
MODULES WITH REGULAR GENERIC TYPES

Ivo Herzog and Philipp Rothmaler

Part I. The Basics

§0. Preliminaries 140
§1. The Unlimited Part 142
§2. Forking 148
§3. Stability 149
§4. U-rank 1 Modules 151

§5. Regular Generics 152

Part II. The Connected Case

§6. Connected Modules 155
§7. Divisible Modules 157

§8. Modules over Ore Domains 160
Appendix 163

Part in. The Ziegler Spectrum

§9. Pure-injective Modules 166
§10. The Topology 168
§11. The Hull of the Generic 171

References 175



Philipp Rothmaler 139

Parts I and II

Philipp Rothmaler
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For structures having a definable group action the notion of generic type

makes sense. Poizat showed that having regular generics is a particularly useful

model-theoretic property. In this series of papers we try to provide the reader

with a systematic treatment of this in the case of modules, where - naturally -

addition is taken as the corresponding group action.
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Part I. Basics.

The purpose of this part is twofold. First it is meant to serve as a

uniform base, introducing all that is needed in the sequel. This concerns both,

notation and previous results. Second it should acquaint the reader with the

class of modules which serves as the tide for the entire article.

§0. Preliminaries.

Following Weglorz, the language we work in is LR whose non-logical

symbols are 0, +, and a unary function symbol r for every element r of the

(once for all fixed, associative, unitary) ring R with the obvious

interpretations. The class of all left R-modules can easily be axiomatized in LR

by a certain theory TR. Throughout, "module" means "model of TR". A
positive primitive (pp) formula is one of the form 3y A (si(x) + ti(y) = 0),

i<n

where si and ti are R-terms (or, more exactly, LR-terms), Le. linear

expressions with coefficients from R. In a module M these define projections

of solution sets of finite systems of linear equations over R, which are thus

subgroups of M ® (here J! stands for length). By a pp subgroup I (mostly)

mean such a definable set where J!(x) = 1. I will often not distinguish between

formulas and the sets they define. So I allow myself to talk e.g. of a "pp
subgroup cp(x)". Similarly, I will write \|/£L(p instead of TR I- \|f-»9.

Writing " 9/i|/" (or "(p/i^M)") I mean a pair q>,\|/ of 1-place pp formulas with

\lfC 9 (or its factor group cp(M)A|j(M)). I will say " cpA|/ is finite in M" (or in

T) if 9/\|f(M) is finite (for each (=some) M 1= T). It is easily seen that

9/y(A © B) = 9/V|/(A) © 9/V|f(B) (as abelian groups) and thus lcpA|/(A © B)l =

kpA|KA) I • I9/V(B)I.
For cardinals I will adopt the following convention: K = A,(mod°°) iff

K = X or both KandÀ, are infinite. Then a necessary and sufficient condition

for given modules M and N to be elementarily equivalent is: lq>/y(M)l =

kpA|/(N)l (modoo) for all 9/\|f.
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This is due to Baur, Garavaglia, and Monk; see footnote at the end of

[Ga] for the history of this result For more historical background I refer the

reader to [Zie] and [PR] (see also [Ro 4]). The general theory of pure injective

(p.i.) modules, p.i. indécomposables, p.i. hulls, indecomposable types etc. can

also be found in these sources.. For easier reference I will quote a few below.

As lcpA|T(M)l is an invariant of T (which is always assumed to be

complete) (mod <*>), I may define cpA|/(T) to be n if lq>A|/(M)l = n for some

M N= T, and co otherwise. The aforementioned criterion then shows that T is

axiomatized by the collection of all the cpAl/CD's.

If p is a type, p+ denotes the collection of instances of pp formulas in

p. Baur's quantifier elimination theorem implies that in T two complete types

p and q over the same set coincide iff p+ = q+.

If p is in S(A), p~ denotes the collection of all pp formulas over A

whose negation is in p.

Notice, ITI = IRI + KO and ITI+ -saturated modules are p.i.

The following lemma due to B. H. Neumann will be refered to as

BHN: If a coset of a group A is contained in finitely manycosetsof the

groups B0,...,Bn-l> then all of those where A/A H BJ is infinite can be

omitted. In particular, there is some j in n such that A/A H BJ is finite.

Most of the notation is standard or borrowed from [Zie]. The p.i. hull

of A is denoted by H(A). The complete type of A over B by t(A/B).

t+(A/B) stands for t(A/B)+.

If âj are in Nj, a = ai + â2 is in NI © N2, then clearly

t+(â) = t+(âi) H tt(â2). From [PR, Ch.4, Sect.4] recall

Fact 1. If H(a) = NI © N2 and NI, N2 * 0 then for a corresponding

decomposition â = â"i + â2 both t+OU) and t+(a2) strictly contain t+(a).

This was used in the course of proof of

Fact 2. [Zie, 4.4] p from S(0) is indecomposable (which means that H(p)

= H(a) is indecomposable, where a realizes p) iff for all \|fi,\|f2€ p- there

is some <|)ep+ such that (\|fiA(|)) + (\|/2A<|)) e p".

Following Ziegler I write <|>A|re p instead of "<|)e p+ and \|/ e p- ".
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Fact3. [Zie, 7.10] Let^/y be in the indecomposable types p and q from

S(0). If H(p)*H(q) then there is a pp % £ <|) containing \|f such that <|>/xep

and x/i|feq or vice versa.

As common in model theory, when dealing with a complete theory T,

I will work in a highly saturated (hence p.i.) universal domain, the so-called

monster model of T, which contains every set I am working with. By a model

I then mean an elementary substructure of the monster. In particular, any p.i.

model is a direct summand of the monster, as is each p.i. submodule. Consult

[SH] for this habit.

Set-theoretic inclusion is denoted by c^, whereas c: will denote

proper inclusion.

Algebraic notation mainly follows [ST]. In particular, a domain is a not

necessarily commutative ring without zero divisors. R° denotes R\0.

§1. The unlimited part.

The theory of unlimited types was developed by Prest. In this section I

will briefly present it in the modified form given in [B-R], from which the first

fact is taken. (I will work in this section in a fixed completion T of TR; the

formulas about direct sums stated in the preceding section will be used without

mention).

Lemma 1. (1) There is a complete theory TU, the so-called unlimited part of

T, satisfying
1, if <|>/V(T) < co

for all <]>A|f. In particular, (Tu)u = TU-

(2) A is a direct summand of a model of TU
iff M = M © A for any (some) model M of T

iff U E=U © A for any (some) model U of TU

iff <|>AKT) < co implies <|>A|/(A) = 0.

Thus the class of all unlimited summands. i.e. of all summands of models of

TU, is axiomatizable, too.
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Proof: To prove TU as given is consistent and complete, choose M,N,U

satisfying (we called such a triple beautiful in [B-R]):

M < N 1= T, M is ITI+-saturated (hence p.L), N realizes all types over M U a

for any a from N, U « N/M. Clearly we can write N = M © U. Then

I <|>A|f(M) I = I (|>A|r(N) I = I <|>A|f(M) I -1 <t>A|r(U) I, hence tyAKU) I = 1 if <|>A|/(T)

is finite. If not, {<|>(x) A -i\|/(x-ai-c): ceM, i<n} is consistent for each set of

representatives {ai : i<n) of $A|f in U, which can therefore be extended, by

choice of N. Thus TU = Th(U).

(2) Clearly, M = Mffi A iff I c&AKM) I <G> implies I (|)/\|f(A) I = 1. The same

is true for U N=Tu, whence (1) yields M s = M © A iffU = U»A. Thus it

is enough to work with TU. By (1), (j>A|f(Tu) e {l,œ}, so A © B N TU and

<l>A|f(Tu) < co imply (|>A|f(A©B) = 0, hence <|>A|f(A) = 0. If, on the other hand,

this condition holds, A is a direct summand of U ffi A N TU- O

This implies that TU is closed under products. Le. U © U' 1= TU

whenever U and U' are models of TU (or, equivalently, when §/\\F(T\j) e

{l,co} foraU <|>/v).

As in [B-R], a pp type p over 0 is said to be closed under finite index

if any \|/ is in p+ if it is a pp subgroup of finite index in some cp e p+.

Call p in S(0) unlimited if p+ is closed under finite index. S*(Q) is

the set of all unlimited types from S(0).

Next I will show that the unlimited types are exactly those which are

realized in the unlimited part, and further that there is no loss in restricting to

TU when talking about unlimited types of T.

Following Prest set

p* = (\|/(x) :\|f is pp and there is 0(x,a)ep+ with 0(x,0)A|/(x) finite}.

Clearly peS(O) is unlimited iff p+ = p* .

Types over models have a similar feature:

Lemma 2. If p e S(M), where M is a model, then p* = (<|>(x): cp(x) is

<|)(x,0) for some <|>(x,m) ep+}.
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Proof: Let <|>(x,m) e p+ and <|>A|J be finite. We have to show, p contains

some formula defining a coset of \|f. There is a number n such that M h

3x0...xn-lVx ( A [<|>(xi,m) A -i\|f(xi-xj)] A [(|>(x,m) -» V V(x-xi)]).

This means, there are representatives in M for each coset of \|f which

is contained in <|)(M,m). Thus p must contain one of these. n

That every p* comes from some unlimited p* (thus justifying the

notation) will be established after the next lemma, which is also taken from

[B-R].

Lemma 3. (1) Every filter of pp subgroups which is closed under finite

index (in the above sense ) is the pp part of a uniquely determined (unlimited)

type from S(0).

(2) Every filter of pp subgroups in a theory closed under products is the pp

part of a uniquely determined type from S(0).

Proof: (2) follows from (1). Let r be a filter as in (1). The only thing to
prove is that r U {-i\|f :\(fis pp and\|të r} is consistent. As r is closed
under finite conjunction, it suffices to verify that 0 A A — i\|/i is consistent

i<n
with T for any (|>er and pp\|/i£ r. If not, <|>çi y \|/i. Then, by BHN,

i<n
some (|>/(|>A\|/i must be finite, whence (|>A\|/ier, contradicting the choice of

Vi- n
Corollary 4. [Pr] For all p e S(A) there is a unique type p* e S(0), the

so-called free part of p, such that (p*)+ = p* . Further, p* is unlimited, and

if A = M is a p.i. model, then there is some û E U 1= TU and some m in M

such that (M©U> M and) p = t(m+u/M) and p* = t(u).

Proof: Only the latter needs a proof. Let N > M realize p. As M is p.i.,

there is some U as above with N = M © U and also m+ïï realizing p as

above. If <|>(x) e p* then <|)(x) = <|>(x,0) for some ^fcmO e p+. Then

1= <(>(m+u,m') implies 1= <|>(u,0). Thus p* <= t+(u) ( = t* (5)).
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For the converse inclusion let <|>(5) e tt(u)« Put x(x,y) = <|>(x-y). Then

%(x,m)ep+, hence <|>ep* . D

Lemma 5 (Pillay and Prcst). If p is in S(A) and B 2, A then there is p ç:
q e S(B) with p* = q*.

Proof: I have to show that p U {-i\|f(x,b): beB and \|f(x,0) £ p* } is

consistent. If not, there aie finitely many <|>(x,a) e p+, <|>i(x,a) e p-, \|/j(x,0) e

p* and bj e B such that <|>(x,a) is contained in the union of the <|>i(x,a) and

the \|fj(x,bj). Since p is consistent, at least one of the \|fj must occur, \|/osay.

On the other hand, BHN allows us to omit those for which 0/<t)A\|/j is

infinite. Thus <[)/ <|>A\|fo is finite, hence \|fo e p* ; contradiction. Q
Notice that in general t*(c7A) = ̂ (a+c/A) for all a e A.

Actually I am working in two theories, T and TU, and it can therefore
happen that some p € ST(0) and q e STUCO) are different even though p+ =

q+(for T<=p andTu^q). Also a little accuracy is needed when talking

about pp types, since even being a filter depends on the theory (look at q
containing px=0 A x#Q in T = Th(Z(p«>) © Q); there q+ is a filter, whereas

in TU» which is Th(Q) in this case, every pp type containing px=0 contains

also x=0).

Nevertheless, the next fact, taken from [B-R], justifies any confusion of

T and TU, at least when dealing with unlimited types.
Lemma 6. (1) p I—»p* defines a surjective map from S(A) onto S*(0).

(2) There is a bijection between S*(Q) and STUCO) bringing every

qe S*(0) to some pe 3^15(0) so that p+ = q+.

(3) Let qe S(0) be realized in some M 0 U > M (= T (i.e. U1= TU). Then
q is realized by some tuple of U iff q e S*(0).

Proof:
(1) The preceding lemma allows us to assume A = 0. Then, however, the

assertion is trivial, since p* = p for all p e S*(0).
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(2) If q e S^O) then - according to Lemma 3(2) - choose p G

with p+ = q+. If pe STUtO) then -using (1) of the same lemma -

choose q in S(0) so that q+ is the closure of p+ under pp
subgroups of finite index. Clearly, q* = q, hence qe S#(Q).

(3) If q = t(ïï) for some û e U then q = q* e S*(0) by Lemma 1. If q

e S^O), choose q £. p e S(M) with q* ( = q) = p*. Write p =

t(m+u/M), where m e M and ïï e U. As in Corollary 4, q =zp+ =

t(u). D

Let S#_£Q1 denote the set {p+ :peS*(0)}. From Lemma 3 it follows

that S* (0) is closed under arbitrary unions, and contains the set of all pp

subgroups of finite index and clearly also the set of all pp subgroups. The 1-
types from S*(Q) having these latter as pp part are denoted by 1 and 0,

correspondingly. (From now on all types are 1 -types, similarly for sets of

those!) There is another way of looking at S* (0). Let U be a model of TU

realizing all types over 0. Then every type p e S* (0) corresponds to some

(infinitely definable) subgroup p(U) of U. Then accordingly (p(U) :

p e S# (0)} forms a complete modular lattice under fl and + (cf. also [PR,

§8.1 1]). U = 1+ (U) is the greatest and 0 = 0+(U) the smallest element in this

lattice. Since this lattice does not depend on U (as long as U realizes all

relevant types), I will denote it by i^yQCu). It is also called the lattice of

infinitely pp definable subgroups of TTT. If Ty has dec on pp subgroups

then ppoo(Tu) reduces merely to the lattice pp(Ty) of pp subgroups of (some

(=any) model of) TU-

I will need also the following description of algebraic types, which

appeared in the proof of [Ro 1, Lemma 2].

Lemma 7. A complete type is algebraic iff it contains a coset of a finite pp

subgroup.
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Proof: For the non-trivial direction, let <|> A A -i Vi be non-empty but
i<n

finite, where <|> e p+ , \|fi e p~. Then there are finitely many elements ao,...,an-i
(n>0) such that <(>.£. U \|fi U U {aj} and no aj can be omitted. By

i<n j<n
BHN, <|>(x,0)/0 is finite, for {aj} is a coset of the trivial group 0. n

Corollary 8. A complete type is algebraic iff p* = 0. n

The finitizer finpM of an R-module M is, by definition, the set of

ring elements r such that rM is finite ([Ro 3]). Let us sum up some useful

properties of the finitizer (cf. ibid.).

Lemma 9. Let I =

(1) I is an ideal containing the annihilate*! annRM.
(2) I does not depend on M 1= T (also neither does annRM). So the

notations finT and annT make sense.
(3) I = {r e R: M/M[r] is finite), where M \= T and, as usual, M[r] is

the pp subgroup of M defined by rx=0.

(4) fin T = annTu.
(5) IM c, acl 0, whence the factor module M/acl 0 is an R/I-module

(here, as common in model theory, acl denotes algebraic closure; it is
easily seen that acl 0, which is the same as acl 0 and which is the same

in each model of T, is a submodule of every model).

Proof:

(1) Let rM and r'M be finite. Then (r+r')M = rM + r'M and s(rM) and

r(sM) must be finite, too. (2): "IrM^n" is a first-order statement (3): For
every re R consider the endomorphism hr of the additive group of the model

M of T. Then Ker hr = M[r] and im hr = rM. Thus M/M[r] ~ rM. (4)

follows from (3) and Lemma 1. (5) is clear. O
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§2. Forking.
The aim of this section is to introduce, mostly without proof, module-

theoretic equivalents to stability-theoretic concepts as forking, Lascar rank, and
regular type.

Again I will work in a fixed completion T of TR in this section. Let
p and q be complete types, q is a nonforkmg (or nf-) extension of p, in
terms pcq or qnp, if pS.q and p*=q*. If p e S(A) then we also say,

q does not fork over A (or q dnf/AX q is a forking extension of p, in terms
pc£q or q^àp, if q2.p, but q is not an nf-extension of p. That this
coincides with the usual notion due to Shelah was shown in [Ga] for theories

closed under products (see also [Zie]) and in full generality in [P-P 1].
Lascar's U-rank is an ordinal rank on complete types, which is defined

as follows (see e.g. [SH], where it is called L):

(a) RU(q)>0 for all complete q;
(b) RU(q) > 5, where 8 is a limit ordinal, if RU(q) > a for all a < 5;
(c) RU(q)>a+l if there is a complete r#iqwithRU(r)>a;
(d) RU(q) = a if RU(q) > a and RU(q) 2 oc+1;
(e) RU(q) = oo if RU(q) > a for any ordinal a.

As noticed in [B-R], the above definition of forking together with

Lemma 1.6 shows that, for a complete type p in T, RU(p) is just the

foundation rank of p* in ppoo(Tu) (with respect to the order given by

inclusion), i.e. RU(p) = RU(p*), and on S*(0) we have

(a) RU(q) > 0 for all q e S^O);

(b), (d), and (e) as above;
(c) RU(q) >oc+l if there is an re S*(0) such that RU(r)>a and

q+ c r*- (or, equivalently, q+ (U) => i+(U) in ppoo(Tu)). Clearly, RU(O) =
0 and, moreover, RU(q) = 0 iff q = O (for q e S*(0)). Thus, by Corollary 8,
RU(p) = 0 iff p is algebraic (for arbitrary complete p; this is a general fact,
cf. [SH]). Further, if p* = 1 then RU(p) > RU(q) for all complete types q.

Forking can be defined in any stable theory ([SH]; modules are stable
as shown by Baur and Fisher). Using forking, in turn, one can define a notion
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of independence as follows: The sets B and C are independent over a set A,
in terms B 4^ C, if t(B/AUC) dnf/A. This kind of independence relation has

a number of nice properties, however, the corresponding relation of dependence

lacks one of van derWaerden's axioms: it is not transitive. Therefore Shelah

introduced regular types and proved that forking dependence is in fact transitive

on elements realizing regular types. Based on that he developed an elaborate

dimension theory for arbitrary stable structures.

Now, a type pe S(A) is called regular if for all B=> A and a,b

realizing p, if a J^A B and b J^A B then a ^B b.

I conclude this section with a module-theoretic description of this,

which was obtained in [Zie] for theories closed under products and in full

generality in [Pr].

Fact 1 For a complete type p in T the following are equivalent:

(1) p is regular.
(2) p* is regular.

(3) p* is critical in the sense that p* defines a minimal nonzero infinitely

definable pp subgroup in H(p*) (in other words, p* is a maximal

nonzero pp type in

Further, if p is regular, p* is indecomposable.

§3. Stability.
As mentioned in the preceding section, all complete theories of modules

are stable (it is this what we mean when we say that all modules are stable).

Two important subclasses of that of stable theories appear in stability theory. I

will define them only in the context of modules. That those definitions coincide

with the original ones (given in terms of the power of certain Stone spaces) is

due to Garavaglia (and depends on Baur's pp quantifier elimination for

modules, see e.g. [Zie] for proofs and any further details concerning this

section). Fix a completion T of TR again. Remember, "types" are "l-types"

now.
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T is totally transcendental (t.t) if it - or rather each (= some) of its

models - satisfies the descending chain condition (dec) on pp subgroups. T

is superstable fs.s) if it satisfies the weak dec on pp subgroups, i.e. no model

contains an infinite chain of pp subgroups in which every factor is infinite.

Lemma 1 [B-R, 3.2]. T is s.s. iff TU is t.t.
Proof: In any chain of pp subgroups of some M NT, by Lemma 1.1, the

infinite factors do not collapse in TU- Hence the dec for TU implies the weak

dec for T.
Conversely, let <|>o(U) ^> <|>i(U) ^> <|>2(U) ^> ... be an infinite chain of

pp subgroups in some U 1= TU- Consider \|fo = <|)o, \|fi+i = \|/i A ̂ +1. In U

the \|fi define the same chain, and they also define a chain in every other

module. But in a model M of T, in addition, the factors \|/i(M)A|/ï+i(M) are

infinite, by Lemma 1.1, as M ©U NT. n

Corollary 2. A theory closed under products is s.s. iff it is t.t. Q

Lascar proved the next result for arbitrary theories. In case of modules,

though, it is particularly easy to prove.

Corollary 3. T is s.s. iff every complete type has an ordinal U-rank.

Proof: T is s.s. iff TU isLL iff Ppoo(Tu) = pp(Tu) iffppoo(Tu) is well-
founded iff each p e S*(0) has an ordinal foundation rank in ppoo(Tu). D

Let us return to t.t. theories again. If T is t.t. then, by the dec on pp

subgroups (which immediately yields the dec on their cosets), every pp type

(even with parameters) is equivalent to a single pp formula. We call such

types finitely generated (f.g.)- (In general, following Prest we call a complete

type finitely generated if its pp part is.) From this it is not hard to derive that
every model M of T is p.i., even E-p.i. - which means that M(®) is also p.i.,

for M satisfies the dec iff M(<°) does (since ((KMC05)) = [^(M)]^) for any pp

formula (|)(x)).

This makes the classification of models of t.t. theories of modules

particularly transparent. For instance, Garavaglia used this to show that a

countable t.t. theory of modules satisfies Vaught's conjecture, i.e. such a theory
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has either countably or continuum many isomorphism types of countable

models (see also the cited literature).

That every model be p.i. can be violated even in s.s. theories (as a

matter of fact, no countable module with an infinite descending chain of pp

subgroups can be p.L, as there would be too many pp types to be realized).

Therefore it is often very important to know whether a certain theory is t.t or

not A much more powerful criterion for total transcendence than that of all

types being finitely generated is the following, which I state without proof.

Fact 4 [P-P 2, 6.8]. T is t.t. iff every regular unlimited type over 0 is

finitely generated.

Note, this implies that for total transcendence it is enough to check

indecomposable unlimited types (Fact 2.1)-in T, though, for a type p in
S*(0) can, in general, have finitely generated pp part when considered in TU

without being finitely generated in T.

§4. U-rank 1 modules.

From a stability-theoretic point of view the easiest theories to consider

are those in which every complete type has U-rank at most 1. Theories having

this property (and even their models) are also said to have U-rank 1. These are

also characterized by the fact that no non-algebraic 1-type forks over the empty

set. In modules we have

Lemma 1 [B-R, Corollary 2], [P-P 2, Proposition 7.1].

The following are equivalent for any completion T of TR:

(1) T has U-rank 1.

(2) (Every (=some) model of) TU is pp-simple. i.e. there are no proper

pp subgroups in (models of) TU-

(3) Every pp subgroup in T is either finite or has finite index in (a model

of) T.

Proof: From §2 we know that T has U-rank 1 iff ppoo(Tu) = {1+,0+}.

Thus the lemma follows from Lemma 1.1. n
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Corollary 2 [P-P 2]. If T has U-rank 1 then there is exactly one nonzero
type in S*(0). This type is regular and hence indecomposable.

Proof: The first statement is immediate using Lemma 1.6(2). Further, a pp-

simple module is p.L, as there are only trivial pp types, which are realized
anyway. Thus the p.i. hull of a realization u e U h TU of the unique

unlimited type of T is contained (as a direct summand) in U, consequently

pp-simple itself. Then that type is critical. It remains to apply Fact 2.1. Q

Corollary 3. If F = R/fuiRM is a skew-field for some (=any) M N T,

then T has U-rank 1.
Proof: By Lemma 1.9(4), every U 1= TU is an F-module, hence a vector

space over F. Vector spaces are pp-simple, since every pp formula defines a

right ideal in Rp (easily checked). Q

§5. Regular generics.
Proceeding from the U-rank 1 case to more complicated cases by

successively allowing the U-rank grow, one quickly gets into trouble caused by

the fact that pp subgroups need not be submodules if the ring is not

commutative. Poizat, however, introduced a class of theories containing

properly that of U-rank 1 theories, which retains some of the latter's nice

properties. These are the theories which have regular generic types, where,

following Poizat, a generic type over some model M is a type t(c/M) such that
t(c+m/M) dniyo for all m e M. An arbitrary complete type is called generic if

its non-forking extensions over some model are generic. Notice, generic types

do not fork over 0.

Again, the context is a fixed completion T of TR. Most of what is

contained in this section was announced in [Ro 2].
Lemma 1. A complete type p is generic iff its free part p* is 1.

Proof: Using Corollary 1.4 write p* = t(u) for some u E U such that
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c = m' + u e M © U > M . As mentioned after Lemma 1.5, t*(c+m/M) = t(u)

for all m in M. As p = t(c/M) is generic iff all t(c+nj/M) anf/Q, we have that

p is generic iff all t*(u+m) = t(u). This is equivalent to t*(u+m) = t+(u) for

all me M.

I claim, t£(u+m) = tt(u) fl tj(m).

0e t+(u) and <|>e t+On). Thus \|fe t+(u) and \|ret*(m), since <|>(U) =

For the inclusion from left to right, let <|)e t+Cu+m) and<|)A|f be finite. Then

0 e t+(u) and $ e t+(m). Thus \|fe t+(u) and

\|f(U). The other inclusion is left to the reader.

Consequently, p is generic iff t+(u) = t+(u) fl t*(m) for all m e M

iff ^(uJ^tsicCm) for all m iff t+(u) contains no pp subgroup of infinite

index of M iff t(u) = 1. Q

Thus there is a distinguished generic type, namely 1, and when talking

of the generic we always mean this type.

Together with the description of regularity from §2 we get that all

generics are regular iff some is (this is a general fact, see [Po]) iff 1 is.

Lemma 2. The following are equivalent:

(1) T has regular generics.

(2) 1 is regular.

(3) H(l) is pp-simple.
(4) There is an element a in some U h TU such that H(a) is pp-simple

and a lies in no proper pp subgroup of U (Le. every such intersects

H(a) trivially).

Proof: The equivalence of (1) - (3) has been mentioned already. For the last

one notice that such an element a has a generic type over 0 iff t(a) is 1 (in T).

D
Part of the corollary is contained also in [Po, Lemme 7], (4) is a special

case of [Po, Lemme 2].

Corollary 3. Let T have regular generics and put R = R/fin T.
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(1) H(l) is indecomposable.
(2) 0(H(1)) * 0 iff <|>(H(1)) = H(l) iff U = <|>(U) for all U 1= TU

iff M/<|>(M) is finite for all (some) M h T ($ pp).

(3) amiRH(l) = aim TU = fin T.
(4) rM is either finite or of finite index in M, for each M N= T, r e R.

(5) H(l) is a torsion-free divisible R-module.

(6) Every U 1= TU is a divisible R-module.

(7) fin T is a prime ideal, Le. R a domain.

Proof:
(1) follows from Fact 2.1.
(2) is immediate from Lemma 2 and Lemma 1.1.
(3) Applying (2) to the formula rx=0 we get aim TU = arniRH(l). The

other equality was proved in §1.
(4) Applying (2) to the formula 3y(x=ry) we get, M/rM is finite iff

rH(l) * 0. This is the case iff r ë fin T iff rM is infinite.

(5) and (6) As in (4) one easily gets rH(l) = H(l) - and by (2), rU = U -

whenever re finT. Hence H(l) and U are divisible (over R).

A module is torsion-free as an R-module iff rx=0 defines in it the
trivial group 0 for all r £ fin T.

If rx=0 defines a non-trivial group in H(l) then it defines the whole
group, by pp-simplicity. But then r e fin T.
(7) easily follows from (3) and Lemma 2 (3). O
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PART IL THE CONNECTED CASE.
Modules with regular generics will be investigated here in the case when

they do not contain proper definable subgroups of finite index. These turn out
to be divisible and, essentially, over rings without zero divisors. Most of this
part is devoted to the search for a sufficiently large class of domains over which
every divisible module has regular generics.

§6. Connected modules.
A module is called connected if it does not contain any proper definable

subgroup of finite index.
A module is connected iff the pp part of any generic over 0 is just

{x=x}:
Lemma 1. A module is connected iff it does not contain any proper pp

subgroup of finite index.

Proof: For the non-trivial direction, suppose all proper pp subgroups of a
module M have infinite index and let A be a definable subgroup of finite
index. Then there are finitely many pp formulas <t>i,\|fij so that
U (§i A U —i\|Jij) defines A in M. Let there be no redundant disjunct As A
i J

has finite index, M is a finite union of cosets of the <|)j. By BHN there is

one, 00 say, which has finite index in M. By hypothesis, <|>o(M) is just M.

By ^redundancy, the first disjunct is not empty in M, hence all the \|/bj are
proper and thus of infinite index. On the other hand, M = (M\U\|fqj) U U

J J
\|f0j. By BHN, we can omit the \|f0j, whence M c. A . Q

Lemma 2. If M is connected, fhiRM = amiRM.
Proof: By Lemma 1.9(3), fmRM = {r e R : M/M[r] is finite} = fr e R : M

= M[r]} =annRM. Q
Notice that also connectedness is an invariant of a complete theory, as is

divisibility. Thus it makes sense to talk about divisible or connected complete



156 Modules with Regular Generic Types

theories. I might admit this sort of confusion also in other cases of first-order
invariant properties.
Throughout, T is a completion of TR.
Corollary 3. If T has regular generics and is connected, then rM = M for
each M \= T and re RXaiuiRM.

In particular, the ring R = R/annRM is a domain and M a divisible

R-module.

Proof: Follows from the preceding lemma and Corollary 5.3. n

Corollary 4. Let R, T, M be as above. Suppose R is finite.

T has regular generics and is connected iff R is a field. M is an R-vector
space then, hence pp-simple, and T is tt.

Proof: Finite rings without zero divisors are skew-fields, hence fields. If, on

the other hand, R is a field, then, being a vector space, M is pp-simple,

hence connected and t.t., and also p.i. Thus H(l) is R, hence pp-simple. Q
I am particularly interested in whether a given module with regular

generics is t.t. Even in the connected case there is no hope of showing all of

them are:
Example: Let R = k[X,Y], the ring of polynomials over a field k in two
commuting indeterminates X and Y. Let Q be its field of fractions k(X,Y).
Consider the R-module M = Q/R. That M is in fact a connected module with
regular generics follows from the next section (any divisible module over a
commutative domain is). As in every divisible torsion module, there are plenty
of ascending chains of the form M[r] c M[r2] c ... However, I am going to

find also a descending chain of pp subgroups (this making M non-t.t).
Clearly, M[X], YM[X], Y^MtX],... are pp subgroups, and since X and Y
commute, they form a descending chain. It remains to show that this is proper.
For this it is enough to verify that Yn/X + R is not in Y^MtX], for all n.
Otherwise write Yn/X + R = Yn+l(r/s + R), where X(r/s + R) = 0, i.e. Xr =
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su for some u e R. From the former we get some v e R with Yn/X =

(Yn+1r)/s + v, hence Yn = Y^u + Xv e XR + Yn+1R, contradiction. Q

This shows that we have to study divisible modules in further detail. I

will be interested in which of these have regular generics and which of those, in

turn, are t.t. Unfortunately I do not have a full answer to either of these

questions. Eventually I will show though that every divisible module has

regular generics and is connected if we restrict to rings which are e.g. two-sided

Ore domains. This is not too much a restriction, for it includes the

commutative case and the two-sided noetherian case (see below).

§7. Divisible modules.

Before turning to the results mentioned at the end of the last section I

will derive some preliminary facts about pp subgroups in divisible modules

which do not depend on further restrictions on the ring. Nevertheless I confine

myself to domains, since the main interest is in modules with regular generics

anyway.

A large subclass of that of divisible modules is that of injectives, for

divisibility is equivalent to Baer's criterion restricted to principal ideals. These

can differ quite a bit: e.g. over left-noetherian rings any injective module is t.t.

(see cited literature), whereas the above example provides a divisible one which

is not.

Recall from Robinson style model theory that a formula over a module

N (i.e. with parameters from N) is model consistent with N if it is satisfiable

in some super-module of N (i.e. iff it is consistent, in the usual sense, with the

atomic diagram of N). I will consider this notion for finite systems of

equations only. For this purpose I fix some
Notation: For a pp formula (|>(x) of the form 3y\|/(x,y), where

\|f(x,y)is A Six= £ Sijyj (and clearly J!(y) = ni), put s"i =

(sio,...,si(m_i))e Rm and let IQ be the submodule of RRm generated by
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so»- • • »Sn-l- Furthermore, let h^ : RRn — » RRm be the homomorphism given
by (ro,...,rn-i)->(£ riSij:j<m)(= X risi). D

Next I state Lemma 3.2 from [E-S] specified to this notation (notice,

the restriction to one free variable in [E-S] is not essential).
Fact 1. For <|)(x) as above, a module N and some a e N the following are

equivalent (in the above notation):
(1) Y(a,y) is model consistent with N;

(2) E risia = 0 for all ri e R such that Z risi = 0 (i.e. for all
i<n i<n

(ro,...,rn-i)e Ker h^);

(3) there is a homomorphism g : 1$ -» N with g(sï) = Sia for all i < n.

(The proof of (3) — » (1) uses some amalgamated sum of Nm and RRm over

fy, the other implications are trivial). D

Call a submodule M Ç= N n-pure in N if for each n-place pp
formula ((>(x) and each âe Mn, M M(|>(â) iff N N(|)(a).

M is called absolutely n-pure if it is n-pure in every extension. The

usual notion of purity is that where n is allowed to run over all natural

numbers. Similarly for absolute purity. Actually I am interested only in the

case n = l. Absolute 1 -purity is a notion between divisibility and injectivity
(for a direct summand is clearly n-pure) as is the K0"inJectivity of [E-S], which

is somehow oblique to absolute 1 -purity, though. It is easily seen that N is
absolutely 1-pure iff every system of equations of the form { sia = £

i<n}, where a e N, has a solution in N if it is model consistent with N.

Lemma 2. For an arbitrary pp formula <]> the following are equivalent (in

the above notation):
(1) <|)(N) = N for all absolutely 1-pure (left R-) modules N;

(2) 0(M) = M for all injective modules M;

(3) V(a,y) is model consistent with N for every module N and each

aeN;

(4) V(l,y) is model consistent with
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(5) (ro,...,rn-i) e Ker h0 => X riSi = 0.
i<n

If these conditions are violated then there is an r e R° such that <|>(M)
c: M[r], in particular, <|>(M) £. T(M), where T(MY the torsion part of M, is
the set {ae M:ra=0 for some re R°}, for every module M.

If there is some torsion-free injective N * 0 with <|>(N) = N then this is

true for every injective module N.

Proof:
(1) — > (2): Each injective is absolutely pure.
(2) — » (3): Consider an injective M ̂  N (e.g. its injective hull). Then
M t=(|>(a), hence \|f(a,y) is realized in M.
(3) _> (4): is trivial, (4) -> (5) -»(3) is the above fact.
(3) -> (1): Let N be absolutely 1-pure and a e N. Choose M =2. N such
that M (= 3y \|/(a,y). As N is 1-pure in M, N 1= <|)(a).

Thus (1) through (5) are equivalent.
Next assume, (5) is violated. Then there are ri e R (i < n) with r =

S r[Si * 0, but £ risij = 0 for all j < m, hence £ ri(sia) = 0 if a e

(M arbitrary). Then ra=0, whereby the second assertion follows.

Thus, if there is a torsion-free N as above, the conditions (1) - (5) must hold.
D

Corollary 3. Over domains, torsion-free absolutely 1-pure modules are pp-
simple, and thus t.t; torsion-free absolutely pure modules are injective.
Proof: A proper pp subgroup of an absolutely 1-pure module is in the
torsion part. An absolutely pure p.i. module is injective. D
Lemma 4. If R is a domain, then (-1) -> (0) -> (1) for any pp formula
<|)(x), where

(0) (|)(M)= M for all divisible (left R-) modules M;
(1) <|)(N) = N for all absolutely 1-pure modules N (as in Lemma 2).

Proof:
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As absolutely 1-pure modules are divisible, only (-1) — > (0) needs a

proof. Let <|>(x) be 3y A (six = £ syyj). If 0 * r e <|>(RR), there are

rj G R such that SJT = £ sy FJ (i < n). If M is divisible and a e M

arbitrary, pick b € M with a = rb (here we need r ^ 0!). Then
Sia = si(rb) = X SijOjb), whence a e 0(M). D

For the rest of this part I will be dealing with rings for which some of

the converses of these implications are true. Namely, domains which are
characterized by (1) -> (0) I will call good in the next section, and in the

appendix I will show that right Ore domains are exactly the domains satisfying

(0) -> (-1).

§8. Modules over Ore domains.
I am going to single out a large enough class of domains, over which

every divisible module has regular generics (and is connected). This provides

us with a stock of examples automatically including those which are not

injective (and, as announced in [Ro 2], not even absolutely pure).

To realize this task I impose two further restrictions on the domain, the

classical left Ore condition (which is (a) in Lemma 2 below) and the following

less classical one.
A ring is good if the following holds for all 1-place pp formulas (|>(x):

If <|>(M) = M for all injective M then <j)(M) = M for all divisible M. (Notice

also the equivalent formulations of this given by Lemma 7.2). Good domains

are less exotic than their definition might let them seem to be. As a matter of

fact, every right and left Ore domain is good, as I will show in the appendix. In

particular, commutative domains and also right and left noetherian domains are

good (cf. [ST, Ch.n] for the fact that noetherian rings are Ore). However, I

do not know whether every good left Ore domain is right Ore.

Goodness guarantees plenty of generic elements:
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Lemma 1. Every torsion-free element (i.e. everyone not in T(M)) in a
divisible module M over a good ring realizes a generic type.

Proof: Let M be divisible and consider an arbitrary pp subgroup

Since the ring is good, Lemma 7.2 implies ACIT(M). Hence no element
outside T(M) lies in a proper pp subgroup. D

The other property I impose on the ring will make sure that the generics
are regular. It is introduced - among others - in the next lemma, which is
basically folklore. For completeness I enclose a proof.
Lemma 2. Let R be a domain.
(1) The following are equivalent:

(a) Rs H Rr*0 for all r and s from R°;
(b) T(M) is a submodule in every (left R-) module M;
(c) T(M) is closed under scalar multiplication in every module M.
A domain having these properties is called left Ore.

(2) T(M) is divisor closed. i.e. Ra D T(M) = 0 for all a € M\T(M).

In particular, T(M) is divisible if it is a module.
(3) If R is left Ore then M/T(M) is a torsion-free R-module for every

(left R-) module M.
(4) If R is left Ore then torsion-free divisible (left R-) modules are injective

(hence pp-simple and tt. by Corollary 7.3).

Proof: (1) (a) -»(b): For ai G T(M) choose Sie R°with siai = 0(i<2).

Also choose r=±r0s0 = risi*0 using (a). Then r(ao+ai) = 0, whence T(M)
is a subgroup. If ao,s0 are as before and si € R° is arbitrary, pick r0 and

ri as before. Then risiao=0, hence siao€T(M). (b) follows, (b) — > (c)
is trivial, (c) -» (a): Fix sieR°. I will show that for all s0 in R° there is

an r e R° with rs0 e Rsi. This, however, is nothing else than T(N) = N for

the module N = R/Rsi. As si.l e Rsi, 1+Rsi E T(N). Then, by (c), T(N)

contains every r+Rsi. This completes the proof of (1). (2) just uses that R is
a domain. (3) follows from (1) and (2). (4): I am going to verify Baer's
criterion for injectivity, which requires finding b in M for every non-zero left
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ideal J and every homomorphism h from J into M such that h(r) = rb for

all r in J.

Pick any non-zero t in J and divide h(t) by t, i.e. find a b in M

with h(t) = tb. Given an arbitrary non-zero r in J, choose sr = s't * 0 in R

using Ore's condition. Then sh(r) = h(sft) = s'(tb) =s(rb). Torsion-fteeness

yields h(r) = rb. D

The result I am heading for is now

Theorem: Let M be a left module over a good left Ore domain R. M is

divisible iff it has regular generics and is faithful and connected.

One half of the theorem is a special case of Corollary 6.3. I am going to

prove the other in a number of steps. Remember that because of Corollary 6.4

I need not consider finite rings.

Let me point out that assuming annRM to be 0 in the theorem is of no

substantial loss, for we could just work with R instead (the annihilate! being

an invariant of T).

Lemma 3. A faithful module over a left Ore domain has an elementary

extension which is not torsion.

Proof: If the torsion-free type {rx * 0: r e R°) is inconsistent with M, then

M t=Vx V rix=0 for some r0,...,rn-iin R°> by compactness. As R is

left Ore, there is 0*se fl Rri. Then sM = 0, contradicting faithfulness.. D
i<n

Recall that a divisible module over a domain is certainly faithful. I call a

module M non-torsion if it is not a torsion module Le. iff T(M) * M.

Lemma 4. Every divisible non-torsion module over an infinite good domain is

connected.

Proof: As in Lemma 1, a proper pp subgroup cp(M) is contained in T(M).

We will show that M/cp(M) is infinite if it is non-zero. Pick an element a

outside T(M). By Lemma 2(2), Ra D cp(M) = 0. Thus all the ra, where r
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runs over R, are in distinct cosets of (p(M). The lemma now follows from the

infiniteness of R. D

The next lemma completes the proof of the theorem.

Lemma 5. If M is a divisible module over an infinite good left Ore domain
then M = M©(M/T(M)).

If, in addition, M * T(M) then the generics are regular.

Proof: It suffices to show that <t>A|f(M/T(M)) = 0 whenever <|>A|f(M) is finite.

Assume, the former is non-zero. Then, using the pp-simplicity of M/T(M)
established in Lemma 2(4), we get <|>(M/T(M) = M/T(M) and \|f(WT(M)) = 0.

Now we apply Lemma 7.2: "Since \|f is 0 in the injective WT(M), it is inside

the torsion part in every module. In particular, \|f(M) c. T(M). Further, since

<p defines the whole module in the torsion-free injective M/T(M), it does so in

all divisible modules (R being good!). In particular, (|)(M) = M.

Consequently, <|>A|f(M) is infinite by the bracketed statement of the preceding

lemma. This completes the proof of the first assertion and also shows that a
and a+T(M) have the same type if ae M\T(M).

The second assertion can be derived from the fact that every element a

outside T/(M) is generic and has, moreover, pp-simple p.i. hull: Namely,

M/T(M) is p.i. (even injective), hence it contains the hull of each of its

elements, which have therefore pp-simple hulls, too. D

The theorem is proved.

Let me finally return to the example in §7.

The non-tt module M considered there is divisible. The ring R is a

commutative domain, hence left and right Ore. By what will be shown in the

appendix those are good. Consequently, M has regular generics.

Appendix. Two-sided Ore domains are good.

First recall that the following properties are equivalent for any domain

R (cf. [FA, Ch. 9, Lemma 9.3.2, and the section between 7.16 and 7.17] and

[ST, Ch. H]).

(a) R is right Ore, i.e. sR fl rR * 0 for all r and s from R°;
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(b) there is a skew-field Q ̂ , R - the so-called right skew-field of fractions
of R - such that Q = {rs'1: r,s e R; s * 0};

(c) there is a skew-field Q 2. R such that for all q0,. . .,qn-i e Q there is a
t e R° with qjt e R for all i < n (n any natural number).

It turns out that these conditions are equivalent to (0) — > (-1), where the latter

are the corresponding conditions from Lemma 7.4:
Lemma 1. A domain R is right Ore iff the conditions below are equivalent
for all pp formulas <|) of LR.
(-1) 0(RR)*0;

(0) (|>(M) = M for aE divisible left R-modules M.

Proof: Let first R be right Ore and Q its right skew-field of fractions. By
Lemma 7.4 it suffices to show (0) — » (-1). Let <|> be the formula
3y A six = S Sjjyj and suppose (0) holds for <|). Being a skew-field,

Q is divisible as a left R-module, too. Thus (|>(RQ) = Q. Then R
hence there are qj e Q with si = 2 syqj (i < n). Applying (c) above

choose rj e R (j < m) and t e R° such that sit = X SijTj (i < n).

Then 0 * t e (frfeR), i.e. $ satisfies (-1), too.
Clearly, condition (a) above holds iff <|)(RR)^0 for all <|) of the form

3y0yi (x=sy0 A x=ryi), where r,s e R°.
So, for the converse it is enough to show that <|>(M) = M for all divisible

left R-modules M and all $ as above. However, this is trivial. D

Lemma 2. If R is a right and left Ore domain, then condition (-1) is
equivalent to the condition
(2) <|>(N) = N for all injective left R-modules N.

Proof: As the first half of the above proof, noticing that Q, the right skew-
field of fractions of R, is injective as a left R-module if R is also left Ore (cf.
the literature cited above), for then (2) is enough to derive (-1). D
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Consequently, for a right and left Ore domain conditions (-1) through

(5) from Lemmata 7.2 and 7.4 aie equivalent. In particular, these are good.
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PART in. THE ZIEGLER SPECTRUM

Ivo Herzog

In this part of the paper we investigate the closed subset I(T) of

the Ziegler Spectrum when the theory T has a regular generic.

§9. Pure-injectives

I mention a few basic facts about pure-injective modules and pure-

injective hulls, all of which may be found in [PR] or [Zie].

Definition la. A partial map / from M to N for which

M |= cp(à) => N |= <p(fà) for all à e dom / and ppf cp(x) is called

(»)
a partial homomorphism (isomorphism) from M to N.

b. An embedding/of M into N is called pure if it is a partial

isomorphism.

Definition 2. A module M is pure-injective if every homomorphism /

from a pure submodule N' of N to M can be lifted to a homomorphism /

from N to M:

N

T x
tl % \ i
' M

making the above diagram commute.
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Definition 3. Let M be a pure-injective module and M 2 A. Then H (A)

is a pure-injective hull of A in M if:

a) HL/AJis a pure-injective pure submodule of M containing A and

b) If B is a pure-injective pure submodule of M and Hj^A) 2 B a A, then

B=HM(A).

The most basic properties of pure-injective modules are given by the

following facts:

Fact 1. For M a pure-injective module and M 3 A, a (pure-injective) hull
of A in M exists.

Fact 2. a. M is pure-injective iff every partial homomorphism / from N to M

lifts to a homomorphism / from N to M.

b. If / is a partial isomorphism from N to M and N is

pure-injective, then / restricted to R^dom /) is a pure imbedding.

A pp-complete type p(x)is one of the form
tp±(A) = tp+(A) U tp'(A). If the theory T (a complete extension of T0 ) is

JK.

understood, we will denote by SÎ(C) the set of T-consistent pp-complete

types over C in the set of variables indexed by I. Note that by elimination of
quantifiers S j(C) is naturally homeomorphic to Sj(C).

From Facts 1 and 2 we see that for a pure-injective M and M 3 A,
Hj-(A) is determined by tp±(A /0) up to isomorphism. Thus it makes sense to

speak about H(p) when p(x) is a pp-complete type. It also allows us to
sometimes forget the subscript in " ELJA)."

From Fact 2.b we can derive

Fact 3. If c e HM(A), then tp+(c/A) |-M tp(c/A).
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Example: Let R = Z, the group of integers. Then the pure-injective

indécomposables aie thePriïfer groups ZCp°°) for each prime p, the p-adic

completion of Z for each prime p, every indecomposable finite (abelian)

group and (Q, the rationals.

§ 10. The Topology

If U is an indecomposable pure-injective module then for every a e U,

a 56 0, we know that U = H(a) = HCtp^a)). Thus there are at most 2 pure-
injective indécomposables up to isomorphism. Denote by ll the "largest"

complete theory of R-modules, Le. Th(© U ° ) where the U's range over all

isomorphism types of indecomposable pure-injective modules over R. For

more on this see [PR, §2.6]. In general, for every T, a complete extension of
TR, we let I(T) be the set of pure-injective indécomposables which occur

as direct summands of models of T. I(T ) is just the set of all pure-injective

indecomposable R-modules up to isomorphism.
fc[Zie], Ziegler defines a topology on 1(1 ), a basis of which is the

sets of the form (q>A|f) = { U e 1(1̂  ) : |cp(x)/\|f(x)| > 1 } and the closed sets of

which are exactly those of the form I(T), T a complete theory of modules. That

this is indeed a topology will follow from the proposition below.

We work in 1?. Let I = { p e S*(0) : p is indecomposable, i.e.

H(p) is } (§0, Fact 2) endowed with the relative subspace topology which it

inherits from the Stone space of all 1-types ( in this space a clopen basis is

given by {[o(x)] = {p: a(x) E p}: o(x) a boolean combination of ppfs.}).

From Fact 2 of §0, one can deduce the following

Lemma [Zie,Cor.4.5]. If A is a finite subset of an indecomposable

pp-complete type p, then there are cp/\|f E p, i.e. <p,—1\|/ E p, such that

T*|- (cpA-i\|f)-> A A.
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In the following proposition we paraphrase [Zie, Thm. 4.6].

Proposition. The sets (<p/\|f) form a basis for the quotient topology on

induced by the map H: I -» I(ll) which takes an indecomposable pp-complete
K.

type p into the isomorphism type of its hull H(p).

Proof: First we show that (q>A|0 is open, i.e. that H"1 (<p/\|f) is. Let

U e (<p/\|f) and take p(x) with H(p) = U. We need to find an open subset O of

I suchthatpeO and (q>A|/)=>H(O ). Let a|=p(x)and ceH(p) so that

H(p) |= q>(c) A -i \|f(c). By Fact 3 of § 9 we can take a(x,y) e tp+(c,a)

such that 0(x,a) hH(p)9(x) A -«VW-

3x(q(x,y)A q>(x)) , (3x (a(x,y) A
Thus _ / f — - - — — e tp±(a). But if U e ,. , , — :

3x (o(x,y) A v(x)) * ^3x (a(x,y) A

then clearly Ue(<pA|f); so take

O = [3x(0(x,y)A(p(x)) A -,(3x(a(x,y)A \|f(x)))].
On the other hand, let O be an open subset of 1(1̂ ) in the

quotient topology induced by H. So H4(O ) is open and if H(p) e O , there

is a formula q>(x) A A -i \|f.(x) such that p e [ <p(x) A A -i \|T.(x) ] and
i<n l i<n l

H 4 (O)2 f9(x) A A -iW.(x)]. By the Lemma there area(x)and
i<n l

X(x) such that p e [ a(x) A -i%(x)] and [ cp(x) A A -i w.(x) ] 3 [ a(x) A
i<n *

-,%(x)] . Therefore H(p) e H( [ a(x) A ^%(x)] ) = (a/%) and O 3 (a/%).

Thus we have shown that each open subset in the quotient topology is a union
of sets of the form (cpA|f). D

The closed set I(T) turns out to be a rather important invariant of T.

One can certainly perform a Cantor-Bendixson analysis on it. Given any
topological space X its CB derivative X' is just X \ { isolated points of X }

and the higher CB derivatives X^ are defined by recursion on the ordinals as

follows:
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.

iii. X(X)= H X(a) if X is a limit ordinal.

CB(X), the CB rank of X, is then defined as the greatest a for which

X<a)*0. If no such a exists then we say CB(X) = oo. We also talk about

ik(a), the CB rank of a point aeX^ as the greatest a for which aeX^.

Another measure of the complexity, which we call m-dimension,
can be [cf. PR, Chap. 10] defined on pairs of ppfs q> and \|f when q> 2 \|f as

follows:

i. m-dimT (cfy) > 0 if T |= 3x (9(x) A -i \|f(x))

ii. m-dim (9/\|f) > a+1 if there is a sequence {<Pn(
x)}n<a)

such that 9 = <p0 3 cpj 2 q>2 2 ... 2 <pn2 ... 2 y and dinij, (9n/<Pn+i) ̂  «

for all n < co or if there is a sequence {Vn(
x)}n<o) suc^ *at 9 2 • • • 2 Vn 3

...3V23Vi3Vo = V and dinXj, (\|fn+1A|fn) > a for aU n<co.

iii. m-dinu (9/\|/) > X if dinXj, (<pA(0 ^ a for all a < X if X is

a limit ordinal.

Then m-dinL (9A|/) = a if m-dinXj, (q>A|0 > a andm-dinLpCcAir)^ a + 1. If

m-dim (9A|̂ ) ^ a for all ordinals a then m-diiru (<pA|0 = °°. By the

dimension of a module M we mean m-dim^^ (x = x/x = 0) if this is not °o;

otherwise we say M does not have m-dimension.

m-dimension and CB rank are then related by the next

Theorem [Zie, Thm.8.6]. If R is a countable ring then
m-dimj, (<p/\|/) = max { rkI(T)(U) : U e I(T) n (9/\|0 } and hence

rkim(U) = min { m-dimp (<pA|/) : U e (cpA|r) }.
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§ 11. The Hull of the Generic

In this section we consider a theory T with a regular generic 1. It is

shown that if R is countable and T has m-dimension, Le. that CB(I(T)) < <»,
then H(l) is the unique unlimited point in I(T) of maximal CB rank.

Suppose that R is a commutative noetherian domain. There is a

bijection between Spec(R) and the set of indecomposable injective R-modules
given by $ -> E(R/C) - E denotes here the injective hull of an R-module. Let

Tfr. = Th ( 0 E(R/P)^K°' j ? e Spec (R) ), the largest theory of injective

R-modules. By[E-S], injectivity is an elementary property so every model of
T^. is injective as are all of its indecomposable direct summands. ICT^. ) is
thus exactly the image of Spec(R) in 1(1̂ ) under the above imbedding. Prest

has noted [PR,§4.7, Example 2 and §6.1] that this imbedding takes closed
subsets of Spec(R) into open subsets of ICT^. ). Specifically if P is a prime

ideal then the image of V(P) = { $ e Spec(R) : ^ 3 P) is the open
( in ICT^. ) ) subset (Çx = 0 / x = 0). So while the maximal ideal W is a closed

point in Spec(R) ( { I»} = V(ltt) ), in I(T. ) it is isolated by the neighborhood

Since R is a domain, Spec (R) is an irreducible space whose generic
point is the prime ideal 0. The point in I(T. . ) to which 0 corresponds ismi
E(R), the field of quotients of R. E(R), being a field, is a pp-simple

indecomposable injective (and hence pure-injective) module. So any two non-
zero elements of E(R) have the same type 1 and E(R) = H(l).

Let c e E(R/£ ). Since E(R/0 ) is indecomposable and E(R/£ ) 3 Re

it follows that E(R/£ ) = E(Rc). But the homomorphism /: R -> Re for which

/(I) = c lifts to a homorphism /: E(R) -» E(Rc) = E(R/£ ). The existence of
such a map implies that tp+(c) 2 I"1" and that indeed for every a e M |= T^. ,

tp+(a) 2 1+.

The pp-type 1+ carries in it the least amount of positive information.
In fact, 9(x) e 1+ iff q>(M) = M for every M |= T.^ . Also note that each
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indecomposable in I(T. . ) is unlimited in T^. so that T^. has no pp-

definable subgroups of finite index, p is thus the generic type. By Fact 1 of
§2, 1 is regular and we have naturally associated the generic point of Spec(R)
with the hull of generic type (a regular type, in this case) of T. . .

Theorem. Suppose that R is countable and T has a regular generic p. Then
H(l) is the unique unlimited U e I(T) which is a closed point In particular,

if 0 < CB(I(T)) = a < oo, then H(l) is the only U e I(T) for which rk(U) = a.

Proof: Let U = H(l). By Lemma 2(3) of §5, U is pp-simple so
EndRU = A, a division ring and U is a one-dimensional (right) vector space

over A. Now it is well known that End^U = A, if we let it act on the left.

From now on, we shall think of A as acting on the left; if we want to about the

action of A on the right, we will denote A by Ar. We also see that R =
R/finRT imbeds into A for every element r e R commutes with the action of

EndRU = Ar andifsefinRT then sU = 0.

Let D be the division ring in A generated by R. Let op...,8abea

basis for A over D i.e. A = © D8. as a (left) vector space over D.i<a i r

Then for a e U, U = A a = .© D8-a as an R-module since D 3 R . But
i<oc *

U is indecomposable so a = 1 and A = D, the division ring (in A) generated

by R.

Let V e I(T) be unlimited. Then if cp(x) e 1+, it means that cp(V) = V.

Suppose moreover that I(Th(V))= {V} i.e. that V is a closed point in I(T).

By the Theorem in §10, Vhas dimension zero. V has neither an ascending

nor descending chain of pp-definable subgroups so we get a composition

series of pp-definable subgroups of V. Using a Jordan-Holder argument one

can show that the length of a composition series is an invariant of V which we
call M.(V), the multiplicity of V.
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Claim: For each 8e A thereisappf. ag(x,y) such that y = 5x iff

U|= ag(x,y) and ag(x,y) defines in V the graph ofabijective

Z-homomorphism (also denoted by 8).

Proof: We prove the claim for all reR and then show that the set of 8 for

which the claim holds is a division ring.
i. If r e finRT then rx = 0 e 1+ and so V |= rx = 0 making V an

R-module. If re R, y = rx is a ppf. defining the graph of r. Ifr*0 then
rU = U since U is pp-simple and so r I x e 1+ . But then V |= r I x and rV
= V. Since rV = V/kerr, ^(V/ker r) = ̂ (rV) = |i(V) forcing kerr = 0.

ii. If 8p 82 e A satisfy the claim then:

(jg +s (x,y) is defined by the ppf. 3z ag (x,z) A <jg(x,y-z)

(jg s (x,y) is defined by the ppf. 3z 0g(x,z) A (jg (z,y) and
is defined fey

So if 8 is 8j+ 82, 8j82 or 8 i then ag(x,y) is a ppf. such that

y = Sx (in U) iff U |= CTg(x,y) and by hypothesis it clearly defines a function

onV. If 8*0, then U|= 3x<jg(x,y) so 3x<jg(x,y) e 1+ and V|= 3x

Og(x,y) Le. 8V = V. As in casei., ker8 = 0, Sisbijective and the claim is

verified.

We need to show that V is a left vector space over A. Let a(x) be the
ppf. 3y3z (ag +* (x,y) A <jg (x,z) A dg(x,y-z)) and let |J,(x) be the ppf.

3y3z (ag » (x,y) A a^ (x,z) A <jg (z,y)). Evidently, V |= a(x) means that for

all xinV, (81+82)(x)= 8jX+ 82x and V|= ji(x) means that forallxeV

(8t82)x = S^x). But U |= a(x) A \i(x) so a(x) A n(x) e I4" and

therefore V |= a(x) A |i(x) and V is now a vector space over A. Since

A 3 R and V is indecomposable, V is one-dimensional over A.

Now let aeU, beV, a,b*0. tp+(b) 3 l+ = tp+(a) so there is a

partial map / from U to V such that /(a) = b. As V is pure-injective this lifts
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to a map / :U -> V which commutes with the left action of A so it must be an

isomorphism and U = V.

U is closed in I(T) since its closure is just I(Th(U)) = {U}. By the

above it follows that if V, unlimited, is another such closed point of I(T) then

U = V. If 0< CB(I(T)) = a, I(T)(a) is a closed discrete set so all of its

points are closed and unlimited. But that means that I(T)^ = {U} and the

theorem is proved. D

The above theorem does not generalize to abelian structures. For

example, if we consider the theory T of a torsion-free divisible abelian group

and we include in the language a unary predicate P which interprets in a model

of the same theory a non-trivial divisible subgroup, then I(T) will consist of

two indecomposable pure-injective abelian structures: a copy of the rationals in

which P interprets the trivial group 0 and a copy of the rationals again with

P interpreting the whole group. It is the former of the two which is the hull of

the generic so we see that the generic is regular. But both points of I(T) are

T-unlimited and closed.
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