
Chapter 4

CONTINUED FRACTIONS

Theorem 4 of the last chapter shows, in the special case when m=l, that
there exist pairs of rational integers P, O not both zero for which co(Qa- P)
is arbitrarily small. The proof of the theorem, and that of Theorem 3 on
which Theorem 4 is based, actually allows the effective construction of such
approximations. However, the many pairs P, O that have to be considered
in order to find one satisfactory pair make this method prohibitive on account
of the amount of labour that is required.

Free from this defect is a method based on the algorithm of continued
fractions which is to be discussed in the present chapter.

The theory of continued fractions may go back to the times of classical
Greek mathematics, as far as the real case is concerned; that for p-adic,
g-adic, and g*-adic numbers, on the other hand, seems to be new in the form
given here. Implicitly, they occur, however, already in an old paper of mine1.

We shall begin with a short treatment of the regular continued fractions
for real numbers. For further details the reader is referred to the standard
works on the subject, e.g. to that by O. Perron. The continued fractions for
p-adic, g-adic, and g*-adic numbers are then derived by means of a simple
idea that makes use of the series for such numbers studied in Chapter 2.

1. The continued fraction algorithm in the real case.

Let da be any real number. Put

ao = [«0], so that ao < ao < ao + 1.

If a0 is an integer and hence a0 = ao, this ends the algorithm. Otherwise put

ao - ao + —, where evidently ai > 1.

Put again

ai = [0i ], so that ai ^ «i< ai + 1.

If now ai is an integer, then oti = ai, and the algorithm again breaks off.
In this manner we can continue. Either the algorith finally ends when we
reach a number an which is an integer; or this never happens, and then the
algorithm may be continued indefinitely. After n steps, it consists of the
formulae,

a0 = ao + — , where ao = |>o], «i > 1,

1Znr Approximation algebraischer Zahlen III, (1934), Acta math. 62, 91-166. See, in
particular, the first part of this paper.
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on = ai + —, where ai = [cti ], aa > 1,
«2

•

an-l = an_i + —, where an_i = [an-lL «n > 1.

For shortness, we express this set of n formulae in the abbreviated
form

«o = [ao,ai,..., an-l, «n]

which stands for the explicit formula
1

= ao +

a2

obtained by eliminating HI, Q!2,..., an-l-
If the algorithm terminates with the integer an, then Qfn = an and

ao = [ao, ai ,..., an»i, an].

We call the symbol on the right-hand side a, finite continued fraction for a0.
If, however, the algorithm never breaks off, then we write

ao = [ao,ai, fe ,...],

and say that the symbol on the right-hand side is an infinite continued frac-
tion for a0. For the present such an infinite continued fraction simply ex-
presses the fact that ao, ai, a2,... are the successive "incomplete denomina-
tors" of o?o as given by the algorithm.

We note that if the continued fraction for a0 is finite and ends with an,
where n ^ 1, then an ^2 because an > 1.

2. The convergents of the continued fraction for a0.

Assume that either «0 = [ao, ai,..., an_i, an] or that a0 = [ao,ai, a*,...].
Then define integers Pfc and Qk by the formulae

(P-! = 1) (Po = ao) jPk = akPk_i + Pk.2)

(0-1 = 0)' (Qo = i) ' (Qk =
 akQk-i+Qk-2) i f k ^ l j

where k is not greater than n in the first case, but is unrestricted in the
second case. p

The rational numbers ^ are called the convergents of a0. They are

already written as simplified fractions,

(Pk, Qk) = 1,
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because

(1): Pfc-lQk - PfcQk-1 = (-Dk if k ^ 0.
This equation trivially holds f or k = 0 because

P-iQo- PoQ-i = +l.

Assume next that k^l and that (1) has already been proved for the suffix k-l.
Then

Pfc-lQk - pkQk-l = pk-l(akQk-l + Qk-2) - (afcPfc-1 + Pk-2)Qk-l =

= - (Pk-2Qk-l - Pk-lQk-2) = - (-I)15"1 = (-l)k,
proving the assertion also for the suffix k and so generally.

Next, oto may be written as

+ Pk-2

This formula is certainly true for k=l because

1 a0ai+l
« 0 - 30 + — = — —

Assume further that k ^ 2 and that it is already known that

_ Pk-2ak-l + Pk-3
°~Qk-2ak-l+Qk-3 '

Since a^-l = afc-l+ — , it follows then that

Pk-2 -1 + + Pk-3 Pk,2 Pk-l«k + Pk-2
«o - -. j-^ - 9

Qk-2 (ak-1 +—J +Qk-3 (ak-lQk-2 + Qk-3)«k + Qk-2 Qk-l^k + Qk-2

giving the assertion also for the suffix k and so generally.
From (1) and (2) it follows in particular that

(3)- a - Pk"1 = (-I)1*"1

° " Qk-1 " Qk-l(Qk-l«k + Qk-2) '
because

pk-l (pk-lak+pk-2)Qk-l-pk-l(Qk-lafk+Qk-2) pk-2Qk-l-Qk-lQk-2
a0 - ——= = .

Qk's Qk-l(Qk-l«k + Qk-2) Qk-l(Qk-l«k + Qk-2)

3. The distinction between rational and irrational numbers.

It can now be shown that the continued fractions of rational numbers are
finite, those of irrational numbers are infinite.

First, every finite continued fraction

o?o = [ao, ai,..., 3-n-ljan]

has a rational value. For, by (2), applied with k=n and «n
=an>
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' 1'""> n" ' nJ Qn-lan + Qn-2 Qn "
Conversely, if aQ is a rational number, the continued fraction algorithm

for a0 breaks off after finitely many steps. For let the trivial case a0=ao be
excluded, and let ao,ai,a2,... and 0i,a2,... be defined as in §1. Then all
numbers «k are rational, say

— where (pk, q^) = 1 and qk ^ 1.

Further

r-i = ak-1 + — ,l K ,

here

fak-l> Pk-l-ak-l<lk-l) = (Pk-b Qk-l) = 1
and

, N Qk-1 ( > 0,
Pk-1 - ak-iqk-1 = Qk-l(«k-l - afc-l) ="^" j< q^!

It follows that

Pk = Qk-1, Ok = Pk-1 " ak-iqk_i < qfc-1,
and that therefore

qo > qi > <te > ... > 1 .

There is then a finite suffix k=n such that Qn=l> and the algorithm terminates
with an=an.

The result so proved implies that irrational numbers always have infinite
continued fractions

OiQ = [80,81,81,...].

This continued fraction converges to oto in the sense that

(S): a0 = [ao,ai,a2,...] = lim ^ = lim [ao,aa,...,ak-l,ak].
K— »oo ^K K— *°°

To prove this assertion, we first note that, by the definition of ak,

ak ^ «k < afc + 1,

hence that

Qk = Qk-iak+Qk-2 * Qk-iafc-^Qk-2 < Qk-l(ak+D+Qk-2 = Qk+Qk-1 ^ 2Qk .
Therefore, from (3),

teV ' 1 < 1 ^ )„ Pk-1 1 < 1
W> 2Qk-lQk " Qk-l(Qk-«k-l) 1° " Qk-1 1 " Qk-lQk '
(This formula remains valid for rational ot0 provided that k < n.)



62 LECTURES ON DIOPHANTINE APPROXIMATIONS

Now

Qo = 1, Qi = ai ^ 1, and Qk = akQfc-l + Qk-2 > Qk-1 + 1 if k > 2,

so that

It follows then from (6), for irrational numbers a0, that

<TO -> 0 as k-*oo,

as was asserted. In fact, even the stronger relation

Urn (Qk«o-Pk) = 0

holds because
i _ i . l . 1

as

4. Inequalities for |Qk<%-Pk|.

For shortness, put

6k =

where k is not to exceed n-1 if aQ should be rational. The equation (3) may
be written as

K Qk«k+l+Qk-l '
so that also

6k =

From this equation,
6k-6k-l

-D +{Qk- (Qk-iafc+Qk-2)}

because «k+l > 1; the case when o?0=ao is an integer must, however, be ex-
cluded. Except for this case it has thus been proved that 6k> &k-l> that is,

(7): lQk<*o-Pkl < lQk-iao-Pfc-1 1.
In particular, if a0 is irrational, then the numbers

lQk«o-Pfcl (k = -1,0,1,2,...)

form a strictly decreasing sequence tending to zero.
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5. The convergents as best approximations.

Let k^L, and let

2 , where (p, q) =1 and q> 0,

be any rational number satisfying the conditions

By the equation (1), there exist two integers a and b such that

P « aPfc-1 + bPk,

q = aQk-l + bQk-

Here neither a nor b vanish because then - = g^ or - = • , respectively,
I ^CK q ^k— 1

against the hypothesis.
It is obvious that a and b cannot both be negative. Nor can both be

positive since then

q ^ Q k - l + Q k > Q k
against the assumption. Hence a and b have opposite signs.

The same is true for the two numbers

Qk-lQJo-Pk-1 and Qk«o-Pfc,
as follows from the equation (3). Since

qao - p = a(Qk-iao -Pfc-l) +b(Qk«o-Pk),
this implies the relation

(qoio - pl= lallQuflo - Pfc-l '+ lb||Qkao-Pkl .
Now a and b are integers distinct from zero, so that |a| ^ 1 and |b| ^ 1,
and hence

|q«o - P\> lQk-i<Xo - Pfc-i l+ lQk«o-Pkl>
This gives the following result.

V (P, q) = 1 and 1 ^ q ^ Qk, then

|q«o - pl

with equality only if p = Pfc and q = Qk.

The convergents of a0 are thus, in a very strong sense, its best approxima-
tions.

6. The rational approximations of g-adic integers.

After this short sketch of the basic properties of continued fractions for
real numbers, we proceed to the study of the continued fractions for g-adic
and g*-adic numbers. There is no need for dealing separately with the case
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of p-adic numbers because these may be considered as special cases of
g-adic numbers.

We begin with the study of g-adic numbers, but, for simplicity, consider
only g-adic integers A * 0; thus

As was proved in §5 of Chapter 2, such g-adic integers may be defined
explicitly in terms of g-adic series

... (g)

where the coefficients A*0) A^), A<2),... are integers 0, 1, 2,..., g-1. Put

Am = A(°) + A«g + A(2)g* + ... + Ato-Dgm-l (m = 1,2,3,...

so that Am is a rational integer satisfying

(8): 0<Am< (g-l)(l-i«+g2+...+gm-1) = g™ - 1, \A -

Our aim is to establish an algorithm which, for every positive integer m,
allows to find small integers P and Q for which

(9):

Here P and Q need not necessarily be relatively prime, but we shall impose
the weaker condition that all common prime factors of P and Q are divisors
of g. Therefore (P, Q) is a factor of some power of g.

We first show that P and Q satisfy (9) if and only if

(10): |QAm-P|g«g-m.

By iQlg^l, this follows immediately from (8) and from the two inequalities

lQAm-P|g = I(Q^-P) - Q(A-Am)lg < max(|Q4-P|g, U-Amlg)

and

|QA-P|g= |(QAm-P)+QU-Am)|g^ max(|QAm-P|g, U-Am|g).

Next, the inequality (10) is equivalent to the congruence

and hence to the equation

(11): QAm - P

where R is a further integer.

7. The continued fraction algorithm for a g-adic integer.

The equation (11) may be written as

It suffices to consider those integral solutions P, Q, R for which

0^ |p|<gm-l, O^Q^g 1 3 1 - 1,
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since new solutions are obtained if multiples of gm are subtracted from P
and Q while R is changed suitably. As will become evident further on, it is
convenient to allow both signs for P.

The algorithm for finding solutions P, Q, R is now as follows. We apply
the ordinary continued fraction algorithm to the real number

„(«!)_ Am«o -isr.

This number is rational and, by (8), it satisfies the inequality

0 ^ «0
(m) < 1.

Therefore its development into a continued fraction has the form

/1oV (m) rn (m) (m) Q(m)-,(12): a0 = 10, ai , a2 , ..., a^ I
/ \ /_. \ /___ \

where Nm, ai , a2 ,•••» aNm
 are certain positive integers. All these in-

tegers, and in particular the number Nm+l of terms of this continued fraction,
will in general vary with m.

With a slight change of notation, let
(m)

(k = -1,0,1,2,..., Nm)

be the convergents of the continued fraction (12); here

= 1 = 0

jjj

Qo = 1

Further put

(13): P(
k
m) = AmQtm)- gmR[m) (k = -1,0,!,..., Nm).

By the property (1) of the convergents of a continued fraction,

n(m)R(m) (m) (m) / -,kQk Rk-l " Qk-lRk = v-1) »

so that in the present case Q^' and R^ are relatively prime. It follows
then that

(Pfcn) , Qk^ ) is far all suffixes k a divisor of gm.

Thus P^ and Q^ satisfy the condition for P and Q imposed in §6.
Next

Q = 0, 0 < c « gm (k = 0,1,..., Nm),

with equality at most when k = Nm because

(14): ^m)

(m)
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/ \
There are also simple inequalities for P ,_ ' . In order to obtain these,

t \ '
denote by o^ the real number analogous to a^ that belongs to the con-
tinued fraction (12). Then, in particular,

so that again

We find now from the equation (3) that

afej

^
Qk-1

and hence

4m) - <& < <4m)

(m) - ,
ffl° ' - * ~ M""'

This equation shows that P^ nas the 8i^ (-l)k and satisfies the inequalities

& = 0,1,..., Nm-l).
2Qk+l

When k=-l or k=Nm, P^ is given by

From (13) and (15), Pfe and Q^ satisfy the inequalities

(16): |Q(
k
m) A-Pk

m)|g * g-* 0 < |Pk
m)Qk

m) l< g» (k = 0,l,2,...,Nm-l).
We distinguish now two cases, If

then there exists a suffix k with 0 < k < Nm_x for which, in addition to (16),
also m
(17): 0<max(|Pk

m)|,Q(
k

an))* g2 .

For; by the construction,

It is then possible to choose a suffix k such that
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m

and, for this suffix, by (15),

m

whence the assertion.
If, however, m

Nm

then it follows from (14) that the greatest common divisor, dm say, of Am

and gm is greater than g . Now, by (13), P^1' is divisible by dm; further
by (15),

m

p[m) + 0, hence |p |̂ £dm > g2 tt 0 *$ k < Nm-l.

Thus, in this second case, there can be no suffix k with 0^k<N m _i for which
both (16) and (17) are satisfied. However, now

m

(18): lO^A-Olg^g-™ 0<QJgj< g2.

By what has just been proved, the algorithm leads, for every positive in-
teger m, to the effective construction of a positive integer Q and of a second
integer P such that m

|QA-P|g ^ g-m, max(|p|,Q) ^ g2 .

The reader will have no difficulty in proving the following result.

If A is not a positive integer, and if, in addition, all components of A
are distinct from zero, then the pair of inequalities (16) and (17) has
solutions for infinitely many distinct values of m.

8. Two numerical examples.

The continued fraction algorithm for g-adic numbers has not only some
theoretical interest, but is also quite useful for the actual computation of ap-
proximations.

As a first example, consider the 5-adic number

5 = 2 + 1.5 + 2.52 + 1.5s + 3.54 + 4.55 + ... (5),

which is a root of the algebraic equation

x2 + 1 = 0.
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We find that the integers Am have the values

A! = 2, Aa = 7, A3 = 57, A* = 182, A5 = 2057, Ae = 14557,...

and that therefore

«l*> =| «*> -i, <4°> =f , «w = «, «« -3P, «<•> =
These rational numbers are equal to the continued fractions,

(jL [0,2,2]
2)= [0, 3, 1, 1, 3],

<*o(3)= [0, 2, 5, 5, 2],

«0
W= [0, 3, 2, 3, 3, 2, 3],

«oB)= [0» !> *> *> 12» *> *» 12» *> 2l
<*W= [0, 1, 13, 1, 1, 1, 2, 2, 1, 1, 1, 14].

From these continued fractions, we immediately obtain the solutions

|24| + 7 Is ̂ 5"4, |41£ + 38 18 < 5" 5, 1 1176 - 44 IB ^ 5"8,

of both (16) and (17). It is rather remarkable how small, in comparison with

gm, are the values of |p[m)Q^m)|.
As a second example, let A^-*-(l,0) be the 6-adic number with the 2-adic

component 1 and the 3-adic component 0. It is easily found that A has the
6-adic series

A = 3 + 1.6 + 2.62 + 0.63 + 5.64 + 3.6B + ... (6).

Hence

Ai = 3, Aa = 9, As = 81, Ai = 81, As = 6561, Ae = 29889,...

and therefore

All integers Am are odd and divisible by 3m; by (13), the integers P^ are

then likewise divisible by 3m and hence

m

because 3 > V6*. Thus now the second case of §7 holds, and there are no
solutions of both (16) and (17). However, we have now the solution

m
a, 0 <2 m < 62 ,

of (18).
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9. Final remarks to the g-adic algorithm.

I believe that the algorithm sketched in the last sections is worthy of a
more detailed study, and I have little doubt that many interesting properties
will then be discovered. One possible approach arises from the following
facts.

The numbers

,(m) Am

° g51

occurring in the algorithm are not independent. Since

^ is connected with ct^' by the relation

a0
(m)+A(m)

 m

Here A may assume only the g values 0, 1, 2,..., g-1. There is thus as-
sociated with A an infinite sequence of linear transformations

{Ti, T2, TS,...}

where

g

This sequence is thus formed by repeating not more than g distinct elements.
WJien A is rational, the sequence is periodic; i.e., there are two positive
integers m0 and n such that

Tm+n = Tm if m ^ m0.

One may therefore expect some simple laws relating to one another the

continued fractions of consecutive numbers oto and ao + . It further
seems probably that there is some non-trivial connection to the theory of the
modular group and its congruence subgroups. In a very similar theory for
p-adic numbers this was indeed the case as I proved in an earlier paper2.
There would be no difficulty in extending the method of that paper to the g-adic
case.

10. The continued fraction algorithm for g"-adic numbers.

The continued fraction algorithm for g-adic numbers has an analogue for
g*-adic numbers.

We shall consider only such g*-adic numbers

2Annals of Math. 41 (1940), 8-56.
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which have the property that their g-adic component A is a g-adic integer;
for the real component a no restriction is necessary.

The component A may again be written as a g-adic series • <

A = A(°)+A(1)g + A(2)g3 + ... (g),

where the coefficients A(m) are integers 0, 1, 2,..., g-1. Just as in §6 put

Am = A(°) + A«g + ... + A(m-1>gm-1,

so that

U - Am|g < g-m, 0 < Am ^ gm -1.

We found then that the integral solutions P, Q of the inequality

are identical with the integral solution P, Q of

QAm - P = gmR

where R is a further integer.
Assume now that such a solution P, Q has the additional property that

p
Q is a close approximation to the real component a. Then

Qa-P = Qa - (AmQ - gmR) = Q(a - Am) + gmR

is small. We therefore put
(m)_A m -a

0° = gm

•p (m}

and demand that is close to 0o . This leads to the following algorithm.

Develop the real number |3o into a continued fraction

(m) r (m) (m) (m) -,
0o = [bo , bi , ba ,...J.

,Here bo is an integer which may be positive, negative, or zero, and bi ,

ba , bs ,... are positive integers. The continued fraction terminates if/ \
and only if a and hence also 0o is rational.

R.(m)
As in the g-adic case, denote by \ the convergents of this continued

fraction so that

I?' = 0 Q<m) = l (m)Qk

for k = 1,2,3,...

Further put again

= AmQ(
k

m)-gB>R(
k

m) (k = -1,0,1,...).
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Then, as before,

(P[m), Q^) to « divisor of gm

because (Q(
k

m), R(
k

m)) = 1.

The construction implies that

lQ(k^-P(
k

m)lg*g-m.
Further, by the equation (3),

0(m)/0(m) (m) o(mQk-l <Qk-lP k + Q

where j3k is the real number analogous to the former number o?k that be-
longs to the continued fraction. This equation may be written as

In this equation,
.(m) . Jm). , (m)

so that, similarly as before,

n(m) n(m) (m) n(m) . n(m) n(m) 9n(m)
Qk ^ Qk-1 ^k + Qk-2 < Qk + Qk-l ^ 2Qk •

Hence, on changing from k to k+1, it follows that

Exclude the case when a is rational, so that this inequality is valid for
all k?0. Since

there exists then for every positive integer m a suffix k such that

(m) . 2m fAm)
Qk < g * Qk+1 »

and for this suffix, both

|Q[mWk
m)|* g-m and |Q(

k
m)A-P(

k
m)|g^ g-m.

Now the g*-adic value of any g*-adic number

J3*— (]8,5)

was defined by the equation
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The following result has thus been obtained.

Let the real component of A*~+*~(a,A) be irrational, and let the g-adic
component be a g-adic integer. For every positive integer m, the
continued fraction algorithm allows to construct a pair of integers

Pfc l ) .Qk a ) >0 such that

|QJf >A* - P(
k
m)|g* * g-m, 0 < max(|P(

k
m)|, Q^) * g2m.

This result remains true for rational a, as can be shown, but it then takes
a rather trivial form. For now

as soon as m is sufficiently large.
The remarks made with regard to the g-adic algorithm in §9 may be

repeated for the g*-adic algorithm. For also here consecutive numbers

j8o ' and j3o + are again related by the transformation Tm.


