN be a basis
of the vector space:

I(D) = {/ | / is a rational function on the variety V
such that f = 0 or (/) + D > 0}.

Then P -> (zi(P), . . . , xN(P}} defines an embedding of V(k) - D
into the affine space kN. A point P of V(k) — D is said to be a
D -integral point if x»(P) G 05 for all 1 < i < N.

The following theorem of Ru-Wong extends the classical theorem
of Thue-Siegel that P1 - {3 distinct points} has finitely many integral
points:

Theorem 16 Let k be a number field and HI, . . . , Hq be a finite
set of hyperplanes ofPn(k)f assumed to be in general position. Let
D = J2i<j<q Hi> then for any integer 1 < k < n, the set ofD-integral
points ofPn(k) — D is contained in a finite union of linear subspaces of
^(k) of dimension k — l provided that q > 2n — k + 1. In particular,
the set of D -integral points ofP" (k) — {2n + 1 hyperplanes in general
position} is finite.

More generally, let V be a projective variety, D a very ample
divisor on V and let {<po, • • - , VN} be a basis of l(D\ such that
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is an embedding of V into PN with V — D embedded in kN. We
identify V with its image $(V). As an immediate consequence of the
main theorem we also have:

Corollary Let V be a projective variety, D a very ample divisor on
V. Let D\,..., Dq be divisors in the linear system \D\ such that E =
DI + ... + Dq has, at worst, simple normal crossing singularities. If
q > 2N - k + 1 where N = diml(D) - 1 and 1 < k < n, then the
set of E-integral points ofV — E is contained in the intersection of a
finite number of linear subspaces, of dimension k — l, ofPN with V. In
particular, the set of E-integral points ofV — E is finite ifq > 2N+1.

(II) Theory of Holomorphic Curves

The Theory of holomorphic curves is the study of holomorphic
maps from the complex plane into complex manifolds. More gener-
ally, one studies holomorphic maps between complex manifolds with
the case of curves being the most difficult. This is due to the fact
that the image of a holomorphic curve is usually of high codimension.
Typically results in the theory of maps assert that, under appropriate
conditions, every holomorphic map in a complex manifold M degen-
erates. The types of degeneracy range from the weakest form: "the
image does not contain an open set" to the strongest form: "the image
consists of one point". In between we have degeneration at a certain
dimension. Namely, the image is contained in a complex subvariety
of dimension p with 0 < p < n = dime M.

Manifolds with the property that every holomorphic curve / :
C —> M is constant is said to be Brody-hyperbolic [B]. If M is compact,
then the concept of Brody-hyperbolic is equivalent to the concept of
Kobayashi-hyperbolic [Kl]. The following differential geometric de-
scription of Kobayashi-hyperbolicity is due to Royden [Roy]. Given a
non-zero tangent vector £ E TXM9 the infinitesimal Kobayashi-Royden
(pseudo) metric is defined by

0 < MO = mf
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where the inf is taken over all positive real numbers r such that there
exists a holomorphic map / : Ar —> M such that f(0) = x and
/'(O) = £. Here Ar is the disk of radius r in C. Alternatively,

MO = sup |t| > 0

where the sup is taken over all t G C* such that there exists a holo-
morphic map / : A —> Af with /(O) and /'(0) = t£. A complex
manifold M is said to be hyperbolic at a point x if there exists an
open neighborhood U of x and a hermitian metric dsu2 on TC7 such
that kM > dsu on TU. A complex manifold M is said to be hyper-
bolic if it is hyperbolic at every point. The Kobayashi pseudo-distance
associate to kM is defined by

where the inf is taken over all piecewise smooth curves joining x
and y. The condition that M is Kobayashi-hyperbolic is equivalent
to the condition that the Kobayashi pseudo-distance is a distance;
i.e., d(x, y) > 0 if x ^ y. With this distance function M is a met-
ric space and M is said to be complete if M is a complete metric
space.

The infinitesimal Kobayashi metric satisfies kM(t£) = \t\kM(£),
hence it is a Finsler metric. It has the nice property that every holomor-
phic map is metric decreasing. Namely, if / : M —> N is holomorphic
then £#(/*£) < #M(£)- ^ particular, every biholomorphic self map of
M is an isometry of the Kobayashi metric.

The infinitesimal Kobayashi metric does not have very good reg-
ularity in general. In this direction we have the fundamental result of
Royden [Rl] that the infinitesimal Kobayashi metric is always upper
semi-continuous. If it is complete hyperbolic then the metric is con-
tinuous. It is well-known that the poly-discs are complete-hyperbolic
but the infinitesimal Kobayashi metric is not differentiable.

As mentioned above, for compact manifolds Kobayashi-hyper-
bolic is equivalent to Brody-hyperbolic. In general, Kobayashi-hyper-
bolic implies Brody-hyperbolic but the converse may not be true if M
is non-compact. The example below is very well-known.
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Example (Eisenman and Taylor) Let M be the domain in C2 given by

M= {(z,w) E C2 | \z\ < I9\zw\ < 1 and \w\ < 1 if z = 0}

Then M contains no complex lines; for if / : C —* M is holomorphic
then TTi o / is bounded (where TTI is the projection onto the first coor-
dinate), hence constant; now if TTI o / is constant then KZ o / (where m
is the projection onto the second coordinate) is bounded and so must
be constant as well. However M is not Kobayashi-hyperbolic, because
the Kobayashi distance of any point of the form (0, w] from the ori-
gin is zero. This is evident by considering the connecting paths: for
any positive integer n, let /;-jn : A —> M, j = 0,1,2, be holomorphic
maps defined by f^(z) = (z,Q),fitn(z) = (l/ra,nz) and /2,n(*) =
(l/n + z/29w). Then /0,n(0) = (0,0) =po,/o In(lAO = (l/n,0) =
Pl,/l,n(0) = (l/n,0) = Pl,fltn(w/ri) = (l/n,«j) = P2,/2,*(0) -

(l/n,w) = p25/2,n(—2/n) = (0, it;). The Kobayashi distances be-
tween the points 0,1/n and -2/n on the unit disc approaches zero as
n approaches oo.

Intuitively speaking, for non-compact manifolds, the points at
"infinity" plays a very important role. In fact Green [Gn4] showed
that

Theorem 17 (Green) Let D be a union of (possibly singular) hyper-
surfaces DI , . . . , Dm hypersurfaces in a complex manifold M. Then
M — D is Kobayashi-hyperbolic if

(0 There is no non-constant holomorphic curve f : C —> M - D;
(ii) There is no non-constant holomorphic curve

f : C -> A! H ... H Dik - (Dh U ... U Dh)

for all possible choices of distinct indices so that {ii,.. .,*fc}U
{j'll"-!Jl} = { l , » - 1 ™ } -

An important special case of this is the theorem:

Corollary (Green) The complement of q hyperplanes in general
position in CPn is Kobayashi-hyperbolic for q > In + 1. The num-
ber 2n + l is sharp.
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Let {PJ(ZQ, . . . ,2n) | 1 < j < k} be a set of homogeneous
polynomials with coefficients in an algebraic number field k. Let V
be the common zeros of Pj (i < j < fc) in CPn. We assume that V
is irreducible and smooth. Lang conjectured that if V is hyperbolic
then for any finite extension K of the field k, the set of rational points
V(K] in V over K (i.e., V(K] = {(ZQ, . . . , zn) \ if there exists i so that
Zi ^ 0 and ^/^ G 1£ for all j} is finite. If V is a hyperbolic affine
algebraic manifold in kN defined by polynomials {Qj(zi, . . . , ZN) =
0, 1 < j < k} then the set of integral points of V over K is finite. This
conjecture is verified for the case of curves of genus g > 2 (Falting);
for V = Pn — {2n + 1 hyperplanes in general position} (Ru-Wong)
and for V = complement of an ample divisor of an abelian variety
(Fairings).

Green ([Gn3]) also proved that if the hyperplanes are distinct but
not in general position, one can still conclude that the complement is
Erody -hyperbolic, namely it contains no non-trivial holomorphic curve
from C. The corresponding statement in number theory:

"Pn(k) — {2n + 1 distinct hyperplanes} contains only finitely many
integral points "

is still open. The proof of Ru-Wong for the case of hyperplanes in
general position involves an extension of the Siegel-Roth-Schmidt type
estimate for which the general position assumption is necessary.

Returning to the discussion of hyperbolic manifolds, the follow-
ing Theorem of Brody ([B]) is very important in constructing exam-
ples.

Theorem 18 (Brody) Small smooth deformations of a compact hy-
perbolic manifold are hyperbolic.

Thus the set of compact hyperbolic manifolds is open. The fol-
lowing example of Brody and Green shows that it is not a closed set
in general.

Example (Brody-Green) The hypersurface in CP3 defined by

V£ = z$ + (ezoZl)
d/2 + (ezQz2)

d/2 = OJ
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is hyperbolic for any e ^ 0 and where d > 50 is an even integer. For
e = 0, Vb is a Fermat variety which is clearly not hyperbolic. Note
that by the Lefschetz theorem, V£ is simply connected. Since VQ is
non-singular (it is the Fermat surface of degree d) it follows that Ve

is non-singular for small e. A Fermat surface of any degree admits
complex lines, for instance take \i, and 77 be any d-th roots of —1, then
ZQ = fjiZi and 22 = r)Z3 is a complex line in the Fermat surface of
degree d.

For the non-compact case, the problem of deformation of hy-
perbolic manifolds is much more complicated, additional assumptions
are needed. The concept of "hyperbolic embeddedness" is needed, we
shall not get into this here. The readers are encouraged to look into
the very interesting paper of Zaidenberg [Z].

Classically, hyperbolicity is studied via the behavior of curvature.
The most well-known Theorem is the Schwarz-Pick-Ahlfors lemma:

Theorem 19 Let M be a complex hermitian manifold with holomor-
phic sectional curvature bounded above by a (strictly) negative con-
stant. Then M is Kobayashi-hyperbolic.

For a Riemann surface, Milnor [Mi] (see also Yang [Ya]) ob-
served that the classical condition on the holomorphic curvature can
be relaxed to the condition that the curvature satisfies K(r) < —
(1 + e)/(r2logr) asymptotically where r is the geodesic distance
from a point. The following higher dimensional analogue of Milnor's
result is due to Greene and Wu ([G-W] p. 113 Theorem G'). A point
O of a Kahler manifold M is called a pole if the exponential map at
O is a diffeomorphism of the tangent space at O onto M. Let r be the
geodesic distance from O. Let Sr be the geodesic sphere and X be
the outward normal. Then Z = X — \/^lJX is called the (complex)
radial direction. The radial curvature is defined to be the sectional
curvature of the plane determined by the radial direction. With these
terminologies we can now state the Theorem of Greene and Wu:

Theorem 20 Let M be a complex Kahler manifold with a pole
such that (i)the radial curvature is everywhere non-positive and
< — l/(r2logr) asymptotically, (ii)the holomorphic sectional curva-
ture < -1/r2 asymptotically. Then M is Kobayashi-hyperbolic.
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The next Theorem ([K-W]) gives a criterion of hyperbolicity
without requiring information on the precise rate of decay of the cur-
vature. A complex manifold M of complex dimension n is said to
be strongly q-concave if there exists a continuous function <p on M
such that (z)for all real numbers c the set {z e M | <p(z) < c} is
compact, (iz)the Levi form idd(p is semi-negative and has at least
n — q negative eigenvalues (in the sense of distributions) everywhere
outside a compact set. Alternatively, M is strongly ^-concave if there
exists a continuous function (p on M such that (z')for all real numbers
c the set {z G M \ (p(z) > c} is compact, (ii)fhe Levi form idd(p is
semi-positive and has at least n — q positive eigenvalues (in the sense
of distributions) everywhere outside a compact set.

Theorem 21 (Kreuzman-Wong) Let M be a complete Kdhler mani-
fold of complex dimension m such that both the holomorphic sectional
curvature and the Ricci curvature are (strictly) negative. Assume that
M is strongly 0-concave and that the universal cover is Stein then M
is Kobayashi hyperbolic.

A complete simply connected Riemannian manifold M of non-
positive Riemannian sectional curvature is said to be a visibility man-
ifold if any two points at infinity (denoted M(oo)) can be joined
by a unique geodesic in M. A complete simply-connected Rieman-
nian manifold with sectional curvature bounded above by a negative
number (i.e., K < —62) is a visibility manifold. More generally a
complete simply-connected Riemannian manifold with strictly nega-
tive sectional curvature (i.e., K < 0) and radial curvature — K(r), from
some fixed point, satisfying the condition

oo/ rK(r) dr = oo

is a visibility manifold.

Corollary (Kreuzman-Wong) Let M be a complete Kdhler manifold
such that its universal cover satisfies the visibility axioms and that the
Riemannian sectional curvature satisfies -a2 < K < 0. Assume that
M admits a finite volume quotient. Then M is Kobayashi hyperbolic.
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The proof of Theorem 21 (and the corollary) relies on the corn-
pacification theorem (again, we see that the "infinity" plays a crucial
role) of Nadel and Tsuji [N-T] extending the result of Siu and Yau
[S-T] on compacification of Kahler manifolds of finite volume and
negative pinching (both above and below) of the Riemannian sectional
curvature. The theorem of Siu and Yau gives more precise informa-
tion on the compactification, in the case of Kahler manifolds, of the
corresponding theorem of Gromov ([B-G-S]) in the Riemannian case.
Both the theorem of Nadel-Tsuji and that of Siu- Yau have the origin
in the work of Andreotti-Tomassini [A-T] on pseudoconcave mani-
folds. These theorems are natural generalization of the well-known
compacification theorem for finite volume quotients of bounded sym-
metric domains.

Let D be an irreducible algebraic curve in CP2. At a point p
in D let A\, . . . , A& be local irreducible components of D containing
p. Let L be a projective line through p and denote by rrij = min^
{intersection multiplicity of L n Aj}. Then (mi — 1, . . . , m^ — 1) are
the orders of irreducible singularities at p. Let

b = V (m, - 1)
^ 3 '

be the total order of singularities of D. Denote by D* the dual curve
of D. The curve D is birationally equivalent to its dual .D*. The nor-
malization of D and D* are isomorphic. Denote by 6* the total order
of singularities of D*.

Theorem 22 (Grauert-Peternell [G-P]) Let D be an irreducible
algebraic curve in CP2 of genus g > 2. Assume that b* + x(D] < 0
(where b* is the total order of irreduible singularities of D) and that
every tangent ofD* intersects D* in at least two points. Then CP2 — D
is hyperbolic.

At present one of the major open problems in the theory of
hyperbolic manifolds is the following conjecture.

Conjecture : For a generic algebraic curve D of degree d > 5 in
CP2, the complement CP2 — D is Kobayashi-hyperbolic.
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The space of algebraic curves of degree in d in CP2 is a projective
manifold, denoted $d. By a generic curve of degree d, we mean an
element of $d — Sd where Sd is a subvariety of lower dimension. The
conjecture is of course false without the "generic" condition. One of
the difficulty of the conjecture is to describe the exceptional subvariety
Sd- The interested readers are refer to the paper of Grauert [G] for
many interesting ideas.

We now turn to the Second Main Theorem of Value Distribution
Theory. It all begins from the fundamental work of Nevanlinna in
one complex variable. Let / : C —> CP1 be a holomorphic map. The
characteristic function T(/, r) is defined by

At

where 0 < s < r and u is the Fubini-Study metric on CP1. For a
point a G CP\ denote by ra(/, a, r) the number of preimages (counting
multiplicities) of a inside the disk of radius r. The counting function

J aj r) is defined by

XV.I.T) -

The proximity function ra(/, a, r) is defined by

dAr

where ||#;a|| = |<rc,a>[/||ic|| ||a|| is the projective distance between
£ and a. Here ||z||2 = |zo|2 + |£i|2, ||a||2 = |a0|

2 + |ai|2 and <x,a> =
XQCLQ + xiai. The characteristic function, counting function and prox-
imity function are related by the First Main Theorem of Nevanlinna

Theorem 23 (FMT) Letf:C-^ CP1 be a non-constant holomorphic
map and let a be a point ofCP1. Then
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The FMT plays a similar role in Nevanlinna Theory as the role
played by the Artin-Whaple product formula in Number Theory. The
counterpart of Roth's Theorem in Number Theory is The Second Main
Theorem of Nevanlinna:

Theorem 24 (SMT) Let f : C — > CP1 be a non-constant holomorphic
map and {ai, . . . , aq} be a finite subset of CP1. Then for any e > 0
there exists a set A of finite Lebesgue measure such that the following
estimate holds for all r E [s, oo) - A:

Note that, by the FMT, the left hand side of the SMT can be
replaced by <?T(/, r) - £i<,-<g #(/ , a,-, r).

For a point a G CP1, the defect S/(a) is defined to be

r) 1== "
Corollary Lef / : C — >• CP1 fee a non-constant holomorphic map.
Then for a finite set {ai, . . . , ag} o/ CP1, the sum of defects satisfies
the estimate

V S < 2.~

The factor 2+e in the SMT correspondes to the exponent 2+£ in
Roth's Theorem. The fact that CP1 — {3 distinct point} is hyperbolic
is a consequence of Nevanlinna' s SMT. This corresponds to the fact
in number theory that Thue-Siegel Theorem (the integral points of
P1^)— {3 distinct point} is finite) follows from Roth's Theorem. The
proofs of these two statements are completely analogous (cf . Ru-Wong
[R-W]).
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Nevanlinna's Theorem can be extended from CP1 to arbitrary
Riemann surface in the following form. Let M be a Riemann surface
with hermitian metric

ds2 = h^- — dz A dz.
2?r

Denote by R the Gaussian curvature of h\ i.e.,

fl2

-I

Theorem 25 Let M be a Riemann surface with hermitian metric
ds2 and let f : C — > M be a non-constant holomorphic map. Let
{ai, . . . , aq} be a finite set ofM. Then for any e > 0 there exists a set
A of finite Lebesgue measure such that

3 \Z\<t

holds for all r E [s, oo) - A. Consequently, the sum of defects satisfies
the estimate

f (

3 \Z\<t

Here the characteristic function T(/, ds2, r) is given by

3 \Z\<t

If the Gaussian curvature R is constant (= c) then

3 \Z\<t
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and Theorem 25 takes a simpler form:

Corollary Same assumption as in Theorem 25 and assume that the
Gaussian curvature R = c of the Riemann surface M is constant. Then
for any e > 0 there exists a set A of finite Lebesgue measure such that

qT(f, ds\ r] - N(f, *i> r) < (2c + e)T(/, ds\ r)

holds for all r £ [5, oo) - A Consequently, the sum of defects satisfies
the estimate

8(f,aj)<2c.Vt" Jl —

For the Riemann sphere with the Fubini-Study metric, the cur-
vature R = 1 (parabolic); for the torus (elliptic), the canonical metric
is a flat metric, i.e. R = 0; and for surface of genus > 2 (hyperbolic)
with the canonical metric the curvature R = — 1. Thus

Corollary (0 IfM=CP1then^1^qS(f,aj)<2;
(ii) I f M = T = torus then Ei<y</(/» flj) ^ °> in

particular every non-constant holomorphic map from
C into T is surjective;

(Hi) If genus M > 2 then there is no non-constant holo-
morphic map from C into M, i.e., M is hyperbolic.

The corresponding Theorems in number theory assert that the
following spaces contain only finitely many integral points over any
number field k:

(i) (Thue, Roth, Schmidt) P1 - {3 distinct point};
(/i) (Siegel) T1 - {one point};
(Hi) (Mordell conjecture) compact Riemann surfaces of

genus > 1.

Nevanlinna's Theorem can also be generalized to higher dimen-
sion for holomorphic maps between equidimensional manifolds. This
extension is due to Carlson-Griffiths [C-G] and Griffiths-King [G-K].
Lei / : C" — > M71 be a holomorphic map into a projective manifold.
Let D be an ample divisor on M represented as the zero set of a
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holomorphic section s of a holomorphic line bundle I over M. The
proximity function is defined by

dBr

where Br is the ball of radius r in C"1 and da is the rotationally
invariant measure of the boundary, normalized so that the volume of
the boundary dBr is 1. Specifically,

Let I be a holomorphic line bundle over M and let h be a her-
mitian metric on I with Chern form p. The characteristic function of
/ is defined by

where u =

We state the SMT of Carlson-Griffiths-King in the sharper form
of Wong [W2] (see also Goldberg-Grinshtein [G-G], Lang [L4] and
Cherry [Ch]):

Theorem 26 Let I be a positive holomorphic line bundle over a pro-
jective manifold of dimension n and Z>i, . . . , Dq £ |I| be divisors such
that D = DI + . . . + Dq is of simple normal crossing. Let T be the dual
of the canonical bundle ofM. Let f : C71 — > M71 be a non-degenerate
(Jacobian not identically zero or equivalently, the image contains a
non-empty open set). Then for any s > 0, there exists a set A of finite
Lebesgue measure such that the estimate
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n(l + e)loglogT(/,r,r)

^n(l + e)logloglogT(/>IJr)

on(! + e)loglogr

holds for all r £ [s, oo) — A.

Corollary With the same assumptions as in Theorem 25 and assume
in addition that f is transcendental Then

Theorem 26 holds if one replaces C™ by an affine algebraic man-
ifold N of dimension m > n = dimM and under the same non-
degeneracy assumption; namely, the image of the map / contains a
non-empty open set. Stoll extended Theorem 26 to the case where
the domain is a parabolic manifold. In this more general case, the
right hand side of the estimate of Theorem 26 is more complicated;
terms involving the Ricci curvature of the parabolic manifold also
appears. We refer the readers to Stoll [Sto2] for details. The corre-
sponding statement in number theory of the estimate in Theorem 26
is conjectured by Lang. This sharper form of the Roth's Theorem is
still open.

Nevanlinna's Theory can also be extended to the non-equidimen-
sional case under a much weaker non-degeneracy assumption. This
case is much harder and much deeper; so far the only satisfactory
result is the case of hyperplanes in CPn even though there are some
progress in the more general case. The main ideas of handling linearly
non-degenerate holomorphic curves are contained already in Ahlfors
[A] (also H. Weyl and J. Weyl [W-W]; for a different approach see
Cartan [Ca]). Unlike the case of Nevanlinna and also the case of
Carlson-Griffiths-King where the first derivative of the holomorphic
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map contains all the necessary informations needed; the linearly non-
degenerate condition involves, for curves in CP71, derivatives of / of
order up to n. The informations contained in the derivatives are related
by the Pliicker Formula. Ahlfor's Theory was extended by Stoll to the
case of linearly non-degenerate meromorphic maps from C™ into CPn.
Stoll realized that the associated maps in the higher dimensional case,
unlike the case of curves, are in general only meromorphic rather than
holomorphic. This is so even if the original map is assumed to be
holomorphic. Thus it is necessary to develop the whole theory for
meromorphic maps. The Theory of Ahlfors and Stoll was extended by
Murray where the domain is assumed to be Stein, and Wong where the
domain is assumed to be affine algebraic or parabolic. The following
sharper form of the SMT is due to Stoll- Wong [S-W].

Theorem 26 Let M be an affine algebraic manifolds of dimension m
and f : M — > CPn be a linearly non-degenerate meromorphic map.
Let ai,...,aqbe hyperplanes ofCPn in general position. Then for any
e > 0 there exists a set A of finite Lebesgue measure such that

+ (2 + e) log log T(/, r) + — log+

+ (log+log+log+T(/}r)

+ O(log+log+log+r)

for all r G [s, oo) — A and where &M is the degree ofM.

The SMT for linearly non-degenerate curves in CPn correspondes
to the subspace Theorem of Schmidt in number theory. The SMT can
also be extended to the case of hyperplanes of CPk in n-subgeneral
position. The result is first conjectured by H. Cartan and is known as
Cartan conjecture. The conjecture is first resolved in the affirmative by
Nochka and also in the Thesis of Chen. The corresponding result was
due to Ru and Wong using ideas from the works of Nochka and Chen.
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Theorem 27 Let M be an affine algebraic manifolds of dimension m
and f : M — >• CPk be a linearly non-degenerate meromorphic map. Let
ai, . . . , aq be a hyperplanes ofCP* in n-subgeneral position (k < n).
Then for any e > 0 there exists a set A of finite Lebesgue measure
such that

(f> %', 0 < (« + 1 +

for all r G [s, oo) — A

Actually it is possible to obtain a more precise estimate as in
Theorem 26.

For holomorphic curves from C into Abelian varieties, a SMT
was obtained by Ochiai [Oc] and also by Noguchi [Nog] using jet
metrics. However these results are not in the best possible form. In a
forth coming paper we shall treat the case of holomorphic curves in
spaces of constant sectional curvature. A sharp form of the SMT can
be obtained via the use of Pliicker's formula and also the technique of
Siu described below. Recently R. Kobayashi, using a rather different
method seems to obtain a fairly sharp SMT in the case of holomorphic
curves in Abelian varieties.

The main ingredients of the proof are: Green- Jensen's Formula,
Nevanlinna's lemma and Pliicker's Formula.

Green- Jensen Formula Let (p be a function of class C2 or a plurisub-
harmonic function or a plurisuperharmonic function on C71. Then

M<*
l-

=r

l- j

where ddc[ip] denotes differentiation in the sense of distribution.
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In particular the lemma applies to (p = log|/| where / is a
meromorphic function.

To state the lemma of Nevanlinna we need a definition. A non-
negative, non-decreasing function g defined on [0, oo) is called a
growth function if for any to > 0

00

1
00.

J
to

A typical growth function is g(t) = (log(l +1))1+£ where e > 0.

Nevanlinna's Calculus Lemma Let T be a non-negative, non-
decreasing, absolutely continuous function defined on the interval
[s, oo) where s > 0. Let g be a growth function. Then there exists
a measurable subset [s, oo) with finite Lebesgue measure such that

T'(r] < T(r) g(T(r)}

holds for all r G [s, oo) — A.

This technical lemma is fundamental in all the estimates en-
countered in Nevanlinna theory. Another lemma which is of techni-
cal as well as theoretical importance is Pliicker's Formula. Let S be
a Riemann surface with hermitian metric h and (M, g) be a com-
plex manifold of dimension n with constant sectional curvature c. Let
/ : S —> M be a holomorphic curve and fk be the fc-th associate
curves. Assume that fk ^ 0 for 1 < k < n. Define differential forms

We may now state the Pliicker Formula (cf. [W3]):

Pliicker's Formula for Spaces of Constant Curvature Let (M, g)
be a hermitian manifold of constant curvature c and S a Riemann
surface with hermitian metric h. Let f : S -* M be a holomorphic
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curve which is non-degenerate of order k; i.e., the associate curve
fk £ 0. Then

fRic 61 = 92-281+0^
efc_i + 9fc+i - 29fc; 2 < k < n - 1

on S - {C e S|Afc(C) = 0}. Afote ito G0 = &n = 0.

One of the main reasons that the case of curves in CPn works
well is that the associate (osculating) curves are holomorphic (to see
this one can either follow the method of Ahlfors or Wong [W3]). If the
metric connection of the target space is holomorphic then of course all
higher derivatives of the curve are also holomorphic and £ priori so are
the associate curves (which are the wedge product of the derivatives).
However, connections are usually not holomophic (almost never is,
for details see Wong [W3]); for instance the connection of the Fubini-
Study metric is not holomorphic. On the other hand, meromorphic
connections do exist on projective varieties, hence osculating curves
defined via these connections are also meromorphic. This is the main
idea of Siu's SMT.

Theorem 28 Let M be a projective surface (i.e., complex dimension
2) with a meromorphic connection D. Let the a holomorphic section
of a holomorphic line bundle $ over M such thatt®D is holomorphic.
Let f : C —> M be a holomorphic curve which is non-degenerate in
the sense that the image of f is not contained entirely in the pole set
of D and that f A Df ^ 0. Let I be a holomorphic line bundle over
M with a non-trivial holomorphic section s such that D = [s = 0] is
non-singular. Then for any e > 0 and A > 1 there exists a set A of
finite Lebesgue measure such that

(I - e)T(/, r) + N ( f , D, r) < AT(/, f ® I* , r) + o(T(/, I, r)

for all r E [s, oo) — A.

Siu's Theorem provides some very interesting new examples
even though this approach does not yet produce the "right" estimate
in many of the important cases. The problem lies in the difficulty
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of controlling the pole order of the meromorphic connection, making
optimal estimate in the SMT unattainable.

Another long standing problem which is solved only in the last
few years is the problem of moving target. A hyperplane in CPn =
PtC71*1) may be identified with a point in the dual P((C7l+1)*). But
instead of considering fixed hyperplanes 01, . . . , aq G P((Cn+1)*) one
considers holomorphic curves < / i , . . . , f l g : C — > P((Cn+1)*). In the
one dimensional case, Nevanlinna conjectured that the deficit estimate
of a holomorphic curve / : C — > CP1 remains valid if the growth of
characteristic functions T(gj,r) of the moving hyperplanes is slower
than the growth of the characteristic function T(/,r). Chuang [Chu]
made significant progress on this problem. The conjecture is finally
solved by Steinmetz in 1986 for curves into CP1. The case of curves in
CPn is solved by Ru-Stoll [R-S1,2] recently. Bardis [Ba] and O'Shea
[OS] extended the Theory of moving targets to the case where the
domain is also of higher dimension; deficit estimates are obtained un-
der additional assumptions. We shall only state the SMT of Steinmetz
and Ru-Stoll here. Given a family of holomorphic maps {31, . . . , gq}
from C into P((C7l+1)*), the field of meromorphic functions gener-
ated by {0i, . . . , gq} is the smallest subfield S3 of the field of mero-
morphic functions on C containing all the coordinate functions of
fljj 1 < j < 9- A holomorphic curve / : C — > CPn is said to be
linearly non-degenerate over S3 if the coordinate functions of / does
not satisfies any non-trivial linear equation with coefficients in S3.

Theorem 29 Let f : C — > CPn be a holomorphic curve and g\ , . . . , gq

: C — » P((C™+1)*) be q holomorphic maps considered as moving hy-
perplanes ofCP71 in general position. Assume that T(QJ, r)/T(/, r) — >•
0 as r — » oo and that f is linearly non-degenerate over S3. Then for
any e > 0 there exists a set A of finite Lebesgue measure such that the
estimate

(/,&,r) < (n + l + e)T(/,r)

holds for all r £ [s, oo) - A. Consequently
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In fact Ru-Stoll obtained a version of the SMT for moving tar-
gets corresponding to the Cartan conjecture. For this they introduce a
concept called fc-flat (we refer the readers to [R-S2] for details.

Theorem 30 Let f : C —> CPn be a holomorphic curve and g\,..., gq

: C —» P((C7l+1)*) be q holomorphic maps considered as moving hy-
perplanes ofCPn in general position. Assume that T(QJ} r)/T(/, r) —>
0 as r —> oo and that the dimension of the map f is k-flat over S3. Then
for any e > 0 there exists a set A of finite Lebesgue measure such that
the estimate

'mtf' »> 0 < (2n - fc + 1 + e) T(/, r)

holds for all r E [s, oo) — A and where the Uj 's are the Nochka weights
associated to the QJ 's. Consequently

(Ill) Remarks

From the results listed in the two previous sections, the simi-
larities between the two theories seem quite striking. The results in
the Theory of curves are more complete due to the fact that there
are more tools available. The analytic machineries are more power-
ful; the idea of Nevanlinna using invariants defined by integrals (e.g.,
characteristic functions, proximity functions) makes estimates easier
to obtain (pointwise estimates are replaced by integral estimates). Fur-
thermore, the proofs of the various Theorems in Nevanlinna Theory
are quite uniform. The basic approach and the basic steps are essen-
tially the same. The key ingredients are the Jensen formulas (corre-
sponds to the Artin-Whaple's Product Formula), Ahlfors' Theory of
associate (osculating) curves (corresponds to the successive minima
in the geometry of numbers) and Nevanlinna's calculus lemma esti-
mating the derivative of a positive convex increasing function by the
function itself.

Even though Nevanlinna's lemma is elementary in nature, it has
the effect of making many estimates routine. Without this technical
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lemma Nevanlinna Theory would be much more complicated. Unfor-
tunately, there is as yet no good analog of Nevanlinna's lemma in
Number Theory. This perhaps is the main reason that the proofs in
diophantine approximation are not as uniform; many estimates are ob-
tained via ingenious process which are perhaps not so "natural". The
search of a good analog of Nevanlinna's lemma should be one of the
main technical goal in the theory of diophantine approximations.

If one compares the theory of successive minima to the the-
ory of associate curves one notices that the later is much more well-
developed. The center-piece of the theory of associate curves is the
Formula of Pliicker, relating the invariants of higher order osculating
curves to that of the lower order osculating curves. The counterpart of
Pliicker's Formula in the theory of successive minima has yet to be
developed. The precise relations among the successive minima seem
rather complicated at this point. A better understanding of these fun-
damental relationships would go a long way in developing the theory
of diophantine approximations.
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