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II FIELD THEORY

A. Extension Fields.

If E is a field and F a subset of E which, under the operations

of addition and multiplication in E, itself forms a field, that is, if F is

a subfield of E, then we shall call E an extension of F. The relation

of being an extension of F will be briefly designated by F C E. If

a, /3, y,. . . are elements of E, then by F(a, /3, y,. . . ) we shall mean

the set of elements in E which can be expressed as quotients of poly-

nomials in a, j8, y, . . . with coefficients in F. It is clear that

F ( a, /3, y,. . .) is a field and is the smallest extension of F which con-

tains the elements a, /3, y, . . . . We shall call F (a, /3, y,. . . ) the field

obtained after the adjunction of the elements a, /3, y, .. . to F, or the

field generated out of F by the elements a, /8, y, . . . . In the sequel all

fields will be assumed commutative.

If F C E, then ignoring the operation of multiplication defined

between the elements of E, we may consider E as a vector space over

F. By the degree of E over F, written (E/F), we shall mean the dimen-

sion of the vector space E over F. If (E/F) is finite, E will be called

a finite extension.

THEOREM 6. If F, B, E are three fields such that

F C B C E, then

(E/F) = (B/F)(E/B).

Let A! , A 2 , . . ., Af be elements of E which are linearly

independent with respect to B and let C v C 2 , . . . , Cs be elements
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of B which are independent with respect to F. Then the products C.A.

where i = 1,2,.. . , s and j = 1,2, . . . , r are elements of E which are

independent with respect to F. For if 2 a^ CLA. = 0, then

SCSa^ C i )Aj is a linear combination of the A^ with coefficients in B

and because the A^ were independent with respect to B we have

Sa.j. Cj = 0 for each j. The independence of the C. with respect to F

then requires that each ar = 0. Since there are r • s elements CLA. we

have shown that for each r < (E/B) and s < (B/F) the degree (E/F)

> r - s . Therefore, (E/F) > (B/F) (E/B). If one of the latter numbers

is infinite, the theorem follows. If both (E/B) and (B/F) are finite,

say r and s respectively, we may suppose that the Aj and the C. are

generating systems of E and B respectively, and we show that the set

of products CjAj is a generating system of E over F. Each A e E can

be expressed linearly in terms of the A. with coefficients in B. Thus,

A = SBj. A.. Moreover, each B^ being an element of B can be ex-

pressed linearly with coefficients in F in terms of the Ct, i.e.,

B. = Ea.. C., j = 1,2,. .., r. Thus, A = 23..C.A. and the C.A^ form

an independent generating system of E over F.

Corollary. If F C F1 C F2 C . .. C Fn, then

(Fn/F) = (F 1 /F)»(F 2 /F 1) ... (F^F^).

B. Polynomials.

An expression of the form aoxn + a^*-1* ... + an is called a

polynomial in F of degree n if the coefficients
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a0,. .., an are elements of the field F and ao 4 0. Multiplication and

addition of polynomials are performed in the usual way X).

A polynomial in F is called reducible in F if it is equal to the

product of two polynomials in F each of degree at least one. Polyno-

mials which are not reducible in F are called irreducible in F.

I f f ( x ) = g ( x ) - h ( x ) i s a relation which holds between the

polynomials f (x ) , g(x) , h ( x ) i n a field F, then we shall say that

g ( x ) divides f ( x ) in F, or that g ( x ) is a factor of f ( x ). It is readily

seen that the degree of f (x) is equal to the sum of the degrees of

g (x ) and h(x) , so that if neither g ( x ) nor h ( x ) is a constant then

each has a degree less than f (x). It follows from this that by a finite

number of factorizations a polynomial can always be expressed as a

product of irreducible polynomials in a field F.

For any two polynomials f ( x ) and g (x) the division algorithm

holds, i.e., f ( x ) = q ( x ) - g ( x ) + r ( x ) where q ( x ) and r ( x ) are

unique polynomials in F and the degree of r ( x ) is less than that of

g(x). This may be shown by the same argument as the reader met in

elementary algebra in the case of the field of real or complex numbers.

We also see that r ( x ) is the uniquely determined polynomial of a de-

gree less than that of g ( x ) such that f ( x ) - r ( x ) i s divisible by

g(x). We shall call r ( x ) the remainder of f ( x ) .

1) If we speak of the set of all polynomials
of degree lower than n, we shall agree to
include the polynomial 0 in this set,
though it has no degree in the proper sense.
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Also, in the usual way, it may be shown that if a is a root of

the polynomial f (x) in F than x - a is a factor of f (x), and as a con-

sequence of this that a polynomial in a field cannot have more roots

in the field than its degree.

Lemma. If f (x) is an irreducible polynomial of degree n in F,

then there do not exist two polynomials each of degree less than n in

F whose product is divisible by f (x ) .

Let us suppose to the contrary that g ( x ) and h ( x ) are poly-

nomials of degree less than n whose product is divisible by f (x).

Among all polynomials occurring in such pairs we may suppose g (x )

has the smallest degree. Then since f (x) is a factor of g ( x ) - h ( x )

there is a polynomial k ( x ) such that

k ( x ) - f ( x ) = g ( x ) - h ( x )

By the division algorithm,

f ( x ) = q ( x ) . g ( x ) + r ( x )

where the degree of r ( x ) is less than that of g (x ) and r ( x ) 4 0

since f (x) was assumed irreducible. Multiplying

f ( x ) = q ( x ) . g ( x ) + r ( x )

by h ( x ) and transposing, we have

r ( x ) - h ( x ) = f ( x ) . h ( x ) - q ( x ) . g ( x ) . h ( x ) = f ( x ) . h ( x ) - q ( x > k ( x ) . f ( x )

from which it follows that r ( x ) - h ( x ) is divisible by f ( x ) . Since r ( x )

has a smaller degree than g(x), this last is in contradiction to the

choice of g(x), from which the lemma follows.

As we saw, many of the theorems of elementary algebra

hold in any field F. However, the so-called Fundamental

Theorem of Algebra, at least in its customary form, does not

hold. It will be replaced by a theorem due to Kronecker
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which guarantees for a given polynomial in F the existence of an ex-

tension field in which the polynomial has a root. We shall also show

that, in a given field, a polynomial can not only be factored into irre-

ducible factors, but that this factorization is unique up to a constant

factor. The uniqueness depends on the theorem of Kronecker.

C. Algebraic Elements.

Let F be a field and E an extension field of F. If a is an ele-

ment of E we may ask whether there are polynomials with coefficients

in F which have a as root, a is called algebraic with respect to F if

there are such polynomials. Now let a be algebraic and select among all

polynomials in F which have a as root one, f (x ) , of lowest degree.

We may assume that the highest coefficient of f (x) is 1. We con-

tend that this f (x) is uniquely determined, that it is irreducible and

that each polynomial in F with the root a is divisible by f ( x ). If, in-

deed, g ( x ) is a polynomial in F with g (a ) = 0, we may divide

g(x) = f ( x ) q ( x ) + r ( x ) where r ( x ) has a degree smaller than that

of f (x). Substituting x = a we get r (a ) = 0. Now r ( x ) has to be

identically 0 since otherwise r ( x ) would have the root a and be of

lower degree than f ( x ) . So g(x) is divisible by f (x) . This also shows

the uniqueness of f (x). If f (x) were not irreducible, one of the factors

would have to vanish for x = a contradicting again the choice of f (x).

We consider now the subset Eo of the following elements

(9 of E:
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0 = g(a) = co + Cja + c2a2 + . . . + cn^an'1

where g (x ) is a polynomial in F of degree less than n (n being the de-

gree of f ( x ) ) . This set ^ is closed under addition and multiplication.

The latter may be verified as follows:

If g (x ) and h ( x ) are two polynomials of degree less than n we

put g ( x ) h ( x ) = q ( x ) f ( x ) + r ( x ) and hence g ( a ) h ( a ) = r(a).

Finally we see that the constants co, c v . . . , cn-1 are uniquely deter-

mined by the element Q. Indeed two expressions for the same Q would

lead after subtracting to an equation for a of lower degree than n.

We remark that the internal structure of the set Eo does not de-

pend on the nature of a but only on the irreducible f (x). The knowledge

of this polynomial enables us to perform the operations of addition and

multiplication in our set Eo. We shall see very soon that E0 is a field;

in fact, Eo is nothing but the field F(a). As soon as this is shown we

have at once the degree, (F(a)/F), determined as n, since the space

F(a) is generated by the linearly independent 1, a, a2, . . . , a""1.

We shall now try to imitate the set Eo without having an exten-

sion field E and an element a at our disposal. We shall assume only

an irreducible polynomial

f ( x ) = xn + a^x11'1 + . . . + ao

as given.

We selecjt a symbol £ and let E l be the set of all formal

polynomials

of a degree lower than n. This set forms a group under

addition. We now introduce besides the ordinary multiplication
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a new kind of multiplication of two elements g ( f) and h ( f) of E l

denoted by g(f) x h(f). It is defined as the remainder r(£) of the

ordinary product g(£)h(£) under division by f (£) . We ^irst remark

that any product of m terms gx(f), g 2 (£) , . . . , gm(f ) is again the re-

mainder of the ordinary product gl(£)g2(£)-. . gm(f)- This is true by

definition for m = 2 and follows for every m by induction if we just

prove the easy lemma: The remainder of the product of two remainders

(of two polynomials) is the remainder of the product of these two

polynomials. This fact shows that our new product is associative and

commutative and also that the new product g j ( f ) x g2(f) x ... x

will coincide with the old product g1(£)g2(£)- • • gm(£) if the latter

does not exceed n in degree. The distributive law for our multiplication

is readily verified.

The set E l contains our field F and our multiplication in Et has

for F the meaning of the old multiplication. One of the polynomials of

Ej is f. Multiplying it i-times with itself, clearly will just lead to £*

as long as i < n. For i = n this is not any more the case since it

leads to the remainder of the polynomial ^rn.

This remainder is

We now give up our old multiplication altogether and keep only

the new one; we also change notation, using the point (or juxtaposition)

as symbol for the new multiplication.

Computing in this sense

will readily lead to this element, since all the degrees
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involved are below n. But

Transposing we see that f (£) = 0.

We thus have constructed a set E 1 and an addition and multipli-

cation in Ej that already satisfies most of the field axioms. E1 contains

F as subfield and f satisfies the equation f (£ ) = 0. We next have to

show: If g(<f) 4 0 and h(£) are given elements of Ep there is

an element

in Ej such that

To prove it we consider the coefficients x. of X(£) as unknowns and

compute nevertheless the product on the left side, always reducing

higher powers of £ to lower ones. The result is an expression

L0 -f Lj£ + . . . 4- L^j^11"1 where each L. is a linear combination of

of the x£ with coefficients in F. This expression is to be equal to

h(£); this leads to the n equations with n unknowns:

Lo = bo> Lj = bj, ... , L n_j = b n _ j

where the b. are the coefficients of h (£). This system will be soluble

if the corresponding homogeneous equations

L0 = 0, L, =0, ... , L n . 1 = 0

have only the trivial solution.

The homogeneous problem would occur if we should ask for

the set of elements X(£) satisfying g ( f ) - X( f ) = 0. Going back

for a moment to the old multiplication this would mean that the

ordinary product g(f ) X (f) has the remainder 0, and is
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therefore divisible by f (f). According to the lemma, page 24, this is

only possible for X ( f ) = 0.

Therefore E l is a field.

Assume now that we have also our old extension E with a root

a of f (x ) , leading to the set E0. We see that E0 has in a certain sense

the same structure as E l if we map the element g ( f) of E l onto the

element g(a) of Eo. This mapping will have the property that the image

of a sum of elements is the sum of the images, and the image of a

product is the product of the images.

Let us therefore define: A mapping a of one field onto another

which is one to one in both directions such that

a(a + /3) = cr(a) + a(/3) and c r (a - jS ) = a (a ) -a ( /3) i s called an

isomorphism. If the fields in question are not distinct — i.e., are both

the same field — the isomorphism is called an automorphism. Two

fields for which there exists an isomorphism mapping one on another

are called isomorphic. If not every element of the image field is the image

under a of an element in the first field, then a is called an isomorphism

of the first field into the second. Under each isomorphism it is clear

that a(0) = 0 and a( l ) = 1.

We see that E0 is also a field and that it is isomorphic to Er

We now mention a few theorems that follow from our discussion:

THEOREM 7. (Kronecker). If f (x) is a polynomial in a field F,

there exists an extension E of F in which f ( x ) has a root.
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Proof: Construct an extension field in which an irreducible

factor of f (x) has a root.

THEOREM 8. Let a be an isomorphism mapping a field F on a

field F* . Let f (x) be an irreducible polynomial in F and f' (x) the cor-

responding polynomial in F' . If E = F(j8) and Ef = F ' ( f t 1 ) are exten-

sions of F and Ff , respectively, where f(/3) = 0 in E and f' (jS1) = 0 in E1 ,

then a can be extended to an isomorphism between E and E' .

Proof: E and E1 are both isomorphic to E0.

D. Splitting Fields.

If F, B and E are three fields such that F C B C E, then we

shall refer to B as an intermediate field.

If E is an extension of a field F in which a polynomial p ( x ) in F

can be factored into linear factors, and if p ( x ) can not be so factored

in any intermediate field, then we call E a splitting field for p(x) . Thus,

if E is a splitting field of p (x ) , the roots of p ( x ) generate E.

A splitting field is of finite degree since it is constructed by a

finite number of adjunctions of algebraic elements, each defining an

extension field of finite degree. Because of the corollary on page 22,

the total degree is finite.

THEOREM 9. If p ( x ) is a polynomial in a field F, there exists

a splitting field E of p (x ) .

We factor p ( x ) in F into irreducible factors

f j( x) ... f. ( x ) = p (x ). If each of these is of the first

degree then F itself is the required splitting field. Suppose

then that f x ( x ) is of degree higher than the first. By
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Theorem 7 there is an extension Fl of F in which f j (x) has a root.

Factor each of the factors f j ( x ) , . . . , f r (x) into irreducible factors in

Fx and proceed as before. We finally arrive at a field in which p ( x )

can be split into linear factors. The field generated out of F by the

roots of p ( x ) is the required splitting field.

The following theorem asserts that up to isomorphisms, the

splitting field of a polynomial is unique.

THEOREM 10. Let a be an isomorphism mapping the field F on

the field F' , Let p ( x ) be a polynomial in F and p' ( x ) the polynomial

in F ' with coefficients corresponding to those of p (x ) under a. Finally,

let E be a splitting field of p (x ) and E ' a splitting field of p' (x ).

Under these conditions the isomorphism a can be extended to an

isomorphism between E and E' .

If f (x) is an irreducible factor of p ( x ) in F, then E contains a

root of f (x ) . For let p ( x ) = (x-a j)(x-a2)- • -(x-as) be the splitting of

p ( x ) i n E . Then (x-aj)(x-a2).. . (x-as) = f ( x ) g(x). We consider

f ( x ) as a polynomial in E and construct the extension field B = E(a)

in which f ( a ) = 0. Then (a-a i)- (a-a 2)' • • .-(a-as) = f ( a ) - g(a) = 0

and a-(\ being elements of the field B can have a product equal to 0

only if for one of the factors, say the first, we have a-a1 = 0. Thus,

a = 'ttj, and a l is a root of f ( x ).

Now in case all roots of p (x ) are in F, then E = F and p ( x )

can be split in F. This factored form has an image in F f which is a

splitting of p1 (x), since the isomorphism a preserves all operations

of addition and multiplication in the process of multiplying out the
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factors of p (x ) and collecting to get the original form. Since p' (x)

can be split in F1 , we must have F' = E' . In this case, a itself is

the required extension and the theorem is proved if all roots of p (x )

are in F.

We proceed by complete induction. Let us suppose the theorem

proved for all cases in which the number of roots of p ( x ) outside of F

is less than n > 1, and suppose that p ( x ) is a polynomial having n

roots outside of F. We factor p ( x ) into irreducible factors in F;

p ( x ) = f j ( x ) f 2 ( x ) ... f m (x ) . Not all of these factors can be of

degree 1, since otherwise p ( x ) would split in F, contrary to assump-

tion. Hence, we may suppose the degree of f j (x ) to be r > 1. Let

f\( x ). f'2( x ) ... f^( x ) = p1 ( x ) be the factorization of p' ( x ) into

the polynomials corrrespondng to f j ( x ) , . . . , f m ( x ) under cr. f J ( x )

is irreducible in F ' , for a factorization of f J (x) in F' would induceJ)

under a"1 a factorization of f x ( x ) , which was however taken to

be irreducible.

By Theorem 8, the isomorphism a can be extended to an isomor-

phism a j, between the fields F ( a ) and F ' ( af ).

Since F C F ( a ) , p ( x ) i s a polynomial in F(a ) and E is a

splitting field for p ( x ) in F(a). Similarly for p ' ( x ) . There are now

less than n roots of p ( x ) outside the new ground field F(a). Hence

by our inductive assumption ol can be extended from an isomorphism

between F(a) and Ff (af ) to an isomorphism o2 between E and E1 .

Since a l is an extension of a, and a2 an extension of o v we conclude

a 2 is an extension of a and the theorem follows.

1) See page 38 for the definition of a"1.
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Corollary. If p (x ) is a polynomial in a field F, then any two

splitting fields for p ( x ) are isomorphic.

This follows from Theorem 10 if we take F = F' and a to be the

identity mapping, i.e., a (x) = x.

As a consequence of this corollary we see that we are justified

in using the expression "the splitting field of p(x)" since any two

differ only by an isomorphism. Thus, if p (x ) has repeated roots in one

splitting field, so also in any other splitting field it will have repeated

roots. The statement "p(x) has repeated roots" will be significant

without reference to a particular splitting field.

E. Unique Decomposition of Polynomials into Irreducible Factors.

THEOREM 11. If p ( x ) is a polynomial in a field F, and if

p ( x ) = p 1 ( x ) - p 2 ( x ) - . . . - p r (x ) = q 1 ( x ) - q 2 ( x ) - . . .• q s (x) are two

factorizations of p ( x ) into irreducible polynomials each of degree at

least one, then r = s and after a suitable change in the order in which

the q's are written, p^x) = qq-Cx) , i = 1,2,. . . , r, and CL € F.

Let F(a) be an extension of F in which Pi(a) = 0. We may

suppose the leading coefficients of the p.(x) and the q.(x) to be 1, for,

by factoring out all leading coefficients and combining, the constant

multiplier on each side of the equation must be the leading coefficient

of p ( x ) and hence can be divided out of both sides of the equation.

Since 0 = p 1 ( a ) - p 2 ( a ) - . . . - p r ( a ) = p (a ) = q ^a) • . . . • q s(a) and

since a product of elements of F(a) can be 0 only if one of these is 0,

it follows that one of the q^a), say q^a), is 0. This gives (see page

25)p1(x) = q^x) . T h u s P l ( x ) . p 2 ( x ) p r(x)

= P i ( x ) - q 2 ( x ) - . . . . q 8 ( x ) o r
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P 1 ( x ) - [ p 2 ( x ) - . . . - p r ( x ) - q 2 ( x ) - . .. -q s (x ) ] = 0. Since the product

of two polynomials is 0 only if one of the two is the 0 polynomial, it

follows that the polynomial within the brackets is 0 so that

p2(x) •.. . • p r (x ) = q 2 (x) • . . .• q s(x). If we repeat the above argument

r times we obtain p^x) = q.(x), i = 1, 2,.. . ,r. Since the remaining

q's must have a product 1, it follows that r = s.

F. Group Characters.

If G is a multiplicative group, F a field and a a homomorphism

mapping G into F, then a is called a character of G in F. By homomor-

phism is meant a mapping a such that for a, f$ any two elements of G,

a(a )-cr(/3) = a(a-/3) and a(a) £ 0 for any a.

(If a(a) = 0 for one element a, then a(x) = 0 for each x e G, since

a (ay) = 0 - ( a ) - a (y ) = 0 and ay takes all values in G when y assumes

all values in G).

The characters alt o2,. . ., anare called dependent if there exist

elements ap a 2 , . . ., an not all zero in F such that

a j C T j C x ) + a2a2(x) + . . . + anan(x) = 0 for each x e G. Such a de-

pendence relation is called non-trivial. If the characters are not

dependent they are called independent.

THEOREM 12. If G is a group and al9 a2, . . . ,an are n mutu-

ally distinct characters of G in a field F, then av 02,.. ., an

are independent.

One character cannot be dependent, since a^ jCx) = 0 implies

at = 0 due to the assumption that a^x) ^ 0. Suppose n > 1.
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We make the inductive assumption that no set of less than n distinct

characters is dependent. Suppose now that

a j c r^x ) + a2a2(x) + . . . + ancrn(x) = 0 is a non-trivial dependence

between the a's. None of the elements aL is zero, else we should have

a dependence between less than n characters contrary to our induc-

tive assumption. Since o\ and an are distinct, there exists an element

a in G such that ^ (a) 4 &n(a)- Multiply the relation between the

c/s by a^1 . We obtain a relation

(*) b^Cx) + ... + b ^ a ^ C x ) + an(x) = 0, b. = a^ a. 4 0.

Replace in this relation x by ax. We have

b1a1(a)<71(x) + • • • + bn-1 <*n.i ( a ) a n _ 1 ( x ) + an(a)an (x) - 0,

or an(aJ1blal(a)o1(x) 4- ... + <J n (x ) = 0.

Subtracting the latter from ( * ) we have

(**) [bt - ^(a)- 1^^ ( a ) ] a 1 ( x ) + ... + c^cr^^x) = 0.

The coefficient of al (x) in this relation is not 0, otherwise we should

have bj = an (a)"1b1a1 (a), so that

O n ( a ) b j = b j a j C a ) = a 1(a)b 1

and since bt 4 0, we get o"n(a) = a x ( a ) contrary to the choice of a.

Thus, (**) is a non-trivial dependence between avo2, . . . , an_l which

is contrary to our inductive assumption.

Corollary. If E and E' are two fields, and ol, a2,. . . , an are n

mutually distinct isomorphisms mapping E into E' , then al, . . . , an

are independent. (Where "independent" again means there exists no

non-trivial dependence a 1 a 1 (x) + ... 4- a ncr n (x) = 0 which holds for

every x e E).

This follows from Theorem 12, since E without the 0 is a group
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and the a's defined in this group are mutually distinct characters.

If o-j, a2 ,. . ., an are isomorphisms of a field E into a field E' ,

then each element a of E such that a 1 (a) = a 2 ( a ) = ... = a (a)

is called a fixed point of E under ax, o2,. .. , an. This name is

chosen because in the case where the a's are automorphisms and al

is the identity, i.e., o^ (x) = x, we have a. (x) = x for a

fixed point.

Lemma. The set of fixed points of E is a subfield of E. We

shall call this subfield the fixed field.

For if a and b are fixed points, then

a. (a -i- b) = a. (a) + a. (b) = oj (a) + 05 (b) = a. (a + b) and

a . ( a -b ) = a i ( a ) - a . (b ) = a . ( a ) - a j ( b ) = a . ( a - b ) .

Finally from a{(a) = a. (a) we have (^(a))"1 = (a.(a))"1

= a.(a-1) = a. (a'1).

Thus, the sum and product of two fixed points is a fixed point, and

the inverse of a fixed point is a fixed point. Clearly, the negative of a

fixed point is a fixed point.

THEOREM 13. If a v .. ., an are n mutually distinct isomorphisms

of a field E into a field E' , and if F is the fixed field of E, then

(E/F) > n.

Suppose to the contrary that (E/F) = r < n. We shall show that

we are led to a contradiction. Let colt co2,. . ., a)f be a generating sys-

tem of E over F. In the homogeneous linear equations
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x1 + o - 2 (o> 1 )x 2 + ... + a n (w 1 )x n = 0

a 1 (o) 2 )x 1 + a 2 (o ) 2 )x 2 + ... + #nO2)xn = 0

^(o^Xj -»- c r 2 ( c^ r )x 2 + ... + a n (o> r )x n = 0

there are more unknowns than equations so that there exists a non-

trivial solution which, we may suppose, x p x 2 , . . . ,xn denotes. For

any element a in E we can find ax, a2, . . ., ar in F such that

a =• a^ -i- ... + aro)f. We multiply the first equation by &1(a1),

the second by ol(a 2), and so on. Using that a. e F, hence that

ai(ai) = aj (a{)and also that a.(a.) <?.(&> .) = ^(a-co.),

we obtain

a(aco)x + ... + c r ( a < y ) x = 0

Adding these last equations and using

a .Ca^ j ) + ai(a2o)2) + ... + a . (a r cu r ) = ^(a^! + ... + arcor) = a.(a

we obtain

a 1 (a)x 1 + a 2 ( a )x 2 + ... 4- o-n(a)xn = 0.

This, however, is a non-trivial dependence relation between alf o2, . . . , on

which cannot exist according to the corollary of Theorem 12.

Corollary. If av o2,. . . , an are automorphisms of the field E, and

F is the fixed field, then (E/F) > n.

If F is a subfield of the field E, and a an automorphism of E, we

shall say that a leaves F fixed if for each element a of F, a (a) = a.
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If a and r are two automorphisms of E, then the mapping c r ( r ( x ) ) written

briefly or is an automorphism, as the reader may readily verify.

[E .g . , a r (x -y ) = < r ( r ( x - y ) ) = ff(r(x)-r(y)) = a(r ( x ) ) • o(r(y))].

We shall call ar the product of a and r. If a is an automorphism

(a(x) = y), then we shall call a'1 the mapping of y into x, i.e., a~\y ) = x

the inverse of a. The reader may readily verify that a"1 is an automor-

phism. The automorphism I ( x ) = x shall be called the

unit automorphism.

Lemma. If E is an extension field of F, the set G of automorphisms

which leave F fixed is a group.

The product of two automorphisms which leave F fixed clearly

leaves F fixed. Also, the inverse of any automorphism in G is in G.

The reader will observe that G, the set of automorphisms which

leave F fixed, does not necessarily have F as its fixed field. It may be

that certain elements in E which do not belong to F are left fixed by

every automorphism which leaves F fixed. Thus, the fixed field of G

may be larger than F.

G. Applications and Examples to Theorem 13.

Theorem 13 is very powerful as the following examples show:

1) Let k be a field and consider the field E = k ( x ) of all

rational functions of the variable x. If we map each of the functions

f (x) of E onto f (-) we obviously obtain an automorphism of E. Let us
x

consider the following six automorphisms where f ( x ) is mapped onto

f ( x ) (identity), f (1-x), f (i), f (*'-), f (^-i-) and {(-*-) and call F the
x x 1-x x-1
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fixed point field. F consists of all rational functions satisfying

(1) f ( x ) = f ( l -x) = f ( l ) = f ( l - J ) = fCj^) = f(^-).

It suffices to check the first two equalities, the others being conse-

quences. The function

(2) I = I ( x ) = (*2 -X + 1)3

x 2 ( x - l ) 2

belongs to F as is readily seen. Hence, the field S = k ( I ) of all

rational functions of I will belong to F.

We contend: F = S and (E/F) = 6.

Indeed, from Theorem 13 we obtain (E/F) > 6. Since S C F it

suffices to prove (E/S) < 6. Now E = S(x). It is thus sufficient to

find some 6-th degree equation with coefficients in S satisfied by x.

The following one is obviously satisfied;

(x2 - x + 1)3 - I . x
2 (x - l ) 2 = 0.

The reader will find the study of these fields a profitable exer-

cise. At a later occasion he will be able to derive all intermediate fields.

2) Let k be a field and E = k ( x 1 , x 2 , . . . , x n ) the field of all

rational functions of n variables Xj, x2, . . ., xn. If ( i / j , i/2,. . . , i/n ) is a

permutation of (1, 2, . . . , n) we replace in each function f (x x , x 2 , . . . , xn)

of E the variable x l by x^ , x 2 by xy , . . . , xn by x . The mapping of E
1 2 n

onto itself obtained in this way is obviously an automorphism and we

may construct n! automorphisms in this fashion (including the identity).

Let F be the fixed point field, that is, the set of all so-called

"symmetric functions." Theorem 13 shows that (E/F) > n! . Let us in-

troduce the polynomial:

(3) f ( t ) = ( t - x , ) ( t - x a ) . . . ( t - x n ) = tn + aj t"-^ ... + an
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where ax = - (xx + x2 + ... + xn); a2 -- + (x x x 2 + Xlx3 + .. . + xn-l xn )

and more generally a. is ( -1 )£ times the sum of all products of i differ-

erent variables of the set xt, x2, . . . , xn. The functions ax, a 2 , . .., an

are called the elementary symmetric functions and the field

S = k ( al, a 2 , . . . , an ) of all rational functions of al, a 2 , . . . , ari is

obviously a part of F. Should we suceed in proving ( E/S ) < n! we

would have shown S = F and ( E/F) = n ! .

We construct to this effect the following tower of fields:

s = sn c sn_, c sn.2 ... c s2 c s, = E
by the definition

(4) Sn = S; Sf= S(x . + 1 , x 1 + 2 , . . . , x n ) = Si+1 (x.+1 ).

It Would be sufficient to prove (Si_1/Si ) < i or that the generator x.

for S. j out of SL satisfies an equation of degree i with coefficients

in S£.

Such an equation is easily constructed. Put

(5) F . ( t ) = *(0 = Fl+1 (t)

(t-x^Xt-x^). .^^) ( t-xm)

and Fn( t) = f ( t ) . Performing the division we see that F. (t) is a

polynomial in t of degree i whose highest coefficient is 1 and whose

coefficients are polynomials in the variables

a1, a2,..., an and x.+1 , x.+2 , . . . , xn. Only integers enter as coefficients

in these expressions. Now x. is obviously a root of F. (t) = 0.

Now let g ( X j , x 2 , . . . ,x n ) be a polynomial in x1, x 2 , . . . , xn .

Since F1 ( Xj ) = 0 is of first degree in Xj , we can express Xj as a

polynomial of the aj and of x2, x3,. .., xn . We introduce this expression

in g ( X j , x 2 , . . . , xn). Since F2 (x2 ) = 0 we can express x2 or higher
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powers as polynomials in x3, .. ., xn and the a.. Since F3 (x3) = 0

we can express x| and higher powers as polynomials of x4, xs,. .. , xn

and the ar Introducing these expressions in g ( X j , x 2 , . .., xn) we see

that we can express it as a polynomial in the x^ and the a^ such that

the degree in x,, is below i. So g(x j ; x 2 , . . . , xn) is a linear combination

of the following n ! terms:
v \ vi v n(6) Xj x2 ... xn where each i/. < i - 1.

The coefficients of these terms are polynomials in the aL . Since the

expressions (6) are linearly independent in S (this is our previous

result), the expression is unique.

This is a generalization of the theorem of symmetric functions in

its usual form. The latter says that a symmetric polynomial can be

written as a polynomial in ax, a 2 , . . ., an. Indeed, if g ( x t , . . . ,x n ) is

symmetric we have already an expression as linear combination of the

terms (6) where only the term 1 corresponding to i/j = i/2 = ... = i/n =0

has a coefficient 4 0 in S, namely, g ( x x , . .., xn). So g (x x , x 2 , . . . , xn)

is a polynomial in al, a 2 , . . . , an .

But our theorem gives an expression of any polynomial, symmetric

or not.

H. Normal Extensions.

An extension field E of a field F is called a normal extension if

the group G of automorphisms of E which leave F fixed has F for its

fixed field, and ( E/F ) is finite.

Although the result in Theorem 13 cannot be sharpened in general,
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there is one case in which the equality sign will always occur, namely,

in the case in which alf a2, .. . , an is a set of automorphisms which

form a group. We prove

THEOREM 14. If alf a2,. . . , an is a group of automorphisms of a

field E and if F is the fixed field of al,a2,. . ., an, then (E/F) = n.

If al,&2,... ,crn is a group, then the identity occurs, say, a1 = I.

The fixed field consists of those elements x which are not moved by

any of the a's, i.e., a^x) = x, i = 1,2,. . . n. Suppose that (E/F) > n.

Then there exist n + 1 elements al, a2,. . . , an+1 of E which are

linearly independent with respect to F. By Theorem 1, there exists a

non-trivial solution in E to the system of equations

Xl oi (ax ) + x2 Ol (<z2 ) + . .. + xn+1 oi (an+1 ) = 0

x1 a2 (^ ) + x2 a2 (a2 ) + . . . + xn+1 a2 (an+1 ) = 0
( ' )

Xl ^n Oi ) + X
2 On («2 ) + ••' + Xn+l ^n(a

n+l ) = °

We note that the solution cannot lie in F, otherwise, since ol is the

identity, the first equation would be a dependence between al,. . ., an+1 .

Among all non-trivial solutions xt, x2, . . ., xn+1 we choose one

which has the least number of elements different from 0. We may sup-

pose this solution to be a1, a2, . . ., ar, 0, .. ., 0, where the first r

terms are different from 0. Moreover, r ^ 1 because BI ol (a1 ) = 0

implies al = 0 since a1 (al ) = al ^0. Also, we may suppose ar = 1,

since if we multiply the given solution by ar
-1 we obtain a new solution

in which the r-th term is 1. Thus, we have
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(*) a^Caj) + a2a.(a2) + ... + aM a^ aM ) + a.(ar) = 0

for i = 1, 2 , . . . , n. Since a t , . . ., ar-1 cannot all belong to F, one of

these, say a^ is in E but not in F. There is an automorphism ak for

which ak( a1) ^ a1. If we use the fact that olto2> •• • >°n ̂ orm a grouP>

we see ak • al, ak • a2,. .., ak • an is a permutation of a1, a2,. .. , an.

Applying ak to the expressions in ( * ) we obtain

a k( a i ) ' °k a j ( a l ) + ••• + ^k(ar-l)'°'k0j(«r-l) + akaj(«r) = °

for j = 1, 2,. .., n, so that from ak<7. = ai

(**) ^(aj )a i(a1) + . . . + ̂ (a^o^a^) + ̂ (aj = 0

and if we subtract ( * * ) from ( * ) we have

[al - c r l £ ( a 1 ) ] . a i ( a l ) + ... + [ar-1 - a^a^ )]a i(ar_1) = 0

which is a non-trivial solution to the system (' ) having fewer than r

elements different from 0, contrary to the choice of r.

Corollary 1. If F is the fixed field for the finite group G, then

each automorphism a that leaves F fixed must belong to G.

(E/F) = order of G = n. Assume there is a a not in G. Then F

would remain fixed under the n + 1 elements consisting of a and the

elements of G, thus contradicting the corollary to Theorem 13.

Corollary 2. There are no two finite groups G1 and G2 with the

same fixed field.

This follows immediately from Corollary 1.

If f ( x ) is a polynomial in F, then f ( x ) is called separable if its

irreducible factors do not have repeated roots. If E is an extension of
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the field F, the element g of E is called separable if it is root of a

separable polynomial f ( x ) in F, and E is called a separable extension

if each element of E is separable.

THEOREM 15. E is a normal extension of F if and only if E is

the splitting field of a separable polynomial p (x) in F.

Sufficiency. Under the assumption that E splits p ( x ) we prove

that E is a normal extension of F.

If all roots of p ( x ) are in F, then our proposition is trivial, since

then E = F and only the unit automorphism leaves F fixed.

Let us suppose p (x ) has n > 1 roots in E but not in F. We make

the inductive assumption that for all pairs of fields with fewer than n

roots of p ( x ) outside of F our proposition holds.

Let p ( x ) = p 1 ( x ) « p 2 (x) . . . . . p r(x) be a factorization of p (x )

into irreducible factors. We may suppose one of these to have a degree

greater than one, for otherwise p (x ) would split in F. Suppose deg

p x (x ) = s > 1. Let 04 be a root of p^x). Then (F(al )/F) = deg P j ( x ) = s,

If we consider F(a1 ) as the new ground field, fewer roots of p (x ) than

n are outside. From the fact that p (x ) lies in F(al ) and E is a split-

ting field of p (x ) over F(a1 ), it follows by our inductive assumption

that E is a normal extension of F(al ). Thus, each element in E which

is not in F(al ) is moved by at least one automorphism which leaves

F( t t l) fixed.

p (x) being separable, the roots alta2, .. . ,as of p1 (x) are a

distinct elements of E. By Theorem 8 there exist isomorphisms
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alfa2t. .. ,as mapping F(ax ) on F(al), F(a2), . . . ,F (a g ) ,

respectively, which are each the identity on F and map al on

al,a2, .. . ,as respectively. We now apply Theorem 10. E is a splitting

field of p(x) in F(al ) and is also a splitting field of p(x) in F(a£ ).

Hence, the isomorphism a£, which makes p (x ) in F(ax ) correspond to

the same p ( x ) i n F ( a i ) , can be extended to an isomorphic mapping of

E onto E, that is, to an automorphism of E that we denote again by a-t.

Hence, a 1 ,<7 2 , . . . ,<7s are automorphisms of E that leave F fixed and

map al onto a j ,a 2 , ... an.

Now let 0 be an element that remains fixed under all automor-

phisms of E that leave F fixed. We know already that it is in F(a j)

and hence has the form

Q = co + ciai + C 2 a ? + ... + c s l as- i

where the c{ are in F. If we apply a. to this equation we get, since

a.(fl) = 6:

0 = co + clai + c2a? + ... + c^ a J'1

The polynomial cs-1x
8"1 + cs_2xs'2 + . . . + c 1 x + ( c o - ^ )

has therefore the s distinct roots a 1 ,a 2 , . . . ,a g . These are more than

its degree. So all coefficients of it must vanish, among them CQ - 6.

This shows 0 in F.

Necessity. If E is a normal extension of F, then E is splitting

field of a separable polynomial p(x) . We first prove the

Lemma. If E is a normal extension of F, then E is a separable

extension of F. Moreover any element of Eis a root of an equation over

F which splits completely in E.
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Let al,a2, . .. ,as be the group G of automorphisms of E whose

fixed field is F. Let a be an element of E, and let a,a2,a3,. . . ,aT be

the set of distinct elements in the sequence 0^(0), a2(a), . . . , as(a).

Since G is a group,

tfjOi) = tfjOk(») = tfj0-k(a) = am(a) = an.

Therefore, the elements a,a2, .. ., ar are permuted by the automorphisms

of G. The coefficients of the polynomial f ( x ) = (x-a)(x-a2). . .(x-ar)

are left fixed by each automorphism of G, since in its factored form the

factors of f ( x ) are only permuted. Since the only elements of E which

are left fixed by all the automorphisms of G belong to F, f ( x ) is a

polynomial in F. If g (x ) is a polynomial in F which also has a as root,

then applying the automorphisms of G to the expression g(a) = 0 we

obtain g(a . ) = 0, so that the degree of g (x ) > s. Hence f ( x ) is irre-

ducible, and the lemma is established.

To complete the proof of the theorem, let a> 1 , a> 2 , . . . ,o> t be a gen-

erating system for the vector space E over F. Let f . (x) be the separable

polynomial having o>. as a root. Then E is the splitting field of

p ( x ) = £ 1 ( x ) . f 2 ( x ) . . . . . f t ( x ) .

If f ( x ) is a polynomial in a field F, and E the splitting field of

f ( x ) , then we shall call the group of automorphisms of E over F the

group of the equation f ( x ) = 0. We come now to a theorem known in

algebra as the Fundamental Theorem of Galois Theory which gives the

relation between the structure of a splitting field and its group

of automorphisms.

THEOREM 16. (Fundamental Theorem). If p ( x ) is a separable

polynomial in a field F, and G the group of the equation p (x ) = 0

where E is the
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splitting field of p(x), then: (1) Each intermediate field, B,is the

fixed field for a subgroup GB of G, and distinct subgroups have dis-

tinct fixed fields. We say B and GB "belong" to each other. (2) The

intermediate field B is a normal extension of F if a.nd only if the sub-

group GB is a normal subgroup of G. In this case the group of automor-

phisms of B which leaves F fixed is isomorphic to the factor group

(G/GB). (3) For each intermediate field B, we have ( B/F ) = index of

GB and(E/B) = order of GB.

The first part of the theorem comes from the observation that E

is splitting field for p ( x ) when p (x) is taken to be in any intermediate

field. Hence, E is a normal extension of each intermediate field B, so

that B is the fixed field of the subgroup of G consisting of the automor-

phisms which leave B fixed. That distinct subgroups have distinct fixed

fields is stated in Corollary 2 to Theorem 14.

Let B be any intermediate field. Since B is the fixed field for

the subgroup GB of G, by Theorem 14 we have (E/B) = order of GB.

Let us call o (G) the order of a group G and i (G) its index. Then

o(G) = o ( G B ) - i ( G B ) . But(E/F) = o(G), and(E/F) = (E/B)-(B/F)

from which (B/F) = i(GB ), which proves the third part of the theorem.

The number i(GB ) is equal to the number of left cosets of GB.

The elements of G, being automorphisms of E, are isomorphisms of B;

that is, they map B isomorphically into some other sub field of E and

are the identity on F. The elements of G in any one coset of GB map B

in the same way. For let a • al and a • a2 be two elements of the coset

oGB. Since a1 and a2 leave B fixed, for each a in B
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we have cra^a) = a (a) = aa2(a). Elements of different cosets give

different isomorphisms, for if a and r give the same isomorphism,

a(a) = r ( a ) for each a in B, then a ~ l r ( a ) = a for each a in B. Hence,

a~lr = a., where a. is an element of G0. But then T = aa, and
I I D 1

rGB = 0-o^G^ aGB so that a and r belong to the same coset.

Each isomorphism of B which is the identity on F is given by an

automorphism belonging to G. For let a be an isomorphism mapping B

on B1 and the identity on F. Then under a, p ( x ) corresponds to p(x) ,

and E is the splitting field of p ( x ) in B and of p( x ) in B'. By

Theorem 10, a can be extended to an automorphism a1 of E, and since

cr' leaves F fixed it belongs to G. Therefore, the number of distinct

isomorphisms of B is equal to the number of cosets of GB and is there-

fore equal to (B/F).

The field oB onto which a maps B has obviously aGgCr'1 as cor-

responding group, since the elements of <jB are left invariant by

precisely this group.

If B is a normal extension of F, the number of distinct automor-

phisms of B which leave F fixed is (B/F) by Theorem 14. Conversely,

if the number of automorphisms is ( B/F ) then B is a normal extension,

because if F' is the fixed field of all these automorphisms, then

F C F1 C B, and by Theorem 14, (B/F1) is equal to the number of

automorphisms in the group, hence (B/F') = (B/F). From (B/F) =

(B/F f ) (F ' /F ) we have(F ' /F) = 1 or F = F1. Thus, B is a normal

extension of F if and only if the number of automorphisms of B is (B/F).

B is a normal extension of F if and only if each isomorphism of

B into E is an automorphism of B. This follows from the fact that each

of the above conditions are equivalent to the assertion that there are
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the same number of isomorphisms and automorphisms. Since, for each

a, B = <jB is equivalent to aGBa~l C GB, we can finally say that B is

a normal extension of F and only if GB is a normal subgroup of G.

As we have shown, each isomorphism of B is described by the

effect of the elements of some left coset of GB. If B is a normal exten-

sion these isomorphisms are all automorphisms, but in this case the

cosets are elements of the factor group (G/GB ). Thus, each automor-

phism of B corresponds uniquely to an element of ( G/GB ) and con-

versely. Since multiplication in ( G/GB ) is obtained by iterating the

mappings, the correspondence is an isomorphism between ( G/GB ) and

the group of automorphisms of B which leave F fixed. This completes

the proof of Theorem 16.

I. Finite Fields.

It is frequently necessary to know the nature of a finite subset

of a field which under multiplication in the field is a group. The

answer to this question is particularly simple.

THEOREM 17. If S is a finite subset (^ 0) of a field F which

is a group under multiplication in F, then S is a cyclic group.

The proof is based on the following lemmas for abelian groups.

Lemma 1. If in an abelian group A and B are two elements of

orders a and b, and if c is the least common multiple of a and b, then

there is an element C of order c in the group.
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Proof: (a) If a and b are relatively prime, C = AB has the re-

quired order ab. The order of C a = Ba is b and therefore c is divisible

by b. Similarly it is divisible by a. Since Cab = 1 it follows c = ab.

(b) If d is a divisor of a, we can find in the group an element of

order d. Indeed Aa/d is this element.

(c) Now let us consider the general case. Let pv p 2 , . . . , pr be

the prime numbers dividing either a or b and let
n n9 n

a = Pl ip2 2 . . . p r '
, m. m_ m
b = Pl ip2 * ...Pr

 r:

Call t£ the larger of the two numbers rij and m . Then

'l 12 'rc = P /P 2
2 . . .Pr

r-.

According to (b) we can find in the group an element of order p.* and

one of order p^ . Thus there is one of order pf *. Part (a) shows that

the product of these elements will have the desired order c.

Lemma 2. If there is an element C in an abelian group whose

order c is maximal (as is always the case if the group is finite) then c

is divisible by the order a of every element A in the group; hence

xc = 1 is satisfied by each element in the group.

Proof: If a does not divide c, the greatest common multiple of a

and c would be larger than c and we could find an element of that order,

thus contradicting the choice of c.

We now prove Theorem 17. Let n be the order of S and r the

largest order occuring in S. Then xr - 1 = 0 is satisfied for all ele-
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merits of S. Since this polynomial of degree r in the field cannot have

more than r roots, it follows that r > n. On the other hand r < n be-

cause the order of each element divides n. S is therefore a cyclic

group consisting of 1, e, e2 , . . . ,en~l where en = 1.

Theorem 17 could also have been based on the decomposition

theorem for abelian groups having a finite number of generators. Since

this theorem will be needed later, we interpolate a proof of it here.

Let G be an abelian group, with group operation written as +.

The element gt, . . . , gk will be said to generate G if each element g of

G can be written as sum of multiples of gl, . . ., gk, g = nl gl + .. . + nkgk .

If no set of fewer than k elements generate G, then gt, . . . , gk will be

called a minimal generating system. Any group having a finite genera-

ting system admits a minimal generating system. In particular, a finite

group always admits a minimal generating system.

From the identity nl(gi + mg2 ) + (n2 - n , m ) g 2 = n^ + n2g2

it follows that if gx, g2, .. ., gk generate G, also gt + mg2,

gy • • • > gk generate G.

An equation m1g1 + m
2g2 + • • • + mkgk = ^ w^^ ^e ca^ec* a re-

lation between the generators, and ml, . .., mk will be called the co-

efficients in the relation.

We shall say that the abelian group G is the direct product of its

subgroups Gj, G2, .. ., Gk if each g e G is uniquely representable as a

sum g = x + x + . . . + x, where x. e G., i = 1, . . . , k.
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Decomposition Theorem. Each abelian group having a finite num-

ber of generators is the direct product of cyclic subgroups Glt . . . , Gn

where the order of Gt divides the order of G.+1 , i = 1, . . . , n-1 and n is

the number of elements in a minimal generating system. (Gr, Gr+1 , . . . , Gn

may each be infinite, in which case, to be precise,

0 ( G . ) | 0 ( G . + 1 ) f o r i = l , 2 , . . . , r~2 ) .

We assume the theorem true for all groups having minimal genera-

ting systems of k-1 elements. If n = 1 the group is cyclic and the

theorem trivial. Now suppose G is an abelian group having a minimal

generating system of k elements. If no minimal generating system satis-

fies a non-trivial relation, then let gx, g2, . . . , gk be a minimal generating

system and Gx, G2, . . . , Gk be the cyclic groups generated by them.

For each g e G, g = r^gj + . . . + nkgk where the expression is

unique; otherwise we should obtain a relation. Thus the theorem would

be true. Assume now that some non-trivial relations hold for some mini-

mal generating systems. Among all relations between minimal genera-

ting systems, let

(1) m j g j + ... + mkgk = 0

be a relation in which the smallest positive coefficient occurs. After

an eventual reordering of the generators we can suppose this coefficient

to be m1. In any other relation between gx, . . . , gk.

(2) nx gl + . . . + nkgk = 0

we must have m1/n l . Otherwise nl = qmj + r, 0 < r < m1 and q times

relation (1) subtracted from relation (2) would yield a relation with a

coefficient r < mr Also in relation (1) we must have nij/m., i = 2, . . . , k.
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For suppose ml does not divide one coefficient, say m2. Then

m2 = qm1 +r, 0 < r < m 1 . I n the generating system

gl + g2 , g 2 , . . ., gk we should have a relation

mi(&i + ^2 ^ + rg2 + msg3 + " ' + mk(lk = 0 wnere the coefficient

r contradicts the choice of nij . Hence m2 = q 2 m 1 , m 3 = q 3 m 1 , . . . , m k =

The system gx = gl + q2g2 + . .. + qkgk, g2, . .. , gk is minimal gen-

erating, and m1g1 = 0. In any relation 0 = n1"g1 + n2g2 + .. . + nkgk

since m1 is a coefficient in a relation between glf g , . .. , gk our pre-

vious argument yields ml nx, and hence n1gl = 0.

Let G' be the subgroup of G generated by g2, .. ., gk and G1 the

cyclic group of order m1 generated by gr. Then G is the direct product

of Gl and G1 . Each element g of G can be written

g = n^ 4- n2g2 + . . . + nkgk = n^ + g' .

The representation is unique, since n^ + gf = n ^ g j + g" implies

the relation (n1 - nj)^ + (g1 - g") = 0, hence

(n1 - n ^ ) ^ = 0, s o t h a t n j g j = n j f j and also g1 = g".

By our inductive hypothesis, G' is the direct product of k-1

cyclic groups generated by elements g"2, g"3, .. ., gk whose respective

orders t2, . .. , tk satisfy t. 11.+1 , i = 2, .. . , k-1. The preceding argu-

ment applied to the generators glf g2, . . ., gk yields ml t2, from which

the theorem follows.

^y a finite field is meant one having only a finite number

of elements.

Corollary. The non-zero elements of a finite field form a cyclic

group.

If a is an element of a field F, let us denote the n-fold of a, i.e.,
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the element of F obtained by adding a to itself n times, by na. It is ob-

vious that n • (m • a ) = (nm ) • a and ( n • a )( m • b ) = nm • ab. If for one

element a ^ 0, there is an integer n such that n • a = 0 then n • b = 0

for each b in F, since n- b = (n- a) (a"1 b) = 0- a"1 b = O.Jf there is a

positive integer p such that p* a = 0 for each a in F, and if p'is the

smallest integer with this property, then F is said to have the charac-

teristic p. If no such positive integer exists then we say F has charac-

teristic 0. The characteristic of a field is always a prime number, for if

p = r. s then pa = rs.a = r • (s . a). However, s - a = b ^ 0 i f a ^ 0

and r • b £ 0 since both r and s are less than p, so that pa ^ 0 contrary

to the definition of the characteristic. If na = 0 for a £ 0, then p divides

n, for n = qp + r where 0 < r < p and na = (qp + r)a = qpa + ra.

Hence na = 0 implies ra = 0 and from the definition of the characteristic

since r < p, we must have r = 0.

If F is a finite field having q elements and E an extension of F

such that (E/F) = n, then E has qn elements. For if a>1 , (D2 , . . . ,con is

a basis of E over F, each element of E can be uniquely represented as

a linear combination x1o>1 + x
2

Ct>2 + • • • + x
n

a)
n
 wnere the x. belong to

F. Since each x. can assume q values in F, there are qn distinct possi-

ble choices of xt, . . . , xn and hence qn distinct elements of E. E is

finite, hence, there is an element a of E so that E = F(a). (The non-

zero elements of E form a cyclic group generated by a).

If we denote by P = [ 0,1, 2, .. ., p-1 ] the set of multiples of the

unit element in a field F of characteristic p, then P is a subfield of F

having p distinct elements. In fact, P is isomorphic to the field of

integers reduced mod p. If F is a finite field, then the degree of F over
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P is finite, say (F/P) = n, and F contains pn elements. In other

words, the order of any finite field is a power of its characteristic.

If F and F' are two finite fields having the same order q, then

by the preceding, they have the same characteristic since q is a power

of the characteristic. The multiples of the unit in F and F' form two

fields P and P' which are isomorphic.

The non-zero elements of F and F' form a group of order q-1

and, therefore, satisfy the equation xq-1 - 1 = 0 . The fields F and F1

are splitting fields of the equation x*1"1 =1 considered as lying in P

and P1 respectively. By Theorem 10, the isomorphism between P and

P ' can be extended to an isomorphism between F and F ' . We have thus proved

THEOREM 18. Two finite fields having the same number of ele-

ments are isomorphic.

Differentiation. If f ( x ) = ao + atx + . .. + anxn is a poly-

nomial in a field F, then we define f' = al + 2a2x + . . . + nanxn"1.

The reader may readily verify that for each pair of polynomials f and

g we have

(f + g)1 = f + g1

(f g)1 = fg1 + gf

( f n ) f = nf"-1- f

THEOREM 19. The polynomial f has repeated roots if and only

if in the splitting field E the polynomials f and f' have a common

root. This condition is equivalent to the assertion that f and f' have a
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common factor of degree greater than 0 in F.

If a is a root of multiplicity k of f ( x ) then f = (x-«)kQ(x) where

Q(a) 4 0. This gives

f1 = (x-a)kQ'(x) + k(x-a)k-1Q(x) = (x-a)^1 [ (x-a)Q' (x) + kQ(x)] .

If k > 1, then a is a root of f' of multiplicity at least k-1. If

k = 1, t h e n f ' ( x ) = Q(x ) + (x-a)Q'(x) and f ' ( a ) = Q(a) 4 0. Thus,

f and ff have a root a in common if and only if a is a root of f of

multiplicity greater than 1.

If f and f' have a root a in common then the irreducible polynomial

in F having a as root divides both f and f' . Conversely, any root of a

factor common to both f and f' is a root of f and f' .

Corollary. If F is a field of characteristic 0 then each irreducible

polynomial in F is separable.

Suppose to the contrary that the irreducible polynomial f ( x ) has

a root a of multiplicity greater than 1. Then, f ' (x) is a polynomial

which is not identically zero (its leading coefficient is a multiple of

the leading coefficient of f ( x ) and is not zero since the characteristic

is 0) and of degree 1 less than the degree of f (x ) . But a is also a root

of f (x) which contradicts the irreducibility of f (x ) .

J. Roots of Unity.

If F is a field having any characteristic p, and E the splitting

field of the polynomial x n - 1 where p does not divide n, then we

shall refer to E as the field generated out of F by the adjunction of a

primitive nth root of unity.

The polynomial xn - 1 does not have repeated roots in E, since

its derivative, nxn-1, has only the root 0 and has, therefore, no roots
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in common with x n - 1. Thus, E is a normal extension of F.

If 6j, €2, .. ., en are the roots of x n - 1 in E, they form a group under

multiplication and by Theorem 17 this group will be cyclic. If

1,£, e2,.. ., € n"1 are the elements of the group, we shjall call e a primi-

tive nth root of unity. The smallest power of e which is 1 is the n th.

THEOREM 20. If E is the field generated from F by a primitive

nth root of unity, then the group G of E over F is abelian for any n and

cyclic if n is a prime number.

We have E = F(^), since the roots of xn - 1 are powers of e.

Thus, if a and T are distinct elements of G, a(O / KO- But o(t) is a

root of xn - 1 and, hence, a power of e. Thus, o-(e) = € °where nff

is an integer 1 < n^ < n. Moreover, ra(O = r(<rn a) = ( r (£) ) n < 7 =

e r ' n { 7 = c r f ( e ) . Thus, nar = n^n^. mod n. Thus, the mapping of a on na

is a homomorphism of G into a multiplicative subgroup of the integers

mod n. Since T 4 o implies r ( e ) 4 cr(O> it follows that r 4 o implies

na 4 nr mod n. Hence, the homomorphism is an isomorphism. If n is a

prime number, the multiplicative group of numbers forms a cyclic group.

K. Noether Equations.

If E is a field, and G = (a, r,. . .) a group of automorphisms of E,

any set of elements x .̂, xf, . .. in E will be said to provide a solution to

Noether's equations if xff. a( XT ) = x^ for each a and T in G. If one

element xa = 0 then xf = 0 for each T € G. As T traces G, or assumes

all values in G, and in the above equation x^. = 0 when xff = 0. Thus,

in any solution of the Noether equations no element xa = 0 unless the

solution is completely trivial. We shall assume in the sequel that the



58

trivial solution has been excluded.

THEOREM 21. The system xa, x f , . . . is a solution to Noether's

equations if and only if there exists an element a in E, such that

xa = a/a (a) for each a.

For any a, it is clear that xa = a/a(a} is a solution to the

equations, since

a/a(a)-a(a/r(a)) = a/a(a) • a (a ) /< j r (a ) = a/ar(a).

Conversely, let xff, x f , . . . be a non-trivial solution. Since the

automorphisms a, r , . . . are distinct they are linearly independent, and

the equation x a -a (z) + x f r ( z ) + ... = 0 does not hold identically.

Hence, there is an element a in E such that

x(7cr(a) + x f r (a ) + ... = a 4 0. Applying a to a gives

<*(«) = ^ a(x r ) .or(a) .
f£U

Multiplying by x^. gives

x a -a (a ) = 2 x a (x f ) .or (a) .
f£U

Replacing xa. a ( xf ) by 3^. and noting that or assumes all values in

G when r does, we have

x a .a(a) = 2 x t r (a ) = a
reG

so that

xa = a/a (a).

A solution to the Noether equations defines a mapping C of G

into E, namely, C(a) = xa. If F is the fixed field of G, and the ele-

ments xa lie in F, then C is a character of G. For

C(or)•= x^ = x a -a(x r ) = x^xf = C ( a ) - C ( r ) since a(x f) = xt if

xr € F. Conversely, each character C of G in F provides a solution
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to the Noether equations. Call C(a) = xa. Then, since xf £ F,

we have a(x f) = xr . Thus,

x a -a(x f ) = xa-x f = C ( a ) - C ( r ) = C(ar) = x^. We therefore have,

by combining this with Theorem 21,

THEOREM 22. If G is the group of the normal field E over F,

then for each character C of G into F there exists an element a in E

such that C(q) = a/a (a) and, conversely, if a/a (a) is in F for each

a, then C(a) = a/a(a) is a character of G. If r is the least common

multiple of the orders of elements of G, then ar € F.

We have already shown all but the last sentence of Theorem 22.

To prove this we need only show a(a r) = ar for each a € G. But

a r/a(a r) = (a/a(a)) r = (C(a)) r = C(a r) = C(I) = 1.

L. Rummer's Fields.

If F contains a primitive nth root of unity, any splitting field E

of a polynomial (xn - a 1)(xn - a 2 ) . . .(xn - ar) where a. e F for

i = 1,2, .. ., r will be called a Kummer extension of F, or more briefly,

a Kummer field.

If a field F contains a primitive nth root of unity, the number n

is not divisible by the characteristic of F. Suppose, to the contrary, F

has characteristic p and n = qp. Then y p - l = ( y - l ) p since in the

expansion of (y - 1 )p each coefficient other than the first and last is

divisible by p and therefore is a multiple of the p-fold of the unit of F

and thus is equal to 0. Therefore xn - 1 = (x q)p - 1 = (x* - l)p

and xn - 1 cannot have more than q distinct roots. But we assumed

that F has a primitive nth root of unity and 1, e, t2,. . . , £ n"1 would be
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n distinct roots of xn - 1. It follows that n is not divisible by the

characteristic of F. For a Kummer field E, none of the factors

xn - a., a. 4 0 has repeated roots since the derivative, nx11'1 , has

only the root 0 and has therefore no roots in common with xn - a..

Therefore, the irreducible factors of xn - a£ are separable, so that E

is a normal extension of F.

Let ai be a root of xn - a. in E. If el9 €2, .. . , €n are the n dis-

tinct nth roots of unity in F, then ai€1,ai€2> .. . , a£en will be n distinct

roots of xn - a., and hence will be the roots of xn - a., so that

E = F(a1 ,a2 , . . . ,a r). Let a and r be two automorphisms in the group

G of E over F. For each aP both a and r map a. on some other root of

xn - a.. Thus r (a . ) = £ifa. and a(a.) = €ia a. where ei(J and £.f are n11

roots of unity in the basic field F. It follows that

T ( a ( a i ) ) = K fiaai) = £iar(ai) = €ia€ir ai = a( r( a i)- Since a and r

are commutative over the generators of E, they commute over each ele-

ment of E. Hence, G is commutative. If a e G, then a(aL) =

€.a., <72(a.) = e . ^ a . , etc. Thus, aDi(a.) = a. for n. such that
i<J i ^ i/ 1(7 i v i i i

e.0 l = 1. Since the order of an nth root of unity is a divisor of n, we

have n£ a divisor of n and the least common multiple m of r i j , n 2 , . . ., nr

is a divisor of n. Since a^e^) = a£ for i = 1, 2,. . ., r it follows that m

is the order of a. .Hence, the order of each element of G is a divisor of

n and, therefore, the least common multiple r of the orders of the ele-

ments of G is a divisor of n. If € is a primitive nth root of unity, then

6n/r is a primitive rth root of unity. These remarks can be summarized

in the following.
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THEOREM 23. If E is a Rummer field, i.e., a splitting field of

p (x ) = (xn - a j ) ( x n - a 2 ) . . .(xn - at) where a. lie in F, and F

contains a primitive nth root of unity, then: (a) E is a normal extension

of F; (b) the group G of E over F is abelian, (c) the least common multi-

ple of the orders of the elements of G is a divisor of n.

Corollary. If E is the splitting field of xp - a, and F contains a

primitive pth root of unity where p is a prime number, then either E = F

and xp - a is split in F, or xp - a is irreducible and the group of E

over F is cyclic of order p.

The order of each element of G is, by Theorem 23, a divisor of p

and, hence, if the element is not the unit its order must be p. If a is a

root of xp - a, then a,«z, . . . t€
p'1a are all the roots of xp - a so that

F(a) = E and (E/F) < p. Hence, the order of G does not exceed p so

that if G has one element different from the unit, it and its powers must

constitute all of G. Since G has p distinct elements and their behavior

is determined by their effect on a, then a must have p distinct images.

Hence, the irreducible equation in F for a must be of degree p and is

therefore xp - a = 0.

The properties (a), (b) and (c) in Theorem 23 actually characterize

Kummer fields.

Let us suppose that E is a normal extension of a field F, whose

group G over F is abelian. Let us further assume that F contains a

primitive rth root of unity where r is the least common multiple of the

orders of elements of G.

The group of characters X of G into the group of rth roots of
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unity is isomorphic to G. Moreover, to each o € G, if a 4 1, there exists

a character C e X such that C(a) 4 1. Write G as the direct product of

the cyclic groups G1, G 2, .. ., Gt of orders mt m2 ... mt. Each a e G

may be written a = a1
 Io2

 2 . .. at
 t. Call C. the character sending a{

into £., a primitive m.^*1 root of unity and o. into 1 for j 4 i- Let C be

any character. C(a.) = e/*1, then we have C = C/*1 * C/1. . .C^1.

Conversely, C^1 . . . C^1 defines a character. Since the order of C. is

m., the character group X of G is isomorphic to G. If a 4 1, then in

o = GJ l o2
 2 . . . at

 t at least one i/., say i^ , is not divisible by m .

Thus CjO) = €^1 4 1.

Let A denote the set of those non-zero elements a of E for which

ar e F and let FI denote the non-zero elements of F. It is obvious that

A is a multiplicative group and that FI is a subgroup of A. Let Ar de-

note the set of rth powers of elements in A and FJ the set of rth powers

of elements of FX. The following theorem provides in most applications

a convenient method for computing the group G.

THEOREM 24. The factor groups ( A/Ft ) and ( Ar/F J) are iso-

morphic to each other and to the groups G and X.

We map A on Ar by making a £ A correspond to ar e Ar. If ar e FJ,

where a £ FI then b £ A is mapped on sf if and only if br = ar, that is,

if b is a solution to the equation xr - ar = 0. But a, ea, e2a,. . ., cr~l a

are distinct solutions to this equation and since e and a belong to F1,

it follows that b must be one of these elements and must belong to F1.

Thus, the inverse set in A of the subgroup F^ of Ar is F1 , so that the

factor groups (A/F1 ) and (A r/FJ ) are isomorphic.
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If a is an element of A, then (a/a(a)) r = a r/a(a r) = 1. Hence,

a/a (a) is an rth root of unity and lies in Fr By Theorem 22, a/a (a)

defines a character C(cr) of G in F. We map a on the corresponding

character C. Each character C is by Theorem 22, image of some a.

Moreover, a • a ' is mapped on the character C * (a) =

a - a ' / a C a - a 1 ) = a -a Va(a) -a (a ' ) = C ( a ) - C ' ( a ) = C.C ' (a ) , so

that the mapping is homomorphism. The kernel of this homomorphism

is the set of those elements a for which a/a(a) = 1 for each a, hence

is Fj. It follows, therefore, that (A/FX ) is isomorphic to X and hence

also to G. In particular, (A/F1 ) is a finite group.

We now prove the equivalence between Rummer fields and fields

satisfying (a), (b) and (c) of Theorem 23.

THEOREM 25. If E is an extension field over F, then E is a

Rummer field if and only if E is normal, its group G is abelian and F

contains a primitive rth root e of unity where r is the least common

multiple of the orders of the elements of G.

The necessity is already contained in Theorem 23., We prove the

sufficiency. Out of the group A, let a1Fl,a2Fl,. . . ,01^ be the cosets

of Fj. Since aL e A, we have aj = a£ £ F. Thus, at is a root of the

equation xr - a. = 0 and since ea., e2a., . .., €T"lai are also roots,

xr - a£ must split in E. We prove that E is the splitting field of

(xr - al )(x r - a2 ) .. . (x
r - at) which will complete the proof of the

theorem. To this end it suffices to show that F(a1 ,a2 , .. . ,a t ) = E.
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Suppose that F(a 1 ,a 2 , . . . ,a t) 4 E. Then F ( a j , . .. ,a t) is an

intermediate field between F and E, and since E is normal over

F (a j , . . . ,a t ) there exists an automorphism a e G, a 4 1, which

leaves F ( a l f . .., at) fixed. There exists a character C of G for which

C(a) 4 1- Finally, there exists an element a in E such that

C(a) = a/a (a) 4 1. But ar c F1 by Theorem 22, hence a € A.

Moreover, A C F ( a j , . . . , a t ) since all the cosets a^Fj are contained

in F(a t , . . . ,a t). Since F(a1 , .. . ,a t) is by assumption left fixed by

a, a (a) = a which contradicts a/a (a) ^ 1. It follows, therefore, that

F ( a 1 ( . . . , o t ) = E.

Corollary. If E is a normal extension of F, of prime order p, and

if F contains a primitive pth root of unity, then E is splitting field of

an irreducible polynomial xp - a in F.

E is generated by elements alf - . . ,an where a? £ F. Let al be

not in F. Then xp - a is irreducible, for otherwise F(al ) would be an

intermediate field between F and E of degree less than p, and by the

product theorem for the degrees, p would not be a prime number, con-

trary to assumption. E = F(ai ) is the splitting field of xp - a.

M. Simple Extensions.

We consider the question of determining under what conditions

an extension field is generated by a single element, called a primitive.

We prove the following

THEOREM 26. A finite extension E of F is primitive over F if
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and only if there are only a finite number of intermediate fields.

(a) Let E = F(a) and call f ( x ) = 0 the irreducible equation for

a in F. Let B be an intermediate field and g ( x ) the irreducible equa-

tion fora in B. The coefficients of g (x ) adjoined to F will generate a

field B1 between F and B. g (x ) is irreducible in B, hence also in B' .

Since E = B' (a) we see (E/B) = (E/B1). This proves B' - B. So B

is uniquely determined by the polynomial g(x). But g (x ) is a divisor

of f (x ) , and there are only a finite number of possible divisors of f ( x )

in E. Hence there are only a finite number of possible B's.

(b) Assume there are only a finite number of fields between E

and F. Should F consist only of a finite number of elements, then E is

generated by one element according to the Corollary on page 53. We

may therefore assume F to contain an infinity of elements. We prove:

To any two elements a,/3 there is a y in E such that F(a,/3) = F(y).

Let y = a + a/3 with a in F but for the moment undetermined. Con-

sider all the fields F(y) obtained in this way. Since we have an

infinity of a's at our disposal, we can find two, say al and a2, such

that the corresponding y's, y1 = a + a1/3 and y2 = a + a2/3, yield

the same field F(y1 ) = F(y2 ). Since both y1 and y2 are in F(y1 ),

their difference (and therefore /3) is in this field. Consequently also

y1 - ajjS = a. So F(a,/8) C F(y i) . Since F ( y l ) C F(a , j8) our con-

tention is proved. Select now 77 in E in such a way that (F(iy)/F) is

as large as possible. Every element 6 of. E must be in F( 77) or else we

could find an element 8 such that F(S) contains both rj and e. This

proves E = F(T?).
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THEOREM 27. If E = F(al9a2, . . . ,an) is a finite extension of

the field F, and «1,a2, . . . ,an are separable elements in E, then there

exists a primitive d in E such that E = F(0).

Proof: Let f. (x) be the irreducible equation of a£ in F and let B

be an extension of E that splits f 1 ( x ) f 2 ( x ) . . . f n (x ) . Then B is normal

over F and contains, therefore, only a finite number of intermediate

fields (as many as there are subgroups of G). So the sub field E contains

only a finite number of intermediate fields. Theorem 26 now completes

the proof.

N. Existence of a Normal Basis.

The following theorem is true for any field though we prove it

only in the case that F contains an infinity of elements.

THEOREM 28. If E is a normal extension of F and alta2, ... ,an

are the elements of its group G, there is an element d in E such that

the n elements 0^(0), a2(0) , . . . ,on(Q) are linearly independent with

respect to F.

According to Theorem 27 there is an a such that E = F(a). Let

f ( x ) be the equation for a, put a i(a) = a.,

g £ (x) is a polynomial in E having ak as root for k 4 i and hence

(1) g i (x )g k (x ) = 0(mod f ( x ) ) f o r i 4 k.

In the equation

(2) g l ( x ) + g 2 (x ) + ... + g n ( x ) - 1 = 0

the left side is of degree at most n - 1. If (2) is true for n different

values of x, the left side must be identically 0. Such n values are
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alta2,. . .,an, since gL(aL) = 1 and gk(a. ) = 0 for k 4 i.

Multiplying (2) by g f (x) and using (1) shows:

(3) (g^x)) 2 = g i (x ) (mod f ( x ) ) .

We next compute the determinant

(4) D ( x ) = |a.(7k(g(x)) i,k = 1,2, . . . , n

and prove D(x ) / 0. If we square it by multiplying column by column

and compute its value (mod f ( x ) ) we get from (1), (2), (3) a determi-

nant that has 1 in the diagonal and 0 elsewhere.

So

( D ( x ) ) 2 = 1 (mod f ( x ) ) .

D ( x ) can have only a finite number of roots in F. Avoiding them

we can find a value a for x such that D(a) 4 0. Now set Q = g(a).

Then the determinant

(5) <7 j f f k (0 ) | 4 0.

Consider any linear relation

x i^i(0) + X
2

a2^) + • • • + x
n

an(^) = ^ wnere the x. are in F. Apply-

ing the automorphism a. to it would lead to n homogeneous equations for

the n unknowns xr (5) shows that x. = 0 and our theorem is proved.

O. Theorem on Natural Irrationalities.

Let F be a field, p ( x ) a polynomial in F whose irreducible factors

are separable, and let E be a splitting field for p(x) . Let B be an arbi-

trary extension of F, and let us denote by EB the splitting field of p ( x )

when p (x ) is taken to lie in B. If ax, . . . ,as are the roots of p (x ) in

EB, then F ( a 1 , . . . , a s ) i s a subfield of EB which is readily seen to

form a splitting field for p ( x ) in F. By Theorem 10, E and F ( a l f . . . ,« s)
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are isomorphic. There is therefore no loss of generality if in the sequel

we take E = F (a i ; . . . , a s ) and assume therefore that E is a subfield

of EB. Also, EB = B (04,. . . ,a8) .

Let us denote by E n B the intersection of E and B. It is readily

seen that E n B is a field and is intermediate to F and E.

THEOREM 29. If G is the group of automorphisms of E over F,

and H the group of EB over B, then H is isomorphic to the subgroup of

G having E n B as its fixed field.

Each automorphism of EB over B simply permutes ax, . . . ,as in

some fashion and leaves B, and hence also F, fixed. Since the ele-

ments of EB are quotients of polynomial expressions in alt . . ., as with

coefficients in B, the automorphism is completely determined by the

permutation it effects on ax, . . . ,as. Thus, each automorphism of EB

over B defines an automorphism ofE = F ( a 1 , . . . , a g ) which leaves F

fixed. Distinct automorphisms, since alf . .. ,as belong to E, have

different effects on E. Thus, the group H of EB over B can be con-

sidered as a subgroup of the group G of E over F. Each element of H

leaves E n B fixed since it leaves even all of B fixed. However, any

element of E which is not in E n B is not in B, and hence would be

moved by at least one automorphism of H. It follows that E n B is the

fixed field of H.

Corollary. If, under the conditions of Theorem 29, the group G is of

prime order, then either H = G or H consists of the unit element alone.


