Chapter 7
THE FIRST APPROXIMATION THEOREM

1. The properties Ay, B, and C.

While the last two chapters depended on purely algebraic ideas, we now
introduce real and g-adic algebraic numbers and study their rational approx-
imations with respect to the corresponding absolute value or g-adic value,
respectively. Here, as usual,

g=p:t... per =2,

where pi,...,p, are distlnct primes, and ei,...,e, are positive integers;
the g-adic value |A| g Of A<=(as,...,ay) i8 defined by

_logg log g
1rlo
lAlg - max(a; le;logpx I rl r log Pr> .

The later occurring g'-adic and g''-adic values |alg' and [alg+ are defined
analogously.

The letter ¢ always denotes a fixed real algebraic number, and the
letter = a fixed g-adic algebraic number. Only ¢ satisfying

E+0
and only E <~(1,...,&p) satisfying
£1#0,..., 60 #0
will be considered. We denote by
Fx)=Foxf + Fixf-1 4+ ...+ F;, where 21, Fo+0,F+0,

a polynomial of lowest degree with integral coefficients having either &, or
E, or both ¢ and E, as zeros; hence, by Chapter 3, F(x) has no multiple
factors. As before, we put

c = 2 max(|Fol, |Fil,..., |Fgl), sothat c> 1.
Next we denote by
T = {x(‘), K(’), K(a),...}
a fixed infinite sequence of distinct rational numbers

(k)

k) _P

K =—(E)*0
Q

where P(k) +0 and Q(k) *+ 0 are integers such that

107



108 LECTURES ON DIOPHANTINE APPROXIMATIONS

We call

1% - max([2®], 1@%))
the height of ). It is cbvious that
ax tim B - o,

k—o0
For such sequences X we now define three properties Ay, B, and C
where d is either 1 or 2 or 3.
First, Z is said to have the property Aq if
for d=1: There exist two positive constants p and c: such that
(A1): Ix(k)-gl < c;H(k)"‘0 for all k;

for d=2: There exist two positive constants o and c; such that

(Ag): IK(k)-Elg < a0 for all k; and
for d=3: There exist four positive constants p, o, c1, and cz such that

@ag: 1«%_g| < c,g®-P (-0 or all k.

The property As includes therefore both properties A, and A;.
If © has the property A4, then its elements have for d=1 and d=3 the
real limit £, and for d=2 and d=3 the g-adic limit o, because c,H(k)-p and

caH®) % tend to zero as k tends to infinity.
Secondly, T is said to have the property B if there exist,
(i) two integers g' and g'' satisfying

g' 2 2’ g" = 2; (g" g") =1;
(ii) two real numbers A and u satisfying
Osasl O=spus<1l; and

(k)-Elg

and |k < cgH

(iii) two positive constants cs and c4, such that

@ P9, < om®*! ana QW) < o mOH! foran k.

The first inequality (B) holds trivially if A=1 as we may simply take cs=1;
and similarly for the second inequality when y=1.

For later it is important to note that if d=2 or d=3, and if * has both
properties Ag and B, then

(g g)=1 if 0<x<1,
For lim IP(k)I , =0, while (P(k),Q(k)) =1, hence IQ(k)I « = 1, and so also
k—so0 g g ’
) _
éijgo ™ 1ge = 0.

If now g and g' had a common prime factor, p, say, then
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lim Ilc(k)lp 0 l%i_l'nwlx(k)—&l =0, hence £:=0

P

contrary to the hypothesis.
Third, = is said to have the property C if there exists a positive con-
stant cs such that

) |K.(k)| < cs for all k.

In the two cases d=1 and d=3 the property C follows from the property A4
because

W) g,

éi_?:o |«
In the remaining case d=2 it is, however, independent of Aq.
Our first aim in this chapter is to prove the following result.
Main Lemma: If the sequence
5 = ), k@, ()
has all three properties A4, B, and C, then
TSA+pu
where
p if d=1,
(2): = do if d=2,
p+o if d=3.

The proof of this lemma will be long and involved, and it will be indirect.
It will be assumed that

@3): T = Mpu+de  where €20,

and from this hypothesis we shall deduce a contradiction.

2. The selection of the parameters.

Since the property Aq weakens when the exponents p and o are de-
creased, we may without loss of generality assume that

1
. < =
(4): 0<es<g.
For the same reason we are allowed to assume that
(5): 21,c;21,¢c321,ca=1, c5 1.

Similar to ¢, ci1,...,cs the letters cs, Cv,...,C1, C3, Cs, Ty, T2, and Ts
will be used to denote certain positive constants ithat depend only on the se-
quence X and the algebraic numbers &, =, or £ and =, respectively; they
will, however, be independent of the numbers m, 8, i, K1,..., Ky, T1,.e, Ty
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to be defined immediately. The last three constants T, Tz, and Ts will not
be fixed until the end of the proof.

The parameters are now selected as follows.

First, choose a positive integer m such that

2
m = [2 (ﬂ) ] +1,
€
and in terms of m define the positive number s by

. _em
(6): 8 =75 -

Secondly, choose a number t such that

m-+1 tz'(m'l)s fm

): 0<t<1, 2 -

Third, select m distinct elements n(h), KG’),...,K(im) of © that satisfy
certain inequality conditions to be stated at once. To simplify the notation,
these elements of = are written as

= (h=1,2,..,m),

where the Pp and Qp are integers for which
Pp+0, Qy+0, (Pp,Qp) =1.
Thus «h has the height
Hp = max(|Pyl, [Qnl).

The hypothesis of the main lemma imposes, for all suffixes h=1, 2,...,m,
the following inequalities:

| kn- &l <e 1P if d=1,
(Ag: | kp- =1 g<caly” if d=2,
lkp- &l <c,Hy” and | -2l g<ca By’ if d=3;
(B): IPplg' < csHE ! and lQplg"<c.Bf Y,
©): lxnl < cs
It is necessary for the proof to add the following conditions:
(8): Pyl < El" H0<a<1 (h=1,2,...,m),
9): log Hp 4 > % log Hy, (h = 1,2,...,m-1),

and, depending on the suffix d,
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1
T T (m-1)m(2m+1)
(10): H > max((ZOC)tm, gt e Td)

Since the elements of T satisfy the limit formula (1), it is possible to
choose Ki,...,kyn 8uch that all these inequalities are satisfied.
Finally, select m positive integers ri,..., rym such that

. 2log Hm
(11): 2 elogHy °’
(12): ThZ 1 ng;-,- > rp-1 (h =2,8,...,m) .

Since, by (9) and (10), evidently
2< Hi < H <...< Hp,
these formulae imply that

2log H 2
> Haim e f e wtem(i) () 1

because, by (4),
(1+e) (15) =1+ £(1-9 > 1.

Hence we find that

(13): rilogH; < rplogHp < (1+€)r;log Hy  (h = 1,2,...,m).
Therefore, for arbitrary non-negative exponents ki,..., ky, it follows that
m m
r, L kh ( 2 kn
. 1+e)ry
(14): H "h=1 Th gl v HSID < gy h=1Th

We also note that, by (9), (11), and (12),
Th > = > 2, rp-1> 2rh, %rh+1 log Hp,q < rilogHi < rp log Hp,

hence

2 log Hh <t
rh loth_,. ’

and therefore

(15): rhel < Tht (h =1,2,...,m-1).
Thus, trivially,

(16): ry>rs>..>ry  and Ty +Tp + ..+ Iy < mr.
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3. Application of Theorems 1 and 2.
The polynomial F(x) has no multiple factors. Hence, by Theorem 2,

applied to this polynomial and the numbers m, 8, ri,..., T, there is a poly-
nomial

Ty 'm 11 im
ARty Xm) = ) e ) 2 . ip X Xm ¥ 0
i1=0 im=0

with the following properties.
(17): The coefficients 2, iy 3re integers such that

+eoo
|a'i1 ...iml < 5(40)1“ +rm’

and they vanish unless
m
1 ih _1
3 (m-s) < ), =y <3 (m+8) .
h=1
(18): The derivative Ay .im (x,...,X) is divisible by F(x) whenever

QS dh_1
0< j1< r1,.,0< jms<TH, ), D= 3(m-8).
h=1 *h

(19): We have the following majorants,

Aj, .. i Xt seees Xm) << 5(8c)"t F+-tfm (14xe)™ oo (L),

Jm

A, ey ®) << 5(8c)™t Fre -t Ty )1+t T
By (10), (16) and (17), the height of A(x;,...,Xm) does not exceed
1
5(ac)™ -+ T < 54e)PTt < (90¢)0T! < mnT

It follows then from the inequalities (10), (12), and (15) that the hypothesis of
Theorem 1 is satisfied for the polynomial A(xi,...,Xm) and the numbers m,
8, t, K150y Ky, T1,e.., . But then, by this theorem, there exist suffixes
L,..., 1, satisfying the inequalities

T 1t

m -(m-1)
(20): 0<L<r1,.,0<Ly<rpy ) -B<g@H2
h=1 Th
such that the function value

- Pr  Pm) _
Al;...lm(""""“m) = A'h...lm(Qx ’""Qm) »=Ag s,
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does not vanish,

(21): A( ) * 0.

1
This number A(l) is rational and so may be written as a quotient
=Na
Ap =52
@
of two integers N(j) and D(1) satisfying
N@j) 0, D) *0, (N(l), D)) = 1.

In the next sections we shall establish upper and lower bounds for IASI) l.

To express these in a simple form, it is convenient to introduce the following
abbreviations,

m
(22): A=), i_—h-h, S =%(m-s)-A, 8: = %(m+s)-A, 8s = m-A .,
h=1

It is obvious from the formulae (4), (6), (7), and (20), that

(23): 0sAsF,
g sl 7 1 28 1 23
(24): 8, = Z(z-e)m = g™ S = i3 (6-€)m = B Ss = 6(6-e)m > 330

4. Upper bounds for |A(()|.

For real x1,...,Xm and arbitrary suffixes ji,...,jy it follows from (16)
and (19) that

1Ay, o &2 Km) | < 5(B)™ T+ TR | ) (1 gy )70 <

< (40c)™ {1+ ]).er (L] 2 )} T2
We apply now the property C of . This property implies, first, that

(26): lagyl < ca

where, for shortness,
cs = 40c(l+cs) .
For
——————(—1—+IK1|)-..(1+|Km|) < (1+cs)™.
Secondly, let d=1 or d=3. Then, again by property C,

£ = 1m [«® ]| < e
k—o0
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and hence

(26): |4y, ...jm i) <
The inequality (25) is, of course, valid for all three values of d, but will

be used only for d=2. A much stronger upper bound for IA(1)| can be proved

in the other two cases d=1 and d=3, using (26).
From Taylor’s formula we obtain the identity

e for all suffixes j1 ..., im-

I 'm
Ay yeeyXm) = Y one %,y ee %) e -X) ... (g -x)0,
w b bt

and on repeated differentiation,

(27): A11 ...lm(x‘ seeesXpn) =

ST w\ (1 -l -1
= jlz=;0mjnzl"=oAj‘"'jm(x’""X)(I:)m(lﬁ)(&-X) e xy-x) M,
By putting
X1 = K1yee0y Xy =Ky X = §,
we find that

Ty 'm

. - I im\ (.. _ph-h _gyim-1
(28): Ag) jZo"'j,z,i:oAh'"jm(g""’g)(h)'"(lm)('“ ol (epg-£) I,

1=

In this equation,

J
(12) =0 if jp< 1,
while, by (18),

Aj!.-..jm(’g’---,g) =0 if h=21 -i'hh = i(m-s).

It follows that it suffices lo extend the summation in (28) only over those
systems of suffixes (§) = (G1,ee.,im) that belong to the set

m
J: 0< 1i-h < ri-h,.., 0< -1y, S rm-lp,, Z m—;lll-'h— > 8.
It is then evident that
(29): |A(1)| < A* A¥*
where, for shortness,
r 'm

=3 lay g G dI(2) (I

1=0  jm=0
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and

Ak = ﬁsag{-llkl _ £|h-11_" | k- [im-lm

In the first expression,
so that by (16) and (26),

. i .
I 1=0 1
T 'm

Axs ) LY ol ghtetim | T il gy pfmtl gy o
jl=0 jm=0

< c°mr1_ 22r1m22rm < (4ce )mrl.
For the second expression we apply the property
(As): lep-t] < crBFP (h=1,2,..,m),
which holds also for d=3; here, by (5), c1 = 1. Hence

(a=1a)+seet(m-1m). -1 Jm=lmy =P
A¥* < max ¢t ! m~ m (ﬁ?’fj(ﬂ‘l IHn‘f‘ m)~F

(ied
where
max cd-*etlim-lm) o Fitotrm o mory
(g
Further, by the left-hand side of (14) and the definition of J,
% Jn-ln
max (g1 ...Hjm-lm)'p < max H:prl hz——\ll Th ¢ gpPSin ,
(e J m G)e J
so that
Avx < IOTL g=PSiTs
We finally put

c7r=4c;1Cq
and substitute the upper bounds for A* and A** in (29). We so find that
(30): IA(1)| < T g;PSIT for d=1 and d=3.
Here, by (24), the exponent of H; is negative; hence this upper bound is

smaller than that given by (25). However, no explicit use of this fact will be
made.
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5. An upper bound for IA“)Ig_

In the two cases d=2 and d=3 there exists an upper bound for |A(1) Ig
‘very similar to that for |A(1)| which has just been proved.
In both cases the sequence I has the g-adic limit =, and so

(k) =
1i = [E|g.
B, [ lg = 1Elg
There exists then a constant cg = 1 depending only on Z such that

In(k)|g < cg for all k,
and therefore also ’
= |g < cs.
This time we substitute the values
X1 = Kigeeoy Xy = Kpyy X = F
in the identity (27), so obtaining the equation

oW i i J1-1 im-1
: = IC) | (b ) -F)/m”
(81): Aq) _jEO,,]:E:oAjv"jm(_,...,_ (11)...(12)(&-_) welip-EymTm,

Here, just as in (28), it suffices to extend the summation only over all systems
of suffices (§) = (jx,ee0, i) in J. - -

The binomial coefficients in (31) are integers, hence their g-adic values
are not greater than 1. It follows then from the non-Archimedean property of
the g-adic pseudo-valuation that

(32): IA(]_)Ig < B*B**
where, for shortness,

B* = Eyerey D
max Ay, (550 ) g

and

=151 —1Im-1
B** = max |k -.=|jl Lk~ Eim ™M,
@eg 8 m='e

The polynomials Aj . “_jm(x,...,x) have integral coefficients and are at
most of degree ri+...+I'm < mr,; therefore

Ay, . im e E) g s ca

and hence also

mr.
B*<cg '.

Next, for the second factor, we apply the property
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(Ag): IKh-EIg < caBy (h=1,2,...,m)
which holds also for d=3; here again, by (5), ¢z = 1. It follows that

B** < max 0511-11)+...+(jm-1m) . ﬁ’%“ @ ...Hk“'lmr".

eJ
Here
max o1+t Gmlm) ¢ (J1tetTm ¢ (BT
()ed
while, by the left-hand side of (14) and the definition of J,
m
. ) jh-lp
max (B2 Dm0 < ey g, b=l TR < BT,
(ed GleJ
Hence
B < o[0T g o5
Put
Cgp = Cz2Cpg

and substitute the upper bounds for B* and B** in (32). We so find that

(33): lag)lg < g™ e for d=2 and d=3.

6. An upper bound for |D(”|.

In this and the next sections we shall establish an upper bound for |D l)'
and a lower bound for |N(j)|; by combining these, a lower bound for lA(l)f
will be obtained.

From the definition of A(x1,...,%Xp),

I 'm
i i i,-1 im-1
(1,000, Xm) = E Z Oah..-im 1;)"'(1:::)"‘1 Yoxgm W,

A
1 seedIM) i1=0 1m=

so that, in particular,
Ty

T
(64): Aq = g—% =ilz=;o"'1§=loai‘ -im t) G:)(%)

In this equation,

b p \lmelm
Gm) "

hY _
(lh)—O if ip < lp,

while, by (17),
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ay, .m0 unless 2(m-s)< Z‘, ih < (m+s)

It follows then that the summation in (34) need be extended only over those
systems of suffixes (i) = (i1,...,im) that belong to the set

m
L 0% -1 ri-ly,eee, 0 < im-lm < -y, 812 < ), ih;%h < 8,.
n=1

Each single term in (34) has a denominator
i-1 im-1
Q.

Therefore the least common denominator D(y) satisfies the inequality
i,-1 im-1
LI l(c)m‘!,l1 ..M =D say,

where the symbol ‘“lcm’’ stands for the least common multiple.
We apply now the second half

|Qplgr < camf™? (b =1,2,...,m)

of the property B. By this property, Qy is divisible by an integral power of
g'' that is easily proved to be not smaller than

(cag BT,

but may be larger. For each suffix h=1,2,...,m it is then certainly possible
to find a factorisation

Qn = Qf Qf*

of Qp where Qh is that integral power of g'' which is defined by the in-
equalities

1- - -
(35): 1 0 Hh u$ Q;< -:—"H:tll #ﬁ CmH]]i H

(‘AE'
Cio = MaAX (1 —') .
0 ’ °

and where we have put
The complementary factor Qﬁ* then satisfies the inequality

(36): IQf*1 = laylof ! < a1 1) < e,
From the factorisations of the Qp it is obvious that
(37): D < D*D**

where
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>

il q¥imlm

and

-1y skl -1
D** =Jem Q1T ., m='m
%i)el ! m

The first factor D* is the least common multiple of certain integral
powers of g'" and hence is equal to their maximum,

*y -1

* = *Mm-lm
D ?'sax Q ..Qm

Therefore, from (35),
(11 L)+..+{im-1m),

D* sxz)?xc nsax (H,

Here c;0 =1 so that

11 11 im-lm)l-l.l.

m?" c(11-11)+ +(im-1lm) EitoetTm  Jory

Further, by the definition of I and by the right-hand side of (14),

ih-1n
1 1h-lh
max (Hil"'ll .Hgn-lm) ~H < max Hfl ‘-L)( +€)r1 Z=1 Th < H’(.l-[.l.)(l'l'G)Sgl‘l.
(i)eX ()el
Hence

D* < @1 g{l-w(14€)Sars
For the second factor D** we use the trivial estimate
D** sIQ*’"I'I'].]. . Q‘:;:rm'lml < (C¢g"HH)rl-l.l..(mg"H;)rm—lm.
Here cqg'" =1 and hence
(Qg,,)(n-h)+...+(rm-1m) < (eqg")r Tt TI < (o g1 )T,

Further, again by the definition of I and by the right-hand side of (14),

m
Th-lp
(Hl‘r-l H;lm lm)# -, p(l +€)I'1hzl Th _ Htt(1+€)Sgr1 .
Thus it follows that
D+ < (c4g" )mr1 H{i(li-é)SaI‘; .

Finally put

Cu = Cqg''* Cioy
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and substitute in (37) the upper bounds for D* and D** just obtained. Since
[D() <D, we so find the inequality

(38): ID(I) | < cgu'l Hl(_l'll-)(l'i'e)sarl +u(L+€)Ssry )

7. Lower bounds for |N“)|.

We again apply the equation (34) of the last section; by means of it, we
shall determine integral powers N* of g' and N** of g that are divisors of
N().
® These two powers are relatively prime, so that their product likewise
divides N(j). However, in certain cases it becomes necessary to take N* or
N** equal to 1, and it may even be convenient to allow lower estimates for
these numbers that are smaller than 1,

Assume for the moment that

0=sA<1,
Then, by the hypothesis (8), all numerators Py are divisible by g', and hence
all denominators Qp are prime to g'. The first half
A-
IPhIg' <csHy 1 (h=1,2,...,m)
of the property B implies that Py, is divisible by an integral power of g', P;
say, which is easily seen to satisfy the inequality

A-1.-
(39): P} > (cg'Hy D7)

here csg'=1. On the other hand, the denominators

Qb gl

m

of the terms of A(1) and hence also their least common denominator D 1) is
relatively prime to g'. It follows that the numerator N(l) of A(l) is divisible
by that power N* of g' which is defined by

*11-11 *im-lm
N* = gcd P ...P 5
fer mo
here the symbol “‘‘ged’’ denotes the greatest common divisor. All products
pfil | ptim-lm

are, however, integral powers of g'. Their greatest common divisor is then
equal to their minimum,

. '*11-11 *im-1
N* = min P LoPo T
@ m

It follows therefore from (39) that
(i=L)+...+ (im-1m)
1 m™"m i-1 im=lm,1-A
N* > in(— . O gy i-A
Ot \cog’ i S S
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Here

(11-L1)+.eo+ (im=1pm) T1+...+Tm 1\ mn
=
(i)eI (088 (Cag (cs g')

Further, by the lefi-band side of (14) and by the definition of I,

_ _ (1-A)r2 E
min (H7M ., Hi}ln Im)1 A> min B h=1 rh > H(J"Mslr1
(@)l (i)l
Therefore, finally,
(40): e s () g8

In the case A=1 so far excluded the right-hand side of this inequality does
not exceed 1; hence (40) vemains valid without the restriction on \.
We put

(41): N** = if d=1,
Next let d=2 or d=3. Then |A(})|g possesses the upper bound (33). This

upper bound implies that N(j) is divisible by an integral power of g, N** say,
which satisfies the inequality

(42): N*+ > (gl 08Ty~ (c9 g) B5IT 45 4-2 or d=s.

First assume again that
0=sa<1,

As was shown in 81, g and g' are in this case relatively prime, and so the
same is true for their powers N** and N*, Hence N*N** ig a divisor of
N(1), whence

IN(l)I = N* Nk,

This inequality still remains valid for A=1 provided N* is then replaced by
its lower bound from (40).

Therefore, depending on the value of d, a lower bound for |N(;| is given
by the products of either the right-hand sides of (40) and (41), or t e right-
hand sides of (40) and (42). Hence, on introducing the new constant

Ciz = C3Ze gL',
we arrive at the following lower estimates,

(@3): INgy| = {(°°g')-mnHl(1-)‘)sm for d=1,

oimr1 g {(1-A+0)8iry for d=2 or d=3.
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8. Conclusion of the proof of the Main Lemma.
Put

Cis = CsCug', Cu = C11C1s
and
Ci1 = ¢7Cus, Cz = ceCu, Cs =c7cus.

The two inequalities (38) for |D(1)| and (43) for |N(1)| immediately lead
to a_lower bound for

[Aq)l = INgl
D)l
which, naturally, depends on d. The result is as follows:
c;smrlHgl-h)sxrx-(l-u)(1+e)Sar1-u(1+e)Sar1 for d=1,
|A(1)| =

w1 g{(1-A+o)8irs-(L-p ) (LeSars-pl4edSars oo 49 op geg,
On the other hand, the formulae (25) and (30) asserted that

[ry gopSiTy for d=1 or d=3,
G

Al <
for d=2.

On combining these inequalities, it follows that
st Hsl'h)sl-(l_“) (L4e)Sa-pll4e)Ss  Ig-pS, for d=1,

o Hsl-)ua)sl-(1-u)(1+e)Sg-y.(1+e)Ss < for d=2,

cal g{t-Mo)i-(L-W)(14e)Sa-ull4e)Ss o 10 p-pS: for d=3.

These three formulae may be put into exactly the same form,
(44): HLd < cy' (d=1,2,3),
where, for shortness,

(45): Eq = (1-0+7)81-(1-u)(14€)Sa-p(14€)85 (a=1,2, 3),

and 7 denotes the number which was defined in the Main Lemma. We can
write the expression for Ey4 also as

Ed (—& ) (24"“"' +—Ee) 8- (T-x-€)A.
Here the coefficient of m is equal to

that of -s is equal to
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g:-%u+1%ge < (1+2€)+1—;oe <1+4e<2,
and that of -A is equal to
T-A-€ = [t+3e < 143 % < 2
here we have applied the former assumptions
T = Mutde, 0 <es< ;11-,
It follows therefore in all three cases d=1, 2, or 3 that

0=<spusl,

Eq>em - 250 - 2.50 =52,
We finally choose the remaining constants Tq such that
3
Tq > C d‘ (d=1, 2, 3).
Since, by (10),
H, 2 Ty (d=1, 2, 3),

it follows that

. 3\ m
> <c;‘> acl (1,29,

contrary to (44).
This proves that the original hypothesis (3) leads to a contradiction and
so shows that the Main Lemma is true.

9. The first form of the First Approximation Theorem.

It is now easy to deduce from the main lemma a more general result
which we call the First Approximation Theorem. This theorem will be stated
in two different forms which, however, are equivalent.

The first form of the theorem is nearly identical with the main lemma,
except that the condition C is omitted.

First Approximation Theorem (I): Let £+ 0 be a real algebraic number
E<(tE1yeee, p), where E1%0,...,Ep * 0, a g-adic algebraic number.
Let p, 0, A, i be real constants salisfying

p>0, 0>0, 0<sA=<1 O0spys1l;

let ci, Ca, Cs, Cq4 be positive constants; and let g'= 2 and g'" = 2 be fixed
integers. Finally let = = {x™, x®), k¥ .} be an infinite sequence of
distinct rational numbers

k) = %((% +0, where P& 0, Q(K) 40, (PKk), Q) = 1, B max(|P®)|, |QU))),
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with the following two properties.
(Aq): For all k,

k8. ¢ < ¢,mnloP if a=1,
lx(k)- Elg= c,H(k)"’ if d=2,
|x(k)- gl < cIH(k)-p and IK(k)- E|g$ CaH(k)—a if d=3.
(B): For all k,
|P(k)|g' s calﬂl(k))‘-1 and IQ(k)Ig" < CJ'I(k)“-l.
Then
P=A+p Jor d=1,
oSA+u Jor d=2,
P+o SA+U Jor d=3.

Proof: We mentioned already in §1 that, for d=1 and d=3, a sequence
Z with the properties Ag and B has the real limit £ and so possesses the
third property C trivially. The assertion is therefore in these two cases
contained in the main lemma. There remains then only the case d=2 in which
the assertion has yet to be proved.

First assume that Z contains an infinite subsequence

Ti= {lc(i‘), i ta)s x(l”),...}, where i; < i3 < is<...,
such that, for all k and some positive constant cs,

'K(ik)l < Cg.

The main lemma may then be applied to T, and gives the assertion.
Secondly let ¥ contain no such subsequence Z,. Then

1im [%® | = oo,
k—o0

and hence the sequence of the reciprocals

() _ (-1 _ (‘"

where Ko

= { () (2) 1,

y Ko 5o

2:0

"’:x:l

- has the property C,

RUPT k = 1,2,3,...)
for some positive constant cs. It is obvious that «®) and :q(k) are of the
same height H(k). Hence Zo has also the property Bo which is analogous to
B, except that A and u, and also c; and c4, are interchanged.

We finally show that Zo has the property As. By hypothesis, ¥ has this
property,
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(46): Ilc(k)- E.'lg < c,H(k)'G k=1,23,..).

Therefore = has the g-adic limit Z, and so, for j=1,2,...,r, this sequence
has also the pj-adic limits £j. But then the reclprocal sequence X, has for
all j the pj-adic limits &t , and hence Z, has also the g-adic limit

=" ""(El "":E;l)-
Therefore, in particular,
lim Ix(k)l =|E™? Ig}

and hence there is a positive constant ¢, such that

Ix(k)l < cp for all k.
From (46) and the identity
K‘Sk)- B = K(ok)E-l «®.z)

Ix

it follows finally that

Ixsk)-s,"‘ lg < cLH(k)_o, where ¢ = co £ g ca.

We apply now the main lemma to the sequence X, instead of £ and find
that o <y + A, giving the assertion.

10. Polynomials in a field with a valuation.

The second form of the First Approximation Theorem makes a statement
on the values of a polynomial assumed in a sequence of rational numbers. Be-
fore enunciating and proving this theorem, it is necessary to discuss first a
property of fields with a valuation.

Let K be a field with a valuation w(a), and let Kw again be the comple~
tion of K with respect to w. We say that K has the property D if the follow-
ing compactness condition is satisfied:

(D): Ewvery infinite sequence of elements of K that is bounded with ve-
spect to w conlains an infinite subsequence which is a fundamenital
sequence with respect to w, hence has a limit in Ky.

Let K have this property D, and let

Fx) = Foxfs Fixf-14..4 Fs, where £21, Fo+0,
be a polynomial with coefficients in K which has no multiple zero in Ky. Put

G(x) = Fg' F(x) = xI+Guxf-14Gaxf-24 ., .+Gg, ¥ = 14W(G1)+W(Ga)+...+W(Gy),

so that
v =1,
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and also G(x) has no multiple zero in Ky. Assume now that x is an element
of Ky such that
wix) > 7 and hence  w(x) > 1.
Then l

W(G;Xf-1+szf-2+...+Gf) < ('y-l)max(w(x)f'l, wix)f-2, .., wx), 1) <
< (y -)wi)i-l,

and therefore
Ww(G(x) > wzl) - w(Gixl-1+Gexl"24...+Gp) > wx)-(y -D)w(x)f-1 =

= {1 + (wx)-y)}wx)i-1> 1.
Conversely, it follows that
if w(F(x)) < w(Fo), then wx) <y,
because the first inequality implies that
w(G(x)) = w(Fs" F(x)) < w(Fs")w(Fo) = 1.

Consider now an infinite sequence = = {x(l), K(’), x(’),...} of elements
of K satisfying

Em W(F(K(k))) =0.

This assumption implies that

w(F(x(k) ) < w(Fo)  and hence W(K(k)) <y

for all sufficiently large k. Thus the sequence Z is bounded with respect
to w and so, by the property D of K, it contains an infinite subsequence

o= {lc(il ), x(i’), K(i’),...}, where 1,<i3<i3<..., which is a fundamental
sequence with respect to w and so has a limit

lim ) (), .y say,

in Ky. However, polynomials in K[x] are continuous functions with respect
to the metric on K defined by w, and therefore

F@) = lim F()) - lim 7™ - 0.

This means that £ is a zero of F(x), hence that F(x) is divisible by the
linear polynomial x-§,

F(x) = (x-£)F1(x)
where Fi(x) is a polynomial with coefficients in Ky. It is obvious that
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Fi(€) #0

because otherwise ¢ would be a multiple zero of F(x). From the continuity
of the polynomial Fi(x), it follows that

éim Fl(x(ik))= Fi(t) 0 (w),

and hence that

Fl(x(ik)) 0 for all sufficiently large k.
There is no loss of generality in assuming that this inequality holds for all
suffixes k., Hence a positive constant 1 exists such that
wE ) 3 5 (k =1,2,3,...).
The equation
F(K(ik)) = (K(lk)-E)Fl(K(ik))
leads therefore at once to the following result.

Lemma 1: Assume that K has the property D. Let F(x) be a polynomial
in K[x] which has no multiple zevos in Ky, and let = = {x(!), (®) () .}
be an infinite sequence in K such that

lim wEE®)) = 0

There exist an infinite subsequence ' = {x(i‘), x(i’), K(i’),...} of =, a
zero £ of F(x) in Ky, and a constant yy > 0 such that
w0 g) < 5, w(E (W) k = 1,2,3,...).

11. Two applications of Lemma 1.

In Lemma 1 choose for K the rational field I" and for w(a) either the
absolute value |a| or any p-adic value |alp where p is an arbitrary
prime. The completion Ky becomes then either the real field, or the
p-adic field.

Both the real field and every p-adic field have the compactness property
D'. Hence the following two results are contained in Lemma 1.

1Thig is a classical theorem in the real case, and it may be proved in the p~adic case as
follows.

Denote by 2= {x®, K, @), .} any bounded sequence of p-adic numbers. Let its
elements, without loss of generality, be p-adic integers; thus they can be written as
series

k0= o0, 0, ol p2t | (p) (k=1,23,...)
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Lemma 2: Let F(x) bea polynomzal with r tumal coefficients which has
no multiple zeros, and let = = {k™, k¥, k%) ..} ve an infinite sequence
of rational numbers such that
1im |F®)) =
Kk—0

{K(ix) (12) (ia) o}

There exist an infinite subsequence Z' = of Z,
a real zero t of F(x), and a constant y1> 0, such that
Ix(ik)- sy IF(x(ik))l for all k.

Lemma2': Let F(x) be as in Lemma 2, and let T = {x®), «®), (... }
be an infinite sequence of rational numbers such that

lim |76 -

There exist an infinite subsequence X' = {K(j"), x(j’), x(j’),...} of %, a

p-adic zero &p of F(x), and a constant ya > 0, such that
1) tplp < valF(x(jk)) lp for all k.

The second lemma may be extended to g-adic values and g-adic numbers,

Lemma 3: Let F(x) be as in Lemma 2, and let T = {x“? n(’), x(’),...}
be an infinite sequence of rational numbers such that

&)y, _
ly_::::oll-“(n )Ig-o.

There exist an infinite subsequence ='" = {x(h‘), u(h’), i (bs)
a g-adic zero E of F(x), and a constant vs >0, such that

yeee} Of T,

B2, < el F®], foran k.

Proof: From the hypothesis and the definition of the g-adic value, it
follows that also

where the digits a(k) assume only the values o, 1,. . ., p-1. The set of the first n digits
of each k() has thus only p® possibilities. It follows that it is possible to select suc-
cessively

an infinite subsequence %, = (lt(‘), 2, x(f) .JofZ,

an infinite subsequence X, = {K(l), K‘;), I(a ..o Of 5,

an infinite subsequence X, = {xs s i 3 K(Q), .. .} of T, ete.,
such that, for every n, the n first digits of all elements of Xy are identical. The diag-
onal sequence I's (K(}) , K(g), «‘g’ s ... is still a subsequence of Z, and it has the

property that, for every n, the first n digits of all but finitely many of its elements are
identical. Hence X' is a fundamental sequence, as asserted.
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Kk
éi_xgolF(x( ))lpj =0 (4 =1,2,...,r).

We now apply Lemma 2' repeatedly, once for each prime factor pj of g.

First, there exist an infinite subsequence =; = {x h“), (h") (h“) o} of
Z, a pi-adic zero £; of F(x), and a constant -y(l) >0, such that

|K(h1k)-£1|pl < Y(I)IF(K(hlk))l for all k.

Secondly, there exist an infinite subsequence =z = {x(h“ (h”) (h”’)
of =1, a pa-adic zero £; of F(x), and a constant y () > 0 such that

h
P20, < @ P2 | tor an k,
while, naturally, also
|K(h2k)_ €1|p, < -,;(1)|F(,<(hzk))|pl for all k.

Continuing in this manner, we obtain for every suffix j=1,2, ...r an infinite
(hj1)  (hj2)  (bj3)
H H

12 222 ... 23y,

a pj-adic zero £j of F(x), and a constant 7y > 0, such that

sequence Zj = {x yese}, Where

11 ik). ylp, < 'y(i)|F(x(hjk))|p1 for i=1,2,...,] and for all k.
Let =''' be the sequence Tp; further put
logg
1
ve = max ( )exlogpx - 7,(r)e]rlogpr

and denote by = the g-adic number

E 4—"(51’---; Er),
which is algebraic and a zero of F(x). We have then

logg
(I K(hrk) & lei log Pi < max {(’y(i) | F(e (hrk)) lpi>ei log pj }
112, 1=1,2,...,r

for all k

and hence
I:c(hrk).glg < 73|F(x(hrk))|g for all k,

whence the assertion.
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12. The property A' .
As earlier in this chapter, let again

F(x) = Foxf + Foxf-1 4+ .+ F;, where f21,Fo+0, Fg+0,

be a polynomial with integral coefficients which does not vanish at x=0 and

has no multiple factors, hence also no multiple zeros in any extension field

of the rational field. Further denote again by £ areal zeroandby = a

g-adic zero of F d by p and o two positive constants. Finally let
SRORON

again = = { ..} be a sequence of distinct rational numbers
(k)
x(k) = C%E) +0 of heights ) _ max( IP(k) l, |Q(k)l)

such that

For d=1,2,or 3, we define a property Ay of = as follows.

The sequence Z is said to have the property Ag if for d=1: There exist
two positive constants p and ci such that

(AD): |F(K(k))l < ¢} gl)-p for all k;
for d=2: There exist two positive constants o and c'-.- such that
(A%): |F(K(k))lg < c'aH(k)'a for all k; and

for d=3: There exist four positive constants p, o, ¢y, and ch such that

@y IR < B®P ang IF(x(k))Ig < r®""  foran k.

The property A includes therefore both properties Al and Aa.
The two properties Aq and A;i are closely connected, as the following
lemma shows.

Lemma 4: If the sequence T has the properly Ad with respect to &, or
E, or £ and E, then it also has the property Ay with respect to F(x).
Conversely, if Z has the property Ay with respect to F(x), then there
exist an infinite subsequence X' of T and either a real zevo £ of F(x),
or a g-adic zero E of F(x), or both, such that Z' has the property Agq
with respect to &, or to &, or to both & and E.

Proof: First let = has the property Agq. The quotient

- Fx)-F(y)
®(x,y) = xy
is a polynomial in x and y with integral coefficients. Evidently

)] = 18] Jow® g)] if d=1 or 3,

)], = 19 2] o™, =), if d=2 or 3.
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Further, by the hypothesis,

K(k) has the real limit & if d=1 or 8,

%) has the g-adic limit & if d=2 or 3.

This means that T is a bounded sequence with respect to the absolute or
g-adic values, and hence that the numbers

IQ(K(k),E)i for d=1 or 3, and ItI:(x(k),E)lg for d=2 or 3

are bounded. Let their upper bt')unds by TIi and T%, respectiveiy; it follows
then that ¥ has the property Agq with the constants

¢ = el and ca = cal'a,

respectively.

Secondly let T have the property A}l If d=1 or d=2, the assertion is
contained in Lemmas 2 and 3, respectively. If, however, d=3, both lemmas
must be applied one after the other. First, by Lemma 2, there is a real
zero £ of F(x) and a subsequence Z, of T which has the property A, with
respect to £. Secondly, by Lemma 3, there exists also a g-adic zero E of
F(x) and a subsequence X' of Z; which has the property A; with respect to
&, Since X' still has the property A with respect to &, it has then the
property As with respect to both ¢ and £, whence the assertion.

13. The second form of the First Approximation Theorem.

By combining the lemma just proved with the first form of the First Ap-
proximation Theorem we immediately obtain the following second form of the
theorem,

First Approximation Theorem (II): Let F(x) be a polynomial with inte-~

gral coefficients which does not vanish for x=0 and has no multiple

factors. Let p, 0, A, i be real constants satisfying

p>0, >0, 0<sr<1 O0=<spy<1;

let ¢y, Cu, Cs, Cs e posilive constants; and let g' =2 and g" > 2 be
fixed integers. Finally let = = {x() k), k()..} be an infinite sequence
of distinct rational numbers

()
o) ;i@ +0, where P%x0, @My 0, (M) QM) - 4,

) _

max(12®], [®)),
with the following itwo properties.
(AY): For all k,
176" < ciu®-P if d=1,
Pty g < c,nl)-o if d=2,
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17| < 9P gna 17 lg < c g0y g,
(B): For all k,
] P(k) 'g' < ¢q H(k)h-l and IQ(k) lg" <cq4 H(k) H‘l.
Then
PEA+U for d=1,
o SA+u for d=2,
p+o S A+ for d=3.

Proof: It suffices to apply the first form of the theorem to the sequence
X' and the zero or zeros £, = obtained by Lemma 4.- By the same lemma,
the new second form of the theorem implies also the original first form; both
forms are thus equivalent.



