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THE TEACHING OF THE CALCULUS OF PROBABILITY

There has always been conslderable dlsagreement among
experts concerning the significance of the relation between
probabilities and the statistical data with which these
probablilities are supposed to be somehow connected. Such con-
troversy indlicates both that the relation is important and
that 1t 1s difficult to grasp. In presentlng the theory of
probability to students, one should therefore make every effort
to clarify this relation. I shall glve a brief outline of
such a presentation.

Physical measurements. If we make n measurements

x(l),x(Z),. .,x(n) of some physical quantity these measure-

ments will in general differ and it 1s natural to take the
average %1 ];zllx(k’ as an estimate of the quantity measured. It
1s reasonable to suppose that in general this estimate improves
as n lncreases. This situation can be formulated mathemati-
cally as follows: We lmagine that an infinite sequence x of
numbers x(k) is assoclated with the quantity to be measured.

Thus

1) .(2) (k)

x = x{ ,x( seeesX 000

We also imagine that there 1s assoclated with the above quant-
ity a number p(x) which we can call the expected value of the

quantity to be measured. We observe n terms of the sequence x

by making n measurements. We assume that our estimate
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n

pn(x) = % kélx(k) of the expected value tends to improve as n

increases and that 1im p (x) = p(x). I shall have more to say
n-e

concerning this assumption at a later point.

Functions of sequences. We are frequently confronted

with the problem of estimating the expected value of some
function of one or more physical quantities. Thus we introduce
the following definition: Let f(u,v) be a function of the

variables u and v and let
x(1),x(2)

x

goee

and

vy seee
be two sequences. Then

£(x,y) = £(x(1),5(2)), £(x(2),5(2)) .
Thus a function of two sequences 1is itself a sequence. For
example

x+y= x(1) & y(l), x(2) 4 y(2)””
and from this equation it follows that

p(x+y) = p(x) *+ p(y).
The definlition of a function of sequences 1s readily extended

to the case of n sequences.

Constant sequences. We also have occasion to consider a

function in which some of the arguments are sequences and the
remalning arguments are parameters which do not vary from one
measurement to the next. Thus we introduce the following
definition: A sequence

a=a, 8, 8, o0
all of whose terms are the same is called a constant sequence
or parameter. The same letter 1s used to denote both the

sequence and the terms of the sequence. The ambiguity of
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notation does not seem to cause any difficulty.

Variance. As an example, the expression
p[(x-a)zl = p(xa) - 2ap(x) + a® measures the average squared
deviation from the parameter a. The minimum value of this
expression with respect to a is p(:tg) - pz(x) = cz(x) and this
minimum 1s attained when a = p(x). The number c2(x) 1s talled
the variance and its square root o(x) is called the standard
deviation. In an analogous manner we can define the variance
ai(x) = pn(xz) - pﬁ(x) and the standard deviation cn(x) for a
finite sequence of measurements.

Events.- If we let 1 and O denote respectively the suc-
cess and fallure of an event on a given trial, then an event
may be regarded as a physical quantity the measurements of
which can have only the values 1 and 0. If x is the corres-
ponding sequence, then pn(x) is the success ratio for the
first n trials and p(x) is the probabllity of the event.

Algebra of events. If x and y are 1,0-sequences, they

can be regarded as the sequences of successes and fallures
assoclated with two events. It 1is easily seen that ~x =1 <« x
represents the event "not x", x+y represents the ‘event
"x and y¥, and xvy =~(~x°e~y) = X + §y - x°y represents the
event "x or y (or both)". We have the relations

p(~x) =1 - p(x), p(xvy) = p(x) + p(y) - p(x-y).
The event ®x 1f y" 1s denoted by x € y and is defined as
follows:

xcy= x(nl),x(nz),...x(nk),...

where nj is the trial on which the k-th success of y occurs.

The sequence x C y 1s in general infinite and 1s obtained as
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the result of a selection operation on the sequence x, the

n-th term x(n) being selected if and only-if the n-th trial of

¥y 1s a success (i.e., y(n) =1). We have the relation
p(x)p(ycx) = p(x-y).

Mutually exclusive events. Two events x and y are said

to be mutually exclusive provided x.y = 0. If the events™
X sXgseeesXy are mutually exclusive, then
plxyv xp v.e.. vxy) = p(xy) + p(xy) + <o+ + p(x,j.

Independent events. The events Xy,X5,...,X, are sald to

be independent 1f

p(xy *Xp°ee.oxy) = p(x9)p(x5)...p(xy)
and 1f a simllar condition holds for every subset of these
events. If two events x and y are independent, then

p(xcy) = p(x) and p(ycx) = p(y).
This algebra forms the basis for the solution of the usual
probability problems.

Fundamental function. The functlon ¢;(u) depends on the

variable u and the interval I, and is defined as follows

lifuisin1I
o - {

If x 1s a sequence assoclated with a physical quantity, then

0 otherwise.

p1(x) 1s a 1,0-sequence representing an event which succeeds
or fails on 1ts k-th trlal according as the k-th measurement
of x does or does not fall within I. The probability that
the measurement will fall within I is p[?I(x)].

Note that subscripts are used to indicate dif-
ferent sequences whereas superscripts are used to
indicate the different terms of a given sequence.
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Tchebycheff's inequality. Let I be the interval

p(x) - € <u < p(x) + e. Then ~Py(u) < [u-p(x)]z/tz2 and
hence we obtaln the following inequality of Tchebycheff:
pl~pp(x)] 5 oP(x)/e.
Thus the probability that a measurement will be in error by
more than € (i.e., fall outside the interval) is at most
oz(x)/ez.
Independence of physical quantities. Let x and y be the

sequences assoclated with two physical quantities. Then x and
Y are independent provided the events (r(x) and @p(y) are
independent for every palr of intervals I and J. It can be
proved that if x and y are independent, then p(xe.y) = p(x)p(y).
If x and y are dependent, then
r(x,y) = [p(x-y) - p(x)p(y)]/o(x)a(y)

measures the correlation between them. If X sXgseosX, aTre
independent, then
Fllxy + x5 + o+ + x;)/n] = [oP(x))# 0Z(x5) # oo + o(x )1/02,
Thus for the average (xl x5 Foeee + xn)/n of n physical
quantities, Tchebycheff's inequality takes the form
Pf~prlix+xp + s +x)/m]} < [0%x) + Azp) + -0 + oFxy) 1/0%e2,

Independence of individual observations, We shall intro-

duce certain 1,0-sequences in terms of which we can glve a »nre-
cise meaning to the lntultive toncept of independence of
observations. Let (r,n) be a sequence in which the 1's occur
in the terms whose superscripts are r+1, r+n+l, r+2n+1l,...

and the 0's occur in the remaining terms. Then the sequence*

*
Note that 1n the definition of x € y, x need not
be a 1,0-sequence whereas y must be such a sequence.
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x € (r,n) is obtained by selecting the (r +1)-st term of the
sequence x and every n-th term thereafter. Note that the
first terms of the sequences xc{0,n), x€(1,n),...,xc(n-1,n)
constitute the first n terms of the sequence x (i.e., the first
n observations). The second terms of these sequences consti-
tute the second group of n terms of x, etc. We shall say that
the observations are independent provided the sequences

x € (o,n), x € (1,n),...,x € (n-1,n) are independent for
every n., If this condition is satisfied and if further
p{fPI[x c (r,n)]} = pl{p[x)] for every interval I and every
palr of integers r,n such that 0 < r < n, then x is sald to be
admissible. It can be proved that if x is admissible, then
plx € (r,n)] = p(x) and olx € (r,n)] = o(x). It is reasonable
to assume that the sequence x assoclated with any physical
quantity 1s admissible.

Error of the average of n trials., ILet us consider the,

average xn/n where

X, =xc (o,n) +xc (1,n) + ¢+ + x € (n-1,n)
and where x is admissible. The following formulas are readily
established

p(X,/n) = p(x), o2(X,/n) = o®(x)/n,

X /n=p(x), plxc(n,1)], p xc (2n,1)],...
Applying the Tchebycheff inequality we get

pl~¥1(X /n)] 5 o?(x)/ne?.
Thus the probability that a term of X,/n shall be in error by
more than ¢ is at most oz(x)/nez. This is a precise formula-

tion of a more common elliptical statement, namely, that the
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probability that the first term p,(x) shall be im error by
more than e is at most oz(x)/nez. It is customary to replace
o?(x) by aﬁ(x) since the latter quantity can be calculated
from the first n measurements. As the inequallity is exceed-
ingly generous it probably continues to hold after this
replacement.

Distribution functions, Let I, and Is' be respectively

the intervals - *s<u<s,-~<uc<s and let

p[‘sz(x)] = F(s +0), p[‘h;;(x)] = F(s -0), and

[F(s-0) + F(s+0)]/2 =F(s)e In general,*

F(s +0) = %},%F(s +g), F(s-0) = %E,mo F(s -¢), F(s) 1s mono-
tone, F(- =) = 0, and F(+e) = 1. Finally, 1if Ia,b is the
interval a < u g b, then

P['an’b(x)] = F(b #0) - F(a +0).

The function F(s) is called the distribution function associ-
ated with the sequence x.
Integrals. Let g(u) be a continuous function and let
G(s) = PIG(""PI,("”'

Then it 1s easy to see that

m[F(b +0) - F(a +0)] 5 G(b) - G(a) s M[F(b+0) - F(a+0)],
where m and M are réspectively the minimum and the maximum of
g(u) in Ia,b' Next suppose that F(s) possesses a continuous

derivative F!(s). It follows from the above mean value

* It 1s possible to construct a sequence violat-
ing all of these conditions except the monotone-
ity but such sequences are exceptional and do not
correspond to physical measurements.
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property that G'(s) = g(s)F'(s) and G(s) = /3 g(t)F'(t)dt.

Hence ‘e b
ple(x)] =/ _ g(s)F'(s)as = /__ g(s)aF(s).

The expected value p[g(x)] exists under much more general con-
ditions than those stated above and can be taken as a defini-
tion of the Stieltjes integral on the right when the Riemann
integral in the middle fails to exist. For example, let

X=Xy +2x5 + oo + 6xg where Xy,X5,«..,Xg are mutually
exclusive 1,0-sequences such that p(x;) =p(xp) =... =p(xg) =1/6.
This sequence represents the throwing of a die. The distribu-
tion function F(s) is discontinuous at the points

8 =1, 2, ... 6 and constant elsewhere. We get

*rsdF(s) = p(x) = (1 +#2+++ +6)/6 = 3.5

and /1"s%ar(s) = p(x®) = (1+4 +-.- +36)/6 = 91/6.
As the student is usually unfamillar with Stieltjes integra-
tion, this approach 1s decidedly advantageous.

Moment generating functions. The function
pelXt) = p(t) = f_:. el8tar(s) (where t 1s a constant
sequence) 1s called the moment generating function of the
sequence x. It uniquely determines the distribution function
as the following computation shows. Flirst consider the

integral

= olt . olxteist {

+
or L - s = frg(x) * o1 (x)

1 if x
1/2 1f x
0 1ifx

VYUA

Thus

+e 1t ixt_-1ist
plyky /17 5 = 81X
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But
P[EJ?I a olt eixte-ist e = 2%/.:- p{eit _teixte-lst]dt
=1 _:' olt p(eixt)e-ist a.
2mi T
Hence " ”
F(s) = i £27 &= p(ble st

The probability integral. ILet x, = x € (k#1,n) and

X, =Xy + X5 + ¢+ + x,vwhere x 1s admissible, p(x) = 0, and
p(xz) =1= cz(x). Then

p(eixnt/\ln) = eixlt/wl'ﬁ)p(eixztﬂn). .. eixntﬂn)
1xt AR x°t2 ‘
= B 1xtANn, _ n ixt x%t - = - _ n
p (e ) p(1-i--—G e cee) = (Ll e == .. )
Hence
Um o IXntAE) | 11 £2 -t2/2
n-vm- ) = n—rm. -2~ )= VR

Thus if Fn( 8) is the distribution function for.the sequence
x,/d’ﬁ, it follows that

+o Lt _ ~t2/2,-1st
m p(e) = 2L /0 e = &(s)
where
-t%/2 4

=-1. s8
§(s) &Tf‘/-l. e

The latter equality can be established by showing that
2
/hei’tdhs) = o~t°/2,
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The problem of umieationf In conclusion, I should

like to make a remark about the problem of application. Sup-
pose we make the physical hypothesis that the probability of
some event is 1/2, 1.e., that the associated sequence x 1is
such that p(x) = 1/2. Suppose further that we make 1000
trials of the event and obtaln the result pjggo(x) = .491.

We are tempted to belleve that the result is a confirmation
of our hypothesis. However, if the result confirms the hypo-
thesis, it must verify some implication of the hypothesis.
But our hypothesis actually does not imply anything about the
value of pygpo{x). No one of the possible values

0, +001, ¢002, ... 1 is excluded by the hypothesis p(x) = 1/2.
This argument would seem to indicate that there 1s no way of
verifylng any probablility (or any expected value) by means of
statistical data. However, this 1is not the case. In fact,
the hypothesis p(x) = w has an infinitude of verifiable

implications. Each implication depends on a pair of positive
numbers ¢, N and is stated as follows: There exists an
integer n such that n > N and |p,(x) - w| < e. For example,
the hypothesis p(x) = 1/2 implies the existence of an integer
n such that n > 500 and |p,(x) - 1/2| < .0l. Since we have
obtained the value plooo(x) = ,49]1, the number n = 1000 sat-
isfies the conditions and therefore the hypothesis is veri-
fied by this result: '

Of course, this theory leaves much to be desired. FPhysi-
cal experiment cannot establish either the truth or the fal-
sity of a hypothesis concerning a probability. However,

»*
See also the editor's note following this
section concerning the same problem.
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suppose that someone makes a hypothesls concerning a probabil-
1ty p(x) and that he makes the claim that there 1s no one of
the :lmpli:cationa of this hypothesis which cannot be verified
experimentally. He 1s then claiming that p(x) is a limit
point of the sequence p,(x). If further the above indlvidual
subscribes to the physical hypothesis that such 1limit points
are unique, he thereby asslgns a physical meaning to p(x).
Undoubtedly, practical objections can be raised. It may hap-
pen that verification of a glven implication is impossible
within the lifetime of the experimenter or of the object on
which experimentation 1s performed. Thus in spite of the fact
that we have clarified the relation between probability and
experiment, some vagueness remains. In discussing this sub-
Ject, Wald (On the principles of statistical inference, Notre

Dame Mathematlcsl Lectures, No. 1) remarks that ®... such
vagueness 1s always associated with the application of theory
to real phenomena.%

In this outline I have indicated some of the ways in
which probabilitles can be computed from expected values and
from other probabilities. I have also glven a brief explana-
tion of the precise sense in which these computations can be
verified by statistical data. I hope this will help clarify
the relations between probabilitles and physical measurement,



