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1. Introduction. In [1] (see [3, pp. 214-251]) Ahlfors introduced
his theory of covering surfaces. His approach was combinatorial and
geometric, and showed that R. Nevanlinna's theory of meromorphic
functions had topological significance, and held in differentiated form.
Other accounts are in [2], [5], [9], and [12] presents a very efficient
proof using Ahlfors's own framework. See [10] for an independent
approach, where the conclusions are slightly weaker than in [1].

Some years ago, John Lewis asked me if there was a way to de-
rive Nevanlinna's value distribution theory directly from the argument
principle. Since Nevanlinna's approach is based on Jensen's formula,
itself the integrated argument principle, it is clear that the argument
principle lies behind the theory, but the connection is, to say the least,
highly indirect.

In this paper we show a more transparent connection. Very little
is used that is not in a first course in complex analysis, but the sub-
tleties needed to achieve (1.5) and (1.6) show the depth of Ahlfors's
own insights. In retrospect our methods have considerable intersection
with those of [1], although the orientation is different. I thank H. Don-
nelly, A. Eremenko, D. Gottlieb, L. Lempert, M. Ramachandran and
A. Weitsman for helpful discussions. The idea for the latter part of
Proposition (1.8) was shown to me by S. Lalley. The influence of
Miles's work [8] is also apparent; see (2.23) below.

(LI) Preliminaries. (See [1], [9, Ch. 13].) Let ai , . . . , aq be dis-
tinct (finite) complex numbers. We develop two situations in parallel:

q

the "base surface" FQ is either the Riemann sphere S2 or S2\ \J Dk,
*=i

where the Dk are disjoint continuua about the a^; we also let ag+i = oo
and take Dq+i accordingly. Thus, FQ is either closed or bordered.

We impose a unit mass X(w) on FQ with the properties specified
in [1, I.I], [9, p. 325]; this allows lengths to be assigned to (Ahlfors)
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regular curves and open sets. The essential property of A is that an
isoperimetric inequality hold locally: each point PQ £ FQ has a neigh-
borhood U = U(p) such that if 7 is a simple closed curve in U which
bounds the region J7 c U, then

(1.2) A(«) < fcA(7),

where h = h(p). By compactness (1.2) holds on FQ with a universal
h so long as the A-area of fi is strictly bounded from one. We also let
[•] be the chordal metric on £2; it clearly satisfies (1.2).

Let A(r) - {\z\ < r}, B(r) = 0A(r), &X(U*,TI) = {w;X
(W,WQ) < 7?}, Bx(wQ,rj) = dAAj>o,?7), and Tr - /(B(r)). We
consider maps / : A(-R) -» S2 which preserve orientation, with 0 <
R < oo. The most important setting is that / be meromorphic, but
it is natural to require only that / be a ramified covering of 52, in
the spirit of Ahlfors-Sario [4]; according to Stoilow [11] such maps
become meromorphic if A(jR) is given an appropriate structure. For
a good account of this see, for example, [6, §2].

Consider now f~l(F0) C A(jR); this is a union of components
{G}. Let G be one such component. Then for 0 < r < R, set G(r) =
Gn A(r), dG(r) = GnJB(r), and define in terms of A the expressions
S = S(r), L = L(r] for the area (including multiplicity) of f(G(r)}
and length of Tr = /(<9G(r)), measured by A. In this sense, the image
$ of G by / is a covering surface over F0 with TT : §f — > F0 the
projection. Ahlfors also considers any A-measurable subset D C F0,
and defines

A(£>)

For example, if / is rational of degree N and D is any open set then
flf(r) = AT + o(l) = S(r, D) and L(r) = o(l)(r -> oo).

Ahlfors 's theory has significance primarily when gf is regularly
exhaustible: there exists an r-set ^4, R a limit point of A, such that

(1.3) L(r) - o(5(r)) (r -> Jf2, r G A)

[5, p. 338]. If / is meromorphic or quasiregular (and nonconstant)
in A(oo) and A = [], it requires but a few lines and the Schwarz
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inequality to see that the full image §f of / over F0 = S2 is regularly
exhaustible (cf. [5, p. 352] and [1, p. 186]). In particular, in this case
A consists of nearly all large r.

We state Ahlfors's conclusions in two forms:

(1.4) THEOREM. (A) Let f be meromorphic in A (.ft), and ai, . . . ,
aq be distinct (finite) complex numbers. Then there exists h = h(ai,
. . . , aq) > 0 such that

(1.5) £ n(r, oj) > (q - 2)5(r) - hL(r).

(B) Let FQ be S2 or S2\ U Dk, f : A(ft) -» F0, an*/ to A be a
unit mass as described above. Then there exists h = /i(-Fo) > 0 such
that the Euler characteristic of any (finite) covering surface $ over FQ
satisfies

(1.6) p+ = max(/>, 0) > pQS - hL.

Remarks. 1. In (1.6) we use the definitions of p and po from [1];
cf. [4, p. 55]: x = -F + E - V (F = faces, E = edges, V = vertices).
In many contemporary topological texts, what we call p is considered
the negative of the Euler characteristic.

2. Following [9], we assume that FQ is planar: S2\\JDj. Ahlfors
observes [1, p. 174] that the general case follows from this by an
elementary combinatorial analysis.

3. Inequality (1.6) is formally stronger than (1.5). One way to see
this is that when (1.6) is used to derive the differentiated Nevanlinna
theory (cf. [5, p. 148]) there is an additional branching term that is
not apparent in (1.5). However, the arguments used to get these re-
finements are somewhat intricate; here we find that a common attack
can yield both.

4. In accord with standard tradition, we use h as a positive con-
stant which can be taken to depend only on data of the surface FQ.

For example, Picard's theorem is an immediate consequence of
(1.5) or (1.6) together with (1.3); we consider (1.6). Let / be noncon-
stant on A(oo) and omit 01, a2, a3. Let F0 be S2 with small disks Dk

deleted about the a/^, so that po = 1- By assumption, no inverse image
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of any Dk can be compactly contained in any A(r), so that always
p = — 1. Thus (1.3) and (1.5) are incompatible. Miles [7] shows that
the main part of Nevanlinna's second fundamental theorem can be
recovered from the Ahlfors theory.

(1.7) Normal values, first fundamental theorem. Since the argu-
ment principle gives n(r, a&) - n(r, oo) rather than n(r, a^) directly,
we first show that / always has many "normal" values. We have

(1.8) PROPOSITION. Let r < R, WQ E S2 and r/0 > 0 be given.
Then there exist K < oo and w* E S2, with [w*,w] < TJQ and w*
normal in the sense

further, we may find a line L through w* such that Fr intersects L Pi
{[iv, w*] < 770} in at most KL(r) points.

Proof. We assume the elementary first covering theorem of
Ahlfors (the analogue of Nevanlinna's first fundamental theorem; cf.
[9, pp. 328-9]): if D is an open set in FQ then \S(r) - S(r,D)\ <
h(X(D))~lL(r). [Ahlfors also has a variant of this for coverings of
"regular" curves, but that is not needed here].

In this proof, we take A to be chordal measure [] on S2, and let
S(r), £(r, D) be computed with respect to [].

For a fixed (large) K, let DI = {w E FQ\n(r,w) > S(r) +
KL(r)}, and D2 = {w\n(r,w) > S(r) - KL(r}}\ here? n(r,w)
is the usual counting function of iu- values in A(r) or G(r). Since
5(r,jDi) = (j'Din(r,w)d\(w)){X(Di)}-'L, the first covering theo-
rem yields that KL(r)X(Di) < hL(r}\ thus if K is large, A(-Di) is
bounded away from 1. The same analysis applies to D%, and hence if
K is sufficiently large, the set W of w* which satisfy the Proposition
has chordal measure at least .9 the measure of the ball {[iu, WQ] < r/o}.

To satisfy the second condition, let us assume that WQ = 0 and,
since 770 is small, replace the chordal metric by the Euclidean metric.
Write r = Fr, and assume A(F) < oo. By making a rotation, we
may assume that the intersection of T with each horizontal or vertical
line contains no segment. We will show that if i(j/o) is the cardinality
of Fr D {Ssz = J/Q} n {|z| < 1}, then there exists a set Y of y,
— 5% < y < 2% with Jy dt > .9r/o and
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(1.9) i(y) < KL(r), y<EY,

If we grant this, it follows that there exists y$ e Y, |y0| < |%»
such that the set {y = 3/0} H {\w\ < |r/o} has nonempty intersection
with the set W constructed above. We use any w* = XQ + iy^ in W,
with |a;o| < |T?, yo € Y, and see that it satisfies both conditions of the
Proposition.

We now produce yo so that (1.9) holds. By our normalization,
T D A (WQ, 1) may be written as an at most countable union of graphs
of continuous functions, say y = yj(x), aj < x < /3j, with — 1 <
yj(x) < 1. If Vj is the total variation of yj on (QLJ, /3j) and Lj is the
length of the graph of %-, we have that Vj < Lj.

Let ij(y) be the number of points of intersection of the graph
of yj with the line {Qz = y}, so that i(y) = £)j*j(l/)"» ^en Ba-
nach's formula for total variation gives that Vj = Y^-i *j(y)dy. Hence,
f-i i(y)dy < L(r), so that (1.9) follows at once.

(1.10) NORMALIZATION. Given a fixed r, we in general take w* =
oo in Proposition 1.8.

2. Partitioning of A(r). Given distinct complex numbers ai,
...,ag, let 10107j < inf^jA(a^aj). By Proposition 1.8, we may,
by decreasing 97 if necessary, choose aq+i so that A(ag+i,afc) >
1010ry(l < k < q) and then, after a Mobius transformation of /
assume that aq+i = oo. This choice of r) is in force for all that fol-
lows, so that 77 depends only on F0. Following the ideas of Ahlfors,
construct (indexing mod q +1) Jordan arcs /3^(1 < k < q +1) to join
ak to afc+i. The /3's divide FQ with two Jordan domains Ff and F",
and the preimages of the /3's divide A(r) (or G, as appropriate) into
N domains Ga. We let Fa = f(Ga), so that Fa is contained in F1 or
Fn. We usually ignore the specific choice of F1 or Ff/, and write that
f(Ga) C F, where F is the relevant choice of F1 or F".

Depending on the context, we may view the domain of / as all
of A(^J), or as in a component G of /~1(Fo)fl A(R). Thus, the setting
will determine the relevant collection of (7a's. Similarly, n(r, oo) will
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be the number of poles of / in either A(r) or G(r). We will develop
our method so that the reader can readily adapt it to either situation.

We make certain inessential normalizations: the /?& are pointwise
disjoint, Tr meets each /3& at finitely many points, and none of the
countably many branch points of / lies on any /?&. Finally, we assume
that in each ball B\(a^^ 877) there is a line segment Z/& passing through
afc such that relative to this ball, /?&_! Ufa = Lk\a^. When k = q +1,
we take L to be the line constructed in Proposition 1.8. By making an
arbitrarily small change in r, we may suppose that Fr does not pass
through any of the a^.

(2.1) Princple of the proof. The significance of length-area is seen
from elementary considerations. The work that follows is to force the
hypotheses of Lemma 2.2 to be satisfied.

(2.2) LEMMA. Let the Ga be as above, and suppose Ga meets
B(r) in P(ot) points Cj,a whose images on S2 are separated by some
77 > 0. Then

(2.3) L(r)>

Proof. Consider a fixed Ga, and £ i , a j . . . , Cp(a),a< on Ga n B(r),
such that A(CijQ!,CjjQ!) > Cty; here the £'s are listed in the order en-
countered on circuiting B(r) in the positive direction. Since each Ga

is connected, the £'s are endpoints of P(a) disjoint arcs / of B(r)
and hence give a contribution at least hP(a) to L(r). Then if G^ is
any other region determined by the {/3j}, Gat must lie in one of the
complementary domains of A(r)\GQ.

Hence, given an initial choice of Gai, choose Ga% so that GQ2
is closest to Gai in one of these domains (there is not a unique such
GC&\ in fact there are usually P(OL) such). Then the closures of Ga%
and Gai can have at most two points in common on B(r). Thus, Ga%
adds a term P(«2) - 2 to L(r), since we are forced to introduce at
least P(ot2) — 2 new arcs / due to G^ We exhaust the {Ga} in this
manner, and (2.3) follows.

(2.4) The argument principle. Now for a fixed &, 1 < k < q, let
Q

()(k) be the curve \J(3j, so that /3(k) is a Jordan arc on S which
k
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joins ak to oo. Note that /3(1) D 0(2) D .... We also set /?'(&) =
fc-i

U { |J fa}. Choose a fixed 0, say 9 = 0, such that /(re**) g
i

3?. Consider stopping times 6(fc) : 0 < 0i < 02 < • • • < 6n <
3

0i + 27r,n = n(fc), such that f(rei0i) G /3(fc); we do not indicate
the dependence on k of the 0's. This divides Tr into a union of arcs
I\ = r*(l < i < n) each of which starts and ends on /?(&); r* is the
image of 9i < t < Oi+\.

We partition the rf into classes (Ik), (life) and (Illfc):

(Ifc) those arcs which lie completely in B\(a^ 2ry),
(life) those arcs which lie completely in B\(oo,

the others.

If 7 is any curve (not necessarily closed) which does not pass
through afe or oo, we set

(2.5) PA- (7) = — A7 arg(-u; - a*),

and note that the normalization (1.10) reduces (1.5) to an estimate
from below of Sjfe^fcO-V)- ^ ^" ~ /~1(j^«)' one °^ ̂ e subregions
of A(r) determined by the {/3j} as at beginning of this §, we let

(2.6)

where the sum in (2.6) is over the /-images 7 of the arcs of dGanB(r)
(i.e., the relative boundary of Ga).

It is obvious that for curves Tf in classes (I&) and (II&) there can
be no way to bound Ufc(rf ) in terms of the length L(T^). However
we have

(2.7) PROPOSITION. Suppose f is such that w* = oo satisfies the
conditions of Proposition L8. Then for 1 < k < q

(2.8)
(4)

Thus, the significant contributions to i/fc(IY) arise from curves
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whose image winds about a^ and are close to a^. We begin the proof
here, and complete it in (2.13) below,

Proof. The critical case is when i E (I I IK). Choose a (maximal)
chain X of length p, i/+i, . . . , it+p such that each F*+ . £ (///&)• Let
F be the portion of Fr, which corresponds to X\ i.e., the image of

(2.9) LEMMA. Lef F foe as1 above. Then

(2.10)

Proof of (2 JO). Let S(fc) be S2 with the open disks AA(aA,,r?)
and A,\ (00,77) deleted. Then for each k S(k) is compact, so there
exist (T > 0 and M < oo such that if 7 is a continuum which meets
/3(k),/3'(k) and intersects 5(fc), then

(2.11) A( 7 )><7

and, for any choice of argument on S(k) n /3(fc),

| suparg(w — ak) — inf arg(^' — a&)| < M (w, wf G S(k) fl

It is clear that by increasing M by at most 4?r, we have a similar
bound when w and iu' are in S(k) fl ^'(fc).

Let Q be the number of i such that a subcurve of rf meets /3'(fc).
Then it follows from the definition of M that

|i/fc(r)| <2Q + 2M:

we think of F having an initial and terminal portion which does not
meet /?'(&), and then Q intermediate portions which join /3(fc) to itself,
passing through /?'(&). Similarly, L(F) > Qcr, so that (2.10) holds in
the weaker form

(2.12) |i^(T)|</iL(r) + M.

It is possible to delete M in (2.12). If L(F) > 77, it is obvious
that M in (2.12) may be absorbed in the term hL(T)\ if L(F) < r?
and F meets B\(a,k, TJ) or B\(oo, TJ), then F is a curve both of whose
endpoints are on ̂  n B\(a^ 3r/) or ̂  nBx(oo, 3rj). In either case,
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/3fc is a ray emulating from a^ or oo in this region and so ^(F) = 0.
Finally, if L(T) < 77 but F n {B\(ak, rj) U Bx(oo, r/)} = 0, we see that
in this case r = Tr, a closed curve, so that ^(F) = 0. Hence (2.10)
holds in all cases.

(2.13) Completion of Proof of Proposition 2.7. By the normal-
ization (1.10) with Proposition 1.8, it is clear that ]C(/ifc) l^fc(rf )| <
KL(r). -Thus (2.8) is a consequence of this and (2.10).

(2.14) An extension of Proposition 2.7. By (2.8), the significant
contribution to ^(rr) arises from portions of Fr which circuit a& in
a full revolution, and are contained in B\(a,k) 2r/). This can be made
a bit sharper.

(2.15) LEMMA. For each k e {!,...,#}, let Aj be the arcs of
Tr which lie in B\(ak^ 2??) and join fy-i and fa. Then

(2.16)

Proof. This follows at once from Proposition 2.7 and the obser-
vation that each arc if of that Proposition contains two arcs Af (one
which is mapped into Ff, one into F") plus, perhaps, additional sub-
arcs w;hich start and end on one of fa-i or 0k- Since the /?'s are radial
segments in B\(ak^ 877), the latter arcs contribute nothing to z/fc(rr) or

(2J7J More on ffe ra/e o/oo. We modify (2.5) and (2.6) to

(2.18) i/; (7) = ( ^M if ^ c SA(«*, 2r?)few; 10 otherwise

and a similar interpretation for t>l(dFa) (see (2.6)).
Let w* = oo be normal in the sense of Proposition 1.8. We show

that oo is typical in a very strong sense.
(2.19) LEMMA (I). Let oo be normal For each a, let n(a) be

the number of poles on dGa, so that dGa is partitioned into n(a)
components F(QJ, (3). Then with the exception of a set of B poles with

(2.20)
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the following is true. For each fe, 1 < k < q, the number of disjoint
arcs 7 C UpT(a., /?) with

(2-21)

plus the number of solutions to the equation

(2.22) f ( z ) =

equals n(a).
(II) Conversely, let Fa = f(Ga) be given, choose k as in (I), and

suppose that Fa <jt B\(ak,3rj). Let the {r(a,/3)} be as in (I). Then
with the exception of a set of B of (a^fS) as in (2.20), each T(ct,/3)
contains a pole.

(2.23) Remark. This lemma complements Miles [8], which covers
the situation that Fa C ^(a^jSry) for many a; then there may be
many a^-values not compensated by poles In this situation, ^(7) > 0
for many arcs 7 C Fr, in contradistinction to (2.21).

Proof. Choose fc as above. If the /-image of a F(a, /3) does not
pass through a^, then r(a, /3) contains an arc of B(r] whose image 7
separates oo from a& in Fa. Unless 7 C B\ (a, 877), (a = a^, oo), the
argument of (2.11) shows that A(7) > <TI > 0, independent of a, fc.
By our normalization (1.10), the total number of poles so separated
as a, /3, k vary satisfies (2.20). This proves (I).

Conversely, let rai(a, fc), 712(0;, fc) be the number of solutions to
(2.21) and (2.22) for a given a, and circuit dFa. The arcs and a^-values
of (2.21) and (2.22) divide dFa into n(a, k) = m(a, k) + n2(a, k)
portions r(a,/3, fc). To each F(a,/3, k) which does not pass through
ag+i = oo corresponds a crosscut 7 = 7(0;, /3, k) which separates
oo from afc. Since Proposition 1.8 holds, the argument of the para-
graph immediately above shows that the number of such (a, /?) can
be absorbed in (2.20). This completes the proof.

(2.24) COROLLARY. Let TV* be the number of pairs (a, (3) which
satisfy the hypotheses of Part (II) of Lemma 2.19. Then, ifoo is normal
in the sense of Proposition 1.8, we have

(2.25) |A r*-2n(oo)|</iL(r).
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In particular, ifP is the number of poles which are taken in these
r(a,/3), then

(2.26) P<2n(r,oo) + fcL(r).

Proof. The poles of / correspond to regions Fa which have oo in
their closure. Hence Lemma 2.19 applies. The first part of the corollary
now follows since each pole is on the boundary of two (7a's. Estimate
(2.26) is immediate.

3. Proof of (1.5)
Let n = n(a) be the number of poles of / on Ga relative to

A(r). Note that

and that the contribution of the exceptional (a, ft) satisfies (2.20). Let
the {r(a, /?)} be as in Lemma 2.19. Choose fc G {1, . . .,q}. If the
/-image of a F(a, ft) does not pass through a*, then there is an arc
7 C r(a, ft)nB(r) whose /-image separates oo from a^ in FQ. Unless
the image of 7 lies in B\(a^ STJ) \jB\(oo, 877), the argument of (2.11)
shows that A(7) > a\ > 0, independent of a or fc. We now apply
Lemma 2.2 to each of these n(a) sets F(a, ft). Let P(a,/3) be the
number of fc G {1, . . . , q} such that, as in (2.15), i/fc(Af ) < 0 for an arc
A£ of r(a,/3), andP(a) = E0P(a,P). The
so by (2.16), (3.1), (2.3) and (1.10) we have

a /J

n(a) _ 1 ̂  ^{p(a> /J) - 2} - fcL(r)
a a /3

> - n(a) -
a a ft

= — 2n(r, oo) — hL(r)

> -2S(r) - hL(r).
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By the argument principle, this is (1.5).

4. Proof of (1.6). Recall the discussion of Euler characteristic in,
say, [5, pp. 135-7], [9, pp. 322-3]. We surround each ak(l < k < q)
by a small disk D^ such that A(C, a*) ^ r) for £ G dD& and let
FQ = £2\ U Djfc. Thus, there are now q crosscuts /%; what is now
f)q consists of what in § 2 had been a connected piece of f3q and
/?g+i which passes through oo. We estimate p($) by the standard
combinatorial inequality [5, p. 137], [9, p. 333]

(4.1) p(%)>n-N

where N is the total number of domains Ga = f ~ l ( F a } and n is the
number of crosscuts Uj/~1(/?j).

(4.2) Remark. Each crosscut 7 bounds two domains {Ga}\ we
will use the fact, needed for (4.1), that crosscuts 7 which disconnect
$ make no net change to either side of (4.1)

Consider the arcs r(o:,/3) of Lemma 2.19. In the context here,
r(a,/3) C dGa and we write Fa = f(Ga) (so that Fa C F, with
F = Ff or F", where Ff and F" are now bounded by the {/?&} and
portions of the \J\dDk.

If T E T(a, /3), let F" = mrr be the portion of T in the relative
boundary of $; this convention of starring will be used below. As in
§2, choose r\ > 0 such that, if j ^ k, then A(/?y,/3fc) > lOO/y (distance
relative to $). The number of pairs (a, /3) with A(F*(a,/?)) > 77 is
at most hL(r). We place these exceptional pairs (a, /?) into class (7);
by Lemma 1.8 and the normalization (1.10) we may also include in
(I) all r(a, (3) such that an endpoint of some r*(a,/3) lies in an 77-
neighborhood of oo. Thus if{E} is the cardinality of E)

(4.3) #{(a,P)e(I)}<hL(r).

We now introduce a significant set Q of pairs {a,/?}, which are
not in (I). Let c?oS be the outer boundary of $, i.e., the component
of d$ which intersects Fr; thus 9oS is connected and consists of part
of Fr and perhaps arcs which are mapped to dD^ for various k. If
(a, /3) ̂  (/), let (cf. Lemma 2.2) p = p(a, /?) be a maximum choice of
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points {£} on d0gnr*(a,/?) such that A(£, CO > 3rj. By Proposition
1.8 and the definition of (I), we may assume that none of the £ are
in BX(OQ, Srj). The class Q will consist of all (a, /3) for which p ^ 1
and a certain subset of the (a, /3) for which p = 1.

If p = 0 then r*(a,/3) = <^> so that we have q crosscuts of $
corresponding to this (a, /?), and none of these crosscuts disconnect

».
Now let (a,/3) ^ (/) with p = 1, corresponding to a choice

C = Ci. By hypothesis, F*(a,/3) contains a cross-cut 7* of Fa which
is contained in an ^-neighborhood fi of £i« There are two possibili-
ties. Since Fa is connected, it is easy to see that either Fa C fZ or
Fa D {F\fi}. Since (a, /3) 0 (J), there is some k such that the two
endpoints of each component 7* of r(a, /3) are contained in fa, D^
or .Djb+i. Hence, when Fa c fi, we see from (4.2) that all cross-
cuts 'over' U/3& can be ignored in computing (4.1), since each dis-
connects 2f. This is important since there can be no upper bound
for the number of such components r(a,/3). The remaining pairs
(a, /3) for which p = 1 are assigned to Q. In this case, Fa D JP\fi,
and since p = 1, it follows that F(a, /3) will contain g crosscuts
of g which terminate at each D&, and so there are at least q — 1
crosscuts which do not separate $, since at least q — 1 cannot meet
r>,/j).

Finally, if p(a, /3) = p > 2 and (a, /3) £ (J), we see that Fa D
F\ U^ {^(Ci? 3ry)}. In this situation, there are again q crosscuts from
F(a, /3), but we are assured only that q — p do not disconnect gf.
However, by Lemma 2.2,

(4.4) £ {p(a,(3)-2}+<hL(r).

If £7 is as defined above, it follows from Proposition (1.8) and (1.10)
that (3.1) holds. Let ng and Ng be the contribution to n and N in
(4.1) which arise from {(a, /?) £ £}. Since oo lies on each T(a, /3) if
(a, /?) E £, we deduce from our definition of (I), (4.3), (3.1) and (1.8)
that
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n-N>ng-Ng- hL(r)

> [q*{G H {p = 0}} + (q - 1)*{0 n {p = 1}}

- m) #{6? n {p = m}}} - hL(r)
m>2

- 2) -

> (q - 2)n(r, oo) - hL(r]

= (q-1}S(r}-hL(r).

Since /OQ = q — 2, we have proved (1.6).
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