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INTRODUCTION

The subject of these lectures, while perhaps not a

major theme in the representation theory of finite groups

of Lie type, nevertheless cuts across the representation

theory of these groups in interesting and sometimes

unexpected ways. The main results reported on here are

due to Alvis (El], C2]), following an earlier paper C73

by the author. Some of Alvis's main results were obtained

independently by Kawanaka, and a homological interpretation

of the operation has been given by Deligne and Lusztig CIO]

In order to describe the contents of this paper, we

first require some terminology. Let H be a finite

group, and let ch(IDH) denote the ring of complex valued

virtual characters of H. The elements of ch(EH) are

the 2Z-linear combinations of the elements of Irr H,

the set of irreducible characters afforded by the simple
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4-0 Characters of Groups of Lie Type

left EH-modules. The operations of addition and multi-

plication of characters correspond to the operations of

forming direct sums and tensor products of the corres-

ponding EH-modules. A duality operation in ch(EH) is

a 7L -automorphism of Ch(ffiH) of order 2, which pre-

serves the inner product

(f,g)H - iHl"
1 I f(x)IO£T

H xcH

of class functions on H. Such an operation clearly per-

mutes, up to sign, the elements of Irr H. A familiar

example of a duality operation is the map £ -*• "£,

£ € ch(EH), where £ is the complex conjugate of £.

This map corresponds to the operation of forming the

contragredient module of a given EH-module. Another

example is given in § 1, for finite Coxeter groups, and

consists of multiplying a character by the sign charac-

ter. The duality operation described in § 2, for virtual

characters of a finite group G of Lie type, defines a

permutation of Irr G (up to sign), with corresponding

characters not necessarily having the same degree. The

degree of £ € Irr G and its dual c* e ch(EG), with

j£* 6 Irr G, always have the same pf-part, and hence

differ only by a power of p, where p is the character-

istic of the finite field associated with G.

In § § 1-4, we have given a self-contained exposition,
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often with complete proofs, of the main results. In § 5,

we survey without proof some other results, with refer-

ences to the literature.

It is a pleasure to acknowledge the hospitality and

interest of the Notre Dame Mathematics Department during

the time these lectures were presented.

1. DUALITY IN THE CHARACTER RING OP A

FINITE COXETER GROUP.

Let (W,R) be a finite Coxeter group with dis-

tinguished generators R = {r-,...,r }, with the pre-

sentation

W = <r1,...,rn : r^ = (r±r.j)
 1J = 1, 1 < i, j <> n>.

Then the map e : R •* ID* defined by eCr.^) = -1, 1 £ i < n,

preserves the defining relations of W, and therefore

can be extended to a homomorphism

e : W -* E*

which we shall call the sign representation of W. For

example, the symmetric group S +., is a Coxeter group

with generators r1= (12),...,r = (n,n+l) and

defining relations (r±r.)
2 - 1 if |i - j| > 1, and

^riri+l' =» 1> 1 ̂  i ^ n. In this case e(cr), for

a € S , is the usual signature of a permutation, and is

1 if a is even, -1 if a is odd.
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It is easily checked that the map y -»• ey, for

li € ch(IDW), is a duality operation in ch(EW)3 and it has

traditionally been used to organize the character tables

of the Coxeter groups.

Our first aim is to give a geometric interpretation

of e. It is a standard result (see C33) that W can

be identified with a finite group generated by reflec-

tions on a real Euclidean space E of dimension

n = |R|. Each reflection r e W leaves a hyperplane H

pointwise fixed, and if a is a vector orthogonal to H,

then

where ( , ) is the positive definite scalar product

on E. The vectors {+a} orthogonal to the hyperplanes

fixed by the reflections in W, with their lengths

suitably normalized, are permuted by the elements of W,

and are called the root system $ associated with W.

There exists a set II of roots {ou, . . . ,an>, with the

properties that {(̂ ,...,0 } form a basis of E over

K , and every root a can be expressed in the form
n

a = Z c. a. 3 where the coefficients {c.} are either
1-1 x x 1

all non-negative or all non-positive. Such a set of roots

is called a fundamental system, and there exists a

fundamental system II such that the distinguished
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generators tr.K < i < n
 Qf ^ coincide with the

reflections {r } e II, where r is the reflection
ai ai ai

defined as above, fixing the hyperplane orthogonal to a..

The subsets J 5 R all define subgroups Wj =» <J> =

<r. : r. e J>, which are themselves Coxeter groups, and
J u

are called parabolic subgroups of W.

In this set-up, the sign representation is defined

by e(w) = det w, the determinant of w 6 W on the

vector space E. We are interested in one more formula

for e, which arises from the action of W on the

unit sphere S in the Euclidean space E. We shall

define a natural triangulation of S defined in terms

of the root system. The action of W on the simplicial

complex defining the triangulation yields a representa-

tion of W on the rational homology H#(S), and we have:

(1.1) PROPOSITION. Let (W,R) be a finite Coxeter

group with n = |R| > 2. Let r be the abstract

simplicial complex whose simplices are the cosets

{wWj : w e W,J c R} of all proper parabolic subgroups of

W, with order relation (defining the faces of a simplex)

given by the opposite of inclusion. Then:

(i) the geometric realization |r| of r is

homeomorphic to the unit sphere S in E.

(ii) the rational homology H#(D = S=:H^ is
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given by: H^CD • 0 except in dimensions 0 and n-1

and HQ(r) =
 H
nn(

r) s $ as rational vector spaces.

(iii) the rational homology group HQ(D affords

the trivial representation of W, and the homology

group H
n_i(

r) affords the sign representation e.

We shall give a sketch of the proof. For, more

details see Carter C4] or Bourbaki C33- Let

II = {a.,...3a } be the fundamental system of roots such

that the reflections {r }- . coincide with R,

and let C = {£ € E : (£,0̂ ) > 0 for all o^ e n}. Then

C is an open simplicial cone called the fundamental

chamber of W acting on E. The walls* of C are the

subsets Cj c (J, where (J ig" the closure of C, and

J ranges through subsets of n, defined by

U € E : (5,a±) - 0, a± e J ,

(C 5a±) > 0, a± e E - J

It can be proved that for each subset "J c n, the

stabilizer of Cj in W is the parabolic subgroup W

of W, generated by the reflections {r : a. € J} .
aj J

For a fixed J <= R, the W-translates {wCj> are in

bijective correspondence with the cosets {wW_}.

Moreover, each vector 5 ^ 0 in V belongs to the

interior of a unique W-translate wCJS J 5 R, of the

chamber C or one of its faces. It follows that the



C. W. Curtis 45

intersections of all the translates {wCj : w e W, J c R}

with the unit sphere S- in E, defines a simplical

subdivision of the sphere S. It is also clear that a

simplex wCj n S on S is a face of w'Cj1 n S if

and only if wW- ̂  w'W', proving that .S is the

geometric realization of the simplicial complex r

defined in the statement of the proposition, and

proving the first statement. The second statement is

immediate, from the properties of the rational homology1

of a sphere.

For the third statement, it is easily checked that

HQ(r) affords the trivial representation 1^ . In

order to prove that H
n_i(r) affords e, we consider

the Lefschetz character A of the homology representa-

tion of W on Ĥ (r); then A is the virtual character

of W given by

A * S (-D̂ rĈ H.Cr)).
i=o 1

For the action of a finite group (in this case W) on

a finite simplicial compex r, it is well known that

for each w € W,

A(W) = x(lr|w),

where X ( | r [ ) is the Euler characteristic of the

fixed point set |r|w of w acting on the geometric
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realization |r| of r. For a reflection r, the

fixed point set of r is a sphere of one lower

dimension than S, and we have

A(r) - 1 + (-l)n~2.

On the other hand, by definition of A and the facts

that H.(T) = 0 except in dimensions 0 and n-1,

and that r acts trivially on HQ(r) we also have

Mr) - 1 + (-l)n~1Tr(r,Hn_1(r)).

Combining these results, we have Tr(r,H -,(r)) = -1

for each reflection r, and hence Tr(r,H .(I1)) = e,

completing the proof of the proposition.

As a consequence, we obtain:

(1.2) COROLLARY (L. Solomon Cl6]). The sign

representation e of W is given by

e= r (-i)lJh w,
JcR WJ

W
where Lr is the induced permutation representation of

WJ

W on the left cosets of WT, for J c R .j —

For the proof of the corollary, we first note that

for J c R, GJ n S is an i-simplex if and only if

JII - j| - 1 = i; for example the vertices of the

simplicial subdivision correspond to the faces CT, withj

J a maximal subset of R, and their W-translates. We
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then have, for w e W, since WT is the stabilizer of
d

Cj for each J,

Tr (w,C ± ( r ) ) - #1 simplices fixed by r

where C ± ( r ) is the i h chain group of T, with a

basis consisting of the i-simplices {xCj : x e W,

|n-j| -1-1}. We then apply the Hopf trace formula

to the Lefschetz character of the homo logy representa-

tion of W on H $ ( T ) , and obtain

n-1
A ( w ) = I (-1)1 T r ( w , C . ( r ) )

i=o -1

JcR "Xj

On the other hand, from what has already been shown

in part (ill) of the Proposition,

A(w) - 1 + (-D̂ -̂eCw), w € W.

Combining these results, we obtain Solomon's formula.

A final corollary gives an expression of the

duality operation y •*• ey, for virtual characters

y c ch(IDW), as an alternating sum of induced characters,

which will point the way toward the duality operation

we shall define for characters of finite groups of Lie

type.
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(1.3) -COROLLARY. For each virtual character

U s ch(EW), we have

ep - Z (-D(u|w ),
JcR WJ

where u|w is the restriction of y e ch(IDW) to WT.Wj J

By Solomon's formula we have

e = Z(-l)lJlo« W.
WJ

Multiplying by ji, we have

W) .
J

A well-known identity for induced characters then gives

'J "J

completing the proof.

2. TRUNCATION AND DUALITY IN THE CHARACTER

RING OF A FINITE GROUP OF LIE TYPE.

In this section, G denotes a finite group of Lie

type. Such a group may• be described in various ways.

For example, we may assume G is a Chevalley group

over a finite field IP (or a twisted type of Chevalley

group) as in Carter [4] or Steinberg [183. Alternatively,

let G be a connected reductive affine algebraic group

over an algebraically closed field K of characteristic
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p > 0, with a rational structure defined by a surjective

endomorphism a : G -> g such that the subgroup Sa, of

elements of G fixed by a, is finite. Then G - 5a

is a finite group of Lie type, and the two descriptions

are essentially equivalent (see Steinberg [193).

As examples to keep in mind, let g = GLn(K), and

let q » pa, a > 0, where p is the characteristic of

K. Then G has two rational structures, defined by

the maps

ax : (x̂ ) * (x±j
q) and a2 : (x±j) ->

 t(xij
q)"1.

In the first case, the resulting finite group of Lie

type is the untwisted group GL (IP ), while in the

second case, §a is the unitary group U (IP 2)>
 a

"~ 2 q
twisted type of Chevalley group.

In this section and the next, the properties of G

we shall require can be summarized in the statement that

G has a split (B,N)-pair of characteristic p > 0, for

a fixed prime p, with Weyl group W, and satisfies

the Chevalley commutator relations (see Richen [143 or

Curtis [63). Thus G has a (B,N) pair with Borel

subgroup B, and a subgroup N, satisfying the usual

axioms. In particular, we have:

(i) G - <B,N>;

(ii) If H = B n N, then H < N, and the group
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W = N/H (the Weyl group of G) is a finite group

generated by a set of involutions R.= {r.̂ ,...,̂ },

satisfying the additional conditions:

(iii) r.Bw £ BwB u Br.wB (where we use the

notation Bw, for w e W = N/B n N, to denote Bn,

where n € N corresponds to w under the natural map

N •* N/H) , and

(iv) B̂̂ . 2 B for all r^ e R.

From the axioms, it follows that (W,R) is a

Coxeter system, with distinguished generators R, and

we have the Bruhat decomposition of G:

G = u B w B,
weW

with w -»• BWB a bisection from W to the double cosets

B\G/B.

The split (B,N)-pair in G is defined by a

splitting of B as a semidirect product:

B ='UH, U ± B, U n H - { 1} ,

with U = 0 (B) , the unique maximal normal p-subgroup

of B, and H an abelian pf -group.

For example, in the case of

(B,N)-pair is given as follows:

For example, in the case of GL (JP ) , a split

B (upper-triangular matrices),
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N « {monomial matrices, with exactly one nonzero

entry in each row and column},

H - B n N * {diagonal matrices},

{unit upper-triangular matrices}.

Then the Weyl group W = N/H, in this case, is isomorphic

to the symmetric group S , and defines a split (B,N)-

pair of rank n-1.

The standard parabolic subgroups of G (in the

general case) are the subgroups containing B, and are

defined in terms of the Bruhat decomposition by

P, - BWTB - u BwB,

where Wj is a parabolic subgroup of W, and J ranges

over the subsets of R. It follows from the (B,M)-

properties and the commutator formulas (see Curtis £63)

that each standard parabolic subgroup has a decomposition

as a semidirect product (called a Levi decomposition)

Pj = LJVJ» with Vj - Op(Pj) ̂  Pj,

where Lj, called the Levi factor,, is a group with a

split (B,N)-pair with Weyl group (Wj,J). The group

VT is often called the unipotent radical of PT, and
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is the group of 3P -rational points on the unipotent

radical RU(£J) of a parabolic subgroup gj defined

over 3P , in case G arises from an algebraic group

S as described earlier.

In case PT = B, the Borel subgroup, with J = 4>,
d

the Levi decomposition is given by

B - UH, with V, - U, L. - H,

and is part of the definition of split (B,N)-pair.

The parabolic subgroups of G are the standard para-

bolic subgroups {PT}., 05 and their conjugates by ele-
d d CJTl

ments of G. In the case of GL (IP ) , they are the

stabilizers of all flags in the underlying vector space

on which GLn(3P ) acts, where a flag is a chain of

subspaces

W- c W0 c ... c w , s * 1.-L tL S

Thus the Borel subgroups are conjugates of the stabili-

zers of complete flags (with dim W. = i, 1 <s i £ s and

s = n - 1).

The definition of the duality operation involves

restriction and induction from parabolic subgroups PT,
d

J £ R. The usual definitions, however, have to be modi-

fied to take into account the unipotent radicals VT, so
d

that we really are setting up relationships between

characters of G and characters of the Levi subgroups
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Lj of Pj, for J £ R. The process can be described in

a general way as follows. Let G be a finite, H a

subgroup of G, and V a normal subgroup of H, so that

V < E z G. Let X be a left EG-module with character

£. Then the restriction £[„ = resH£ is a sum of two-

characters of H,

where £,1 is the contribution to £|H from irreducible

characters of H having V in their kernels, and C"n
is the contribution from those that do not. Note that

£' can be viewed as a character of H/V. On the other
£1

hand, let inv,_(X) be the sub space of X affording the

trivial representation of V; then inv̂ (X) is a flJH-

module since V 5 H, and, in fact, is a E( H/V) -module

since V acts trivially on inv,,(X) . Let £(H/V) be

the character of H/V afforded by invv(X) . Finally,

for each character X of H/V, let X denote the char-

acter of H with V in its kernel defined by the

natural map H •+ H/V. These ideas are connected by the

following result, whose proof is left as an exercise.

(2.1) PROPOSITION. Keeping the above notations,

the following characters of H/V coincide :

?' = CrH/vx - (5L)/w/vx - E U,XG)X.
H (H/V) »H (H/V) X£lrr(H/V)
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An easy lemma from the Felt-Thompson paper (Cll3,

p. 783) implies that for an element x c E such that

CQ(x) n V = {!}, we have

which is a kind of reduction theorem for character values

on certain elements in terms of characters of the smaller

group H/7.

From this point on, we shall often be following the

approach of Alvis [13 (see also Curtis C71).

(2.2) DEFINITION. Let G be a finite group of Lie

type, with Coxeter system (W,R), and let J £ R. The

operation of truncation Tj : ch(EG) •*• ch(IDLj) is a

homomorphism of E- modules 9 which assigns to each virtual

character \i e ch(EG) the virtual character

TTu € ch(ELT), whereu j

TTuU) = |V J"
1 Z y(v*), ̂  € LT.J J J

The fact that TjU is in fact a virtual character

of Lj, and connections with Proposition 2.1, are given

by:

(2.3) PROPOSITION. Let \i € ch(IDG) be a charac-

ter afforded by some EG-module M. Then

"<vv •
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For the proof, let 6j = |VJ|"
1ZV€V v. Then

J
eTM = invTr M, and for 2, e LT3 &eT = eTJl since LTj v . J J J j

normalizes VT. Thenj

and hence T̂ -y = u,p ̂  > .
J J

Corresponding to the operation of truncation, we

have a second operation, which is a homomorphism of

2Z- modules

Ij : ch(ELj) -»• ch(EG),

given by IjX = X , for each character X of Lj, where

X is the lift of X from LT = PT/VT to PT defined
d J J J

previously. The operations I_ and T_ are adjoint

with respect to the scalar product of characters (see

(2.5)).

REMARK. These ideas can be used to describe Harish-

Chandrafs organization of the character theory of G.

An irreducible character £ c Irr G is cuspidal (or

discrete series) if TT£ = 0 for all J <= R. It is an
j ^

easy exercise to show that C is cuspidal if and only

if U,IjX) = o for all J c R and all X € Irr Lj.; in

other words c is missed by the process of lifting and

induction from all characters of Levi factors of proper

parabolic subgroups of G. A basic result (which we do
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not prove here) asserts that every character 5 € Irr(G)

is either cuspidal, or is a constituent of ITX, for someu

irreducible and cuspidal character X of LT, for J c R,
J ^

where X and the Levi factor Lj, are uniquely deter-

mined (by £) up to conjugacy. Thus the main problems

in the character theory, of G are to find all cuspi-

dal characters, and to decompose the induced characters

IjX from cuspidal irreducible characters of L,.

Returning to our main theme, we have:

(2.4) DEFINITION. The duality operation is a 2-

endomorphism 5 •* c* of ch(EG) defined by

(- l) l J ' lTTT£, C € ch (EG) .T T
JcR J J

REMARKS AND EXAMPLES, i) Note the parallel between

this definition and the duality operation in ch(IDW) (see

Corollary 1.3). The fact that C •*• 5* is a duality

operation in ch(lCG) will be proved in § 3-

ii) The dual of the trivial character is the Stein-

berg character of G, 1 * = StQ, where StQ € Irr(G) is

a character of degree |G| , the p-part of the order of

G.

iii) If c e Irr G is cuspidal, then 5* = +£ ,

since all the truncations TT£, for J c R, are zero.
J 7*

We next derive some properties of truncation and
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induction, which will be needed to prove the main results

about the duality operation.

For subsets K £ J £ R, let

PJ,K = LJ n V

these are the standard parabolic subgroups of LT, con-j

taining the Borel subgroup BT = B n LT. Their Levij j

decompositions are:

PJ,K = VVJ,K> VJ,K = LJ ° VK>

and we have

VK - Vj KVj (semidirect, with Vj < VR).

Then we have additive maps, for K £ J £ R,

T£ : chClCLj) -> ch(!CLK), 1^ : ch(ELK) -»• ch(ELj),

defined as above.

The following result is easily proved, and is left

as an exercise:

(2.5) PROPOSITION. Let K £ J £ R. Then we have:

(i) (Transitivity) IK - *J*K>
 and TK = TKTJ;

(ii) (.Frobenius reciprocity) For 5 c ch(fl2Lj),

n € ch(ELK), (e,i£n)L = (.T̂ 5,n)LK.
J

For the next result, let J,Jf £ R, and let DJJt
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be the distinguished double coset representatives for

WAW/WJ, . For a subgroup. H £ G and X e ch(EH), and

x € G, we define the conjugate virtual character

XX € ch(£(xH)) by x\(*h) = X(h), h € H, where

xhx"1. We then have:

(2.6) PROPOSITION (Intertwining Number Theorem).

Let J,Jf c R, and let X € ch(ELT) , X
1 e ch(ELTI). Then

d J

(IJX,IJIX')0 - E
JJ

E x . X ' , ,
d 6 D f K

where K « J n djf » dKf, so LK -
 d

K̂,.

For the proof, we first apply the usual inter-

twining number theorem, and obtain

(I X,I A') - S (A| d ,dX'| )
deDjj, Pj n dPJt 'PJ n \, Pj n

 dPJt

We have a factorization of Pj n PJt (see Curtis C6],§ 2),

PJ n %' = LK(LJ n dvj'̂ VJ n S.Ĵ J n \«>.

with uniqueness of expression. Then

n p » p n p
J J1 J J'

|PT n ""P,,!"
1 2 A(Avdyz)dX'(Avdyz),

where v 6 vj K»
 y € Vj» Kr> so yz € VJ* vz €

and the expression becomes
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completing the proof.

3. MAIN THEOREMS ON DUALITY.

In this section, G denotes a finite group of Lie

type as in § 2.

(3-D THEOREM. Let £ e ch(IDG) and J 5 R. Then

where (TjO* is the dual of Tj£ in chdDLj) . (In

other words the operation of truncation intertwines the

duality operation.)

We give a sketch of the proof. For more details see

Curtis C73- We have to prove that

z ( - i ) l J l l T T i T I T T f c = £ (-I) |K |I£T£TTC.
Jt£R J J J K£J K K J

A typical term on the left hand side is

p
T ( E d(T,5) J)

by Mackey's sugbroup Theorem. We then have
p

(3.2) PROPOSITION. TT(d(TT , c)H
 J)

d J QTJ n P
*J' n ^J

for all J,J f c R, d € D,, where K = dJf n J.
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This result is Prop. 2.1 of Curtis C 7 H , and will

not be proved here.

Applying (3 -2 ) to the left hand side, we obtain

TTU*) - Z ( - l ) I J ' l ( T T ( I T I T T I £ ) | p )J J'cR J J J 'Pj
~" P

= E (-1)I J ' I 3E T |dT,,e|. J)
J'cR J J

= z (-i
J'cR

,
QJ f n J=K

Z ( E (-l)I J l laT ! J K)l£TK^ (by (2 .5 ) ) ,
KcJ J 'cR J JK K K

where

1
aT, -rtr ~ card{d c D T T I : J

1 nJ= K} .J'JK JJ f

The proof is completed using the following result.

(3-3) PROPOSITION. Let aJIJK be defined as above,

for J',J,K £ R. Then

•Pci/"1^ aJ'JK = ^"^

For a proof, see Curtis ([71* Lemma 2.5).

As an immediate consequence of Theorem 3-1, we have:

(3.*0 COROLLARY. For all J £ R, TjStQ = StL

where St« and St, are the Steinberg characters of
d

G and Lj, respectively.
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(3-5) THEOREM. (Alvis C 2 ] ) ,The duality map

C •*• C* is a self-adjoint isometry of order 2, in

ch(3DG) . Thus

) and e* = c,

for all s,n € ch(EG).

To begin the proof, we recall (prop. 2.3) that for*

all J £ R, and C e ch(lDG) ,

LT 9elrr LTj u

and by Theorem 3-1* we also have

Let Can ^ ch(iDG) . Then

(c*,n) - s (-D̂ 'djTjC.n)
JcR J J

- z C-i)lJl(iT
JcR J9 € Irr L
—

Tj

JcR (pelrr L.
— J

by symmetry.

We now have, for C e ch(EG)

^* - S (-l)IJllT(TT(C*
JcR J J
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( - l ) l J l l ( . T C ) * (by (3 -D)j.j
JciR

2 (-D S (-l)lTJcR KcJ J K

£ C-1)IJ' Z C-Dl^Wc (by C2.5))
JcR KcJ *• A

2 (.-D|K|( E (-D^blc
KC.R

since I (-1)IJI= 0 if K ̂  R.

Finally, to prove that C •»• S* is an isometry, we

have, for 5,n e ch(EG)

completing the proof.

(3-6) COROLLARY. (Alvis) The duality operation

permutes, up to sign, the irreducible characters of G.

Let C e Irr G. Then (5,5) = 1, so C* is a

virtual character of G such that (£*,£*) = l, by

Theorem 3-5- Thus +C* € Irr G, as required

The next result shows, how the duality operation

interacts with Harish- Chandra's "philosophy of cusp

forms", discussed in § 2.
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(3-7) COROLLARY. Let 9 be a cuspidal irreducible

character of LT, for some J c R (so T^9 = 0 for all
d """" j\,

K c J). Then
* i _ i

Moreover, for £ e Irr(G) 5
t

U,Ij<p) ^ 0 => U*,Ij<P) I* 0,

so * permutes the irreducible components of Ij<P»

cp as above.

We have, for C e Irr G,

)* ,C) - dj^5*)a - (9,Tj(c*))L (by (2 .5) )
J

- (9J(TJO*)L Cby (3 -D)
J

= (cp*, TjC)L (by (3 .5))
J

- (-l) l j |(<P,T j C)L = (-l) | j |(Ijq),5) (by (2.5)) ,
J

using also the fact that if 9 is cuspidal in Irr(LT),j

then

9*

This completes the proof of the corollary.
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4. APPLICATIONS TO SPRINGER'S THEOREM AND A

CONJECTURE OP MACDONALD.

All the results in this section are due to Alvis

[13. Let G be a finite group of Lie type, and p the

prime associated with G (i.e. the characteristic of

the field, for a finite Chevalley group). Let V be

the set of all p-elements in G. (Note that in case

G = g for a connected reductive affine algebraic group

g, as in § 2, then V is the set of all unipotent ele-

ments in G.) We shall call V the unipotent set in G.

It is necessary to extend the operations Tj, Ij,

£ -* £*, etc. to the vector space cf-G of complex valued

class functions on G; then the usual results continue

to hold, by linearity, since Irr G is a basis for

The first main result is a variation by Alvis of a

theorem of Springer [173.

(4.1) THEOREM. Let p be the regular character of

G, and Xv the characteristic function on V (i.e. the

function which is 1 on V and 0 on the complement

of V). Then

«* — In I v

where I^Li is the p!-part of the order of G.
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We first require:

(4.2) LEMMA. For all J 5 R, TjXv = Xy|p
J

We first note that for a class function £ on Lj,

1 Is the class function on P, defined by

f(fcu) = £(&) 3 £ c Lj, u e Vj. We have to show that for

£ € L, U € V,

which is the same as

J"

for g € Pj. On the right hand side, we get 1 if g

is a p-element, and zero otherwise. On the left side,

it suffices to show that for u € Vj, g € Pj, gu is a

p-element if and only if g is a p-element. This is

easily checked, and the Lemma follows .

For the proof of the Theorem, we also require the

facts that StG(l) = I
GI P*

 and hence that StQ vanishes

on p-irregular elements (see Curtis C53) . Then we have

* xv*sta ^by direct verification)

- E(-l)lJ'x-l G (since St - 1*)v p Q Q
J

)G
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completing the proof.

As a more or less direct consequence, we obtain the

following result, the last part of which is related to

conjecture of MacDonald which remained unproved after

the others were settled by Deligne and Lusztig (see

Alvis [2] for further discussion).

(4.3) THEOREM. Let 5 e Irr G. Then the following

statements hold

(i) Z

(ii) U*(D|pl - C(Dpi.

(iii) e(l) Z z;(u) is, up to sign, a power of p.
ueV

For the proof of (i) , we have

Z 5(u) - |a|(c,0r
 = lal<5*,x) (by (3-5))

ueV v u v

- |G|(̂ MG|̂ P) (by (4.D)

= |G|nU»,p) • |GDU*(D (since +£* € Irr G) .
P sr

For part (ii) , we first obtain

l KU(V
C(D S 5(u) - Z — FTTT^ € alg-lnt 1C n Q = 2Z ,

(C

where {C} ranges over the conjugacy classes of p-ele-

ments in G, and u^ e C, for each CC. We have also used
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the standard result from character theory that

.
— -7-=-x — € alg-int.lD (the algebraic integers in ID) ,

for any irreducible character £ and conjugacy class CC.

Thus

by part (i). Since ±Z* e Irr G, by (3.5), we can

replace 5 by £* in the above argument, and obtain

also

Combining these results we obtain (11). Finally, (iii)

follows at once from parts (i) and (ii) .

As a further application, we obtain another proof

of a result of Steinberg C193-

(4.4) COROLLARY. |v| = |G|2.

The proof is immediate, upon applying (i) to the

trivial character, since 1* = StQ, and StQ(l) = |G| .
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5. SOME ADDITIONAL RESULTS.

We shall describe briefly, without proofs, some

other results about the duality operation.

5.a. THE PERMUTATION OF THE IRREDUCIBLE COMPONENTS OP

Ij9, FOR 9 CUSPIDAL IN Irr Lj.

By Corollary 3.7, the duality operation permutes

(up to sign) the irreducible components of Ij<P» for

J c R and q> a cuspidal irreducible character of LT— j.
The precise nature of this permutation has now been

determined. To describe the main idea, we begin with

the simplest case, with J = c|>, q> = 1, so 1,1 = 1Q ,

the permutation character of the action of G on the

cosets G/B. Using the theory of Hecke algebras, it

is known, in this case, that there is a bisection

i|j •+• 5, from Irr W to the characters {5 € Irr G:

(C,1 ) ̂  °}> with the property that

for all J £ R. Let e be the sign character of W.

We then have:

(5.1) THEOREM (Curtis C71). For all f e Irr W.

we have
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Thus the duality operation, for the characters in

IB , corresponds exactly to the duality operation of

ch(lDW) described in § 1. This result has been extended

to components of A_ by McGovern [13], and to the

general case, for components of Ij9 as in (3-7)* by

Hewlett and Lehrer [12].

5.b. HOMOLOGICAL INTERPRETATION OP DUALITY

In § 1, we interpreted the duality operation in

ch(EW) in terms of the homology representation of W

on Hg(r). A similar interpretation of the duality

operation is possible for a finite group G of Lie type.

Let A be the combinatorial building of G; then A is

the finite simplicial complex whose simplices are the

proper parabolic subgroups of G, with G-action given

by conjugation, and with the order relation given by

the opposite of inclusion. Thus the vertices of A are

the maximal parabolic subgroups of G. We first have

(assuming the rank n of the BN-pair in G is £2),

(5.2) THEOREM (Solomon-Tits [16]). The rational

homology HS(A) is zero except in dimensions 0 and

n-1, and in these dimensions affords 1Q and StQ,

respectively.

Since StQ = 1Q , this result suggests the
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possibility of a homological interpretation of the

duality operation, in the general case, using a suitable

coefficient system over the building A. Such a result

has been obtained by Deligne and Lusztig [10]. (See

also Curtis-Lehrer [8] for a proof of (5.2) in terms

of a comparison of End^H^A)) with EndCQW(Hx(r)) ,

and [9] for extensions of this idea to the homology of

the building over certain coefficient systems.)
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