Appendix A

ANOTHER PROOF OF A LEMMA BY SCHNEIDER

The lemma by Schneider proved in 83 of Chapter 6 may also be obtained by means of a different method. This method has the advantage of leading to a slightly stronger result. It is due to my former colleague, G.E.H. Reuter, now professor of mathematics at the University of Durham.

1. A special case of Taylor's formula with Lagrange's error term states that if $f(x)$ is four times differentiable in a neighbourhood of $x=0$, then

$$
f(x)=f(0)+f^{\prime}(0) \frac{x}{1!}+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{I V}(\xi) \frac{x^{4}}{4!}
$$

where ξ is a number between 0 and x. Let us apply this formula to the function $f(x)=\log \cosh x$ for non-negative values of x. Then

$$
f^{\prime}(x)=\tanh x, \quad f^{\prime \prime}(x)=\cosh ^{-2} x, \quad f^{\prime \prime \prime}(x)=-2 \sinh x \cosh ^{-3} x
$$

and

$$
\mathrm{f}^{\mathrm{IV}}(\mathrm{x})=4 \cosh ^{-2} x-6 \cosh ^{-4} x
$$

The fourth derivative assumes its maximum when $\cosh x=\sqrt{3}$, and so

$$
\mathrm{f}^{\mathrm{IV}}(\mathrm{x}) \leqslant \frac{2}{3} \quad \text { for all } \mathrm{x} \geqslant 0
$$

It follows therefore that

$$
\log \cosh x \leqslant \frac{1}{2} x^{2}+\frac{2}{3} \cdot \frac{x^{4}}{24}
$$

and hence that

$$
\begin{equation*}
\cosh x \leqslant \exp \left(\frac{1}{2} x^{2}+\frac{1}{36} x^{4}\right) \quad \text { if } x \geqslant 0 \tag{1}
\end{equation*}
$$

2. Let again r_{1}, \ldots, r_{m} be m positive integers; let further $s, \rho_{1}, \ldots, \rho_{m}$ be $m+1$ positive numbers. We denote by N the number of sets of m integers (i_{1}, \ldots, i_{m}) satisfying the inequalities
(2):

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{\rho_{h}} \leqslant\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}},
$$

or, what is. the same, the number of such sets satisfying

$$
\begin{equation*}
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{\rho_{h}} \geqslant\left(\frac{1}{2}+s\right) \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}} . \tag{3}
\end{equation*}
$$

That both systems (2) and (3) have the same number of integral solutions is obvious because the transformation

$$
\left(i_{1}, \ldots, i_{m}\right) \rightarrow\left(r_{1}-i_{1}, \ldots, r_{m}^{-i_{m}}\right)
$$

interchanges their solutions.
3. Denote by u a positive variable, and put

$$
F_{h}(u)=\sum_{i=0}^{r_{h}} \exp \left\{u\left(\frac{1}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\} \quad(h=1,2, \ldots, m)
$$

and

$$
F(u)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} \exp \left\{u \sum_{h=1}^{m}\left(\frac{i_{h}}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\}
$$

Evidently,

$$
F(u)=\prod_{h=1}^{m} F_{h}(u)
$$

In the sum for $F_{h}(u)$ replace i by $r_{h}-\mathbf{i}$ and note that

$$
\frac{r_{h}-i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}=-\left(\frac{i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)
$$

It follows that

$$
\begin{aligned}
\mathbf{F}_{h}(u) & =\frac{1}{2} \sum_{i=0}^{r_{h}}\left(\exp \left\{u\left(\frac{i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\}+\exp \left\{-u\left(\frac{i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\}\right) \\
& =\sum_{i=0}^{r_{h}} \cosh \left\{u\left(\frac{i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\} \\
& \leqslant\left(r_{h}+1\right) \max _{i=0,1, \ldots, r_{h}} \cosh \left\{u\left(\frac{i}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\} .
\end{aligned}
$$

Now cosh x is decreasing for $\mathrm{x} \leqslant 0$ and increasing for $\mathrm{x} \geqslant 0$. The maximum is thus attained both when $i=0$ and when $i=r_{h}$, and hence

$$
F_{h}(u) \leqslant\left(r_{h}+1\right) \cosh \frac{r_{h u}}{2 \rho_{h}}
$$

Therefore, by (1),

$$
\begin{aligned}
F(u) & \leqslant\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \prod_{h=1}^{m} \cosh \frac{r_{h u}}{2 \rho_{h}} \\
& \leqslant\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \exp \left\{\frac{1}{2} \sum_{h=1}^{m}\left(\frac{r_{h u}}{2 \rho_{h}}\right)^{2}+\frac{1}{36} \sum_{h=1}^{m}\left(\frac{r_{h u}}{2 \rho_{h}}\right)^{4}\right\}
\end{aligned}
$$

that is,
(4):

$$
F(u) \leqslant\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \exp \left\{\frac{u^{2}}{8} \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{2}+\frac{u^{4}}{576} \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{4}\right\}
$$

4. By definition, the inequalities (3) have N integral solutions ($\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}$). These inequalities may also be written as

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m}\left(\frac{i_{h}}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right) \geqslant s \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}},
$$

and they therefore imply that

$$
\begin{equation*}
\exp \left\{u \sum_{h=1}^{m}\left(\frac{i_{h}}{\rho_{h}}-\frac{r_{h}}{2 \rho_{h}}\right)\right\} \geqslant \exp \left(s u \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}}\right) \tag{5}
\end{equation*}
$$

On the other hand, all terms in the multiple sum for $F(u)$ are positive. It follows then from (5) that

$$
F(u) \geqslant N \exp \left(\operatorname{su} \sum_{h=1}^{m} \frac{r h}{\rho_{h}}\right) .
$$

On combining this inequality with (4), we find that
(6): $N \leqslant\left(r_{1}+1\right) \ldots\left(r_{m+1}\right) \exp \left\{-s u \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}}+\frac{u^{2}}{8} \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{2}+\frac{u^{4}}{576} \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{4}\right\}$.

To simplify this estimate, put

$$
c_{1}=\frac{1}{m} \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}}, \quad c_{2}=\frac{1}{m} \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{2}, \quad c_{4}=\frac{1}{m} \cdot \sum_{h=1}^{m}\left(\frac{r_{h}}{\rho_{h}}\right)^{4},
$$

and fix u in terms of s by

$$
u=\frac{4 \mathrm{c}_{1} \mathrm{~S}}{\mathrm{c}_{2}}
$$

The inequality (6) then takes the form
(7):

$$
N \leqslant\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \exp \left\{-m\left(\frac{2 c_{1}^{2}}{c_{2}} s^{2}-\frac{4}{9} \frac{c_{1}^{4} c_{4}}{c_{2}^{4}} s^{4}\right)\right\}
$$

For the applications it suffices to consider values of s with

$$
0 \leqslant s \leqslant \frac{1}{2} \quad \text { and hence } \quad s^{4} \leqslant \frac{1}{4} s^{2}
$$

It follows in this case from (7) that
(8):

$$
\mathrm{N} \leqslant\left(\mathrm{r}_{1}+1\right) \ldots\left(\mathrm{r}_{\mathrm{m}}+1\right) \exp \left(-\mathrm{Cms}^{2}\right)
$$

where \mathbf{C} denotes the expression

$$
C=\frac{2 c_{1}^{2}}{c_{2}}-\frac{c_{1}^{4} c_{4}}{9 c_{2}^{4}}
$$

5. We finally impose on r_{h} and ρ_{h} the additional conditions

$$
\left|\frac{r_{h}}{\rho h}-1\right| \leqslant \frac{1}{10} \quad(h=1,2, \ldots, m)
$$

These inequalities evidently imply that

$$
\frac{9}{10} \leqslant c_{1} \leqslant \frac{11}{10}, \quad\left(\frac{9}{10}\right)^{2} \leqslant c_{2} \leqslant\left(\frac{11}{10}\right)^{2}, \quad\left(\frac{9}{10}\right)^{4} \leqslant c_{4} \leqslant\left(\frac{11}{10}\right)^{4},
$$

and hence that

$$
\begin{gathered}
\frac{2}{3}<\frac{81}{121}=\frac{\left(\frac{9}{10}\right)^{2}}{\left(\frac{11}{10}\right)^{2}} \leqslant \frac{c_{1}^{2}}{c_{2}} \leqslant \frac{\left(\frac{11}{10}\right)^{2}}{\left(\frac{9}{10}\right)^{2}}=\frac{121}{81}<\frac{3}{2}, \\
\frac{c_{4}}{c_{2}^{2}} \leqslant \frac{\left(\frac{11}{10}\right)^{4}}{\left(\frac{9}{10}\right)^{4}}=\left(\frac{121}{81}\right)^{2}<\frac{9}{4}<3 .
\end{gathered}
$$

It follows therefore that

$$
C=\frac{2 c_{1}^{2}}{c_{2}}\left\{1-\frac{1}{18} \cdot \frac{c_{1}^{2}}{c_{2}} \cdot \frac{c_{4}}{c_{2}^{2}}\right\} \geqslant 2 \cdot \frac{2}{3} \cdot\left(1-\frac{1}{18} \cdot \frac{3}{2} \cdot 3\right)=1 .
$$

Thus the following result has been proved.
Theorem 1: Let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$ be m positive integers, and let $\mathrm{s}, \rho_{1}, \ldots, \rho_{\mathrm{m}}$ be $\mathrm{m}+1$ positive numbers such that

$$
0 \leqslant s \leqslant \frac{1}{2} ; \quad\left|\frac{r h}{\rho_{h}}-1\right| \leqslant \frac{1}{10} \quad(h=1,2, \ldots, m) .
$$

There are at most

$$
\left(r_{1}+1\right) \ldots\left(r_{m+1)} e^{-m s^{2}}\right.
$$

integral solutions ($\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}$) of the inequalities

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{\rho_{h}} \leqslant\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}}
$$

or, what is the same, of the inequalities

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{\rho_{h}} \geqslant\left(\frac{1}{2}+s\right) \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}} .
$$

Let us compare this estimate with that given by the Lemma 2 of Chapter 6 in the special case when $\rho_{1}=r_{1}, \ldots, \rho_{m}=r_{m}$! The notation is slightly distinct at the two places. If we return to that of Lemma 2, then, by this lemma, the inequalities

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s) \quad\left(o r \geqslant \frac{1}{2}(m+s)\right)
$$

have not more than

$$
\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \frac{\sqrt{2 m}}{s}
$$

integral solutions, and by Theorem 1 not more than

$$
\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) e^{-\left(\frac{s}{\sqrt{m}}\right)^{2}}
$$

It is easily verified that always

$$
e^{-\left(\frac{s}{\sqrt{m}}\right)^{2}}<\frac{\sqrt{2 m}}{s}
$$

Hence Theorem 1 is not only more general, but also a little stronger than Lemma 2. Unfortunately, this improvement does not seem to be of great use in Roth's theory.
6. In Chapter 6 the Lemma 2 enabled us to prove the existence of the approximation polynomial $A\left(x_{1}, \ldots, x_{m}\right)$ which played such an important role in the proof of Roth's Theorem and the more general Approximation Theorems. Theorem 1 allows to construct a more general approximation polynomial. There is no need for giving the details of the proof which is just like that in Chapter 6. The final result is as follows.

Theorem 2: Let

$$
F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}, \quad \text { where } f \geqslant 1, F_{0} \neq 0, F_{f} \neq 0
$$

be a polynomial with integral coefficients which has no multiple factors and does not vanish at $\mathrm{x}=0$. There exists a positive constant c depending only on $\mathrm{F}(\mathrm{x})$ as follows. Let m be a positive integer, s a real number such that

$$
0 \leqslant s \leqslant \frac{1}{2}, \quad \mathrm{~ms}^{2} \geqslant \log (4 f)
$$

let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$ be m positive integers; and let $\rho_{1}, \ldots, \rho_{\mathrm{m}}, \sigma_{1}, \ldots, \sigma_{\mathrm{m}}$, $\tau_{1}, \ldots, \tau_{m}$ be 3 m positive numbers satisfying

$$
\left|\frac{r_{h}}{\rho_{h}}-1\right| \leqslant \frac{1}{10},\left|\frac{r_{h}}{\sigma_{h}}-1\right| \leqslant \frac{1}{10},\left|\frac{r_{h}}{\tau_{h}}-1\right| \leqslant \frac{1}{10} \quad(h=1,2, \ldots, m)
$$

Then there exists a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

with the following properties.
(i): The coefficients are integers satisfying

$$
\left|a_{i_{1} \ldots i_{m}}\right| \leqslant c^{r_{1}+\ldots+r_{m}}
$$

and each coefficient $a_{i_{1}} \ldots \mathrm{i}_{\mathrm{m}}$ vanishes unless both

$$
\sum_{h=1}^{m} \frac{i_{h}}{\rho_{h}}>\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\rho_{h}} \quad \text { and } \quad \sum_{h=1}^{m} \frac{i_{h}}{\sigma_{h}}<\left(\frac{1}{2}+s\right) \sum_{h=1}^{m} \frac{r_{h}}{\sigma_{h}}
$$

(ii): $\mathrm{A}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}(\mathrm{x}, \ldots, \mathrm{x})$ is divisible by $\mathrm{F}(\mathrm{x})$ for all suffixes $\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}$ such that

$$
0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{\tau_{h}} \leqslant\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\tau_{h}}
$$

(iii): The following majorants hold,

$$
\begin{aligned}
& A_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right) \ll c^{r_{1}+\ldots+r_{m}}\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}} \\
& A_{j_{1}} \ldots j_{m}(x, \ldots, x) \ll c^{r_{1}+\ldots+r_{m}}(1+x)^{r_{1}+\ldots+r_{m}}
\end{aligned}
$$

Should it be possible to replace Roth's Lemma in Chapter 5 by a stronger result, then Theorem 2 might become of importance.

