
Appendix A

ANOTHER PROOF OF A LEMMA

BY SCHNEIDER

The lemma by Schneider proved in §3 of Chapter 6 may also be obtained
by means of a different method. This method has the advantage of leading to
a slightly stronger result. It is due to my former colleague, G.E.H. Reuter,
now professor of mathematics at the University of Durham.

1. A special case of Taylor's formula with Lagrange's error term states
that if f(x) is four times differentiate in a neighbourhood of x=0, then

f(x) = f(o) + f (o)y, +fn(o)5 r+f f ! l(o)^ rJL. A. t*.

where £ is a number between 0 and x. Let us apply this formula to the
function f(x)=log cosh x for non-negative values of x. Then

f (x) = tanh x, f" (x) = cosh-2x, fm (x) = -2 sinh x coshr8x

and

fiv(x) = 4 cosh"2x - 6 cosh"4x.

The fourth derivative assumes its maximum when cosh x=/3~, and so

flv(x) < \ for all x^O.o

It follows therefore that

and hence that

(1): cosh x ^ exp^x2 + -~x4) if x >0 .

2. Let again ri,...,rm be m positive integers; let further s, pi,...,pm
be m+1 positive numbers. We denote by N the number of sets of m integers
(ii,...,im) satisfying the inequalities

(2): 0 * u« n,...p 0 * im * rm, £ j£- *(f-s) E JJ ,
h=1ph \^ /h=1Ph

or, what is. the same, the number of such sets satisfying

(3): 0 « U « n ..... 0 * im « rm,

That both systems (2) and (3) have the same number of integral solutions is
obvious because the transformation

(ii > • • • > im) -* (ri-ii ,..., rm-im)

interchanges their solutions.
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3. Denote by u a positive variable, and put

and

Evidently,

.rf
im=0

m
F(u) = n Fh(u) .

In the sum for Fj1(u) replace i by r^-i and note that

rh-i _ rh _ /!_ _ rh \" " = " "
Ph

It follows that

1) max cosh/u( — - ^- )) .
i=0,l,...,rh \ \Ph 2Ph//

Now cosh x is decreasing for x ^ Q and increasing for x ^ 0. The maximum
is thus attained both when i=0 and when i=rh, and hence

Fh(u) « (rh+1) cosh f*£ .

Therefore, by (1),

m

h=l

< (ri+l)...(rm+l) exp

that is,

(4): F(u) ̂  (n+l)...(rm+l) exp jj- ^ f^\ +^g E
L h=l V^*1/ h=l
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4. By definition, the inequalities (3) have N integral solutions (U,..., im)«
These inequalities may also be written as

and they therefore imply that

On the other hand, all terms in the multiple sum for F(u) are positive.
It follows then from (5) that

F(u) £ N exp [
h=l

On combining this inequality with (4), we find that

To simplify this estimate, put

- m 1 m

and fix u in terms of s by

j-m (M B» - | ̂ t S
4

ca

The inequality (6) then takes the form

(7): N < (ri+l)...(rm+l) exp

For the applications it suffices to consider values of s with

0 < s ^ -n and hence s4 < 7 s2 .

It follows in this case from (7) that

(8): N < (n+l)...(rm+l) exp (-Cms2)

where C denotes the expression

C - 2c* c* °*
~ c2 " 9c| '

5. We finally impose on rh and ph the additional conditions
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These inequalities evidently imply that

4--a- GET—©'• a)4
and hence that

/_9\» my
2 . 81 UP/ < c? . UP/ 121 ., 3
3^ 121 "TllN5 "^T^TW = ~8T ̂  2'

UO/ UP/

°l«m//121\° 9

It follows therefore that

Thus the following result has been proved.

Theorem 1: Let ri,...,rm be m positive integers, and let s,
6e m+1 positive numbers such that

are at most

(rn-l)...(rm+l)e"ms2

integral solutions (ii,...,im) of the inequalities

0 * ii * ri ..... ° * »» * r- ,5 5 * S -B) h|
or, ^o^ is the same, of the inequalities

0 * U « *..... O. lm* rmi ^ JJ

Let us compare this estimate with that given by the Lemma 2 of Chapter
6 in the special case when Pi = ri,...,pm = rm ! The notation is slightly
distinct at the two places. If we return to that of Lemma 2, then, by this
lemma, the inequalities

0 < ii < ri,..., 0 < im < rm, t ^ « |(m-s) (or ̂  ̂
h=l rh 2 2

have not more than
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integral solutions, and by Theorem 1 not more than

It is easily verified that always

r*\2

^ Wm / ^ V2m
e <~s~~ '

Hence Theorem 1 is not only more general, but also a little stronger
than Lemma 2. Unfortunately, this improvement does not seem to be of
great use in Roth's theory.

6. In Chapter 6 the Lemma 2 enabled us to prove the existence of the
approximation polynomial A(xi,...,xm) which played such an important role
in the proof of Roth's Theorem and the more general Approximation Theorems.
Theorem 1 allows to construct a more general approximation polynomial.
There is no need for giving the details of the proof which is just like that in
Chapter 6. The final result is as follows.

Theorem 2: Let

F(x) = Foxf + Fix*"1 + ... + Ff , where f £ 1, F0 * 0, Ff * 0,

be a polynomial with integral coefficients which has no multiple factors
and does not vanish at x=0. There exists a positive constant c depend-
ing only on F(x) as follows. Let m be a positive integer, s a real num-
ber such that

O^s «|, ms2 ̂ log(4f);

let ri,...,rm be m positive integers; and let pi^-^pm*^—j^m*
Ti,...,Tm be 3m positive numbers satisfying

3'K 10'

Then there exists a polynomial
ri rm

A(xi,...,xm) = % ... % a- i
ii=0 im=0 '"

with the following properties.

(i): The coefficients are integers satisfying

and each coefficient a^ < > t i vanishes unless both

h=1 Ph h=1 h=l h=l
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(ii): Ajlsijm(x,...,x)te divisible by F(x) for all suffixes ji,...,jm such
that

0«J i«n , . . , , 0« j m «r m , £ f
h=l Th

(ill): T/^e following majorants hold,

A. . (Xl,...,xm)« cri+-+rm(i+Xl)
ri...(l+Xm)rm,

ji •••Jm

Should it be possible to replace Roth's Lemma in Chapter 5 by a stronger
result, then Theorem 2 might become of importance.


