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II FIELD THEORY

A* Extension Fields.

If E is a field and F a subset of E which, under the

operations of addition and multiplication in E, itself forms a

field, that Is, if F is a subfield of E, then we shall call E

an extension of F. The relation of being an extension of F

will be briefly designated by F c E. If a,p,y,... are elements

of E, then by F(cc,(3,7,...) we shall mean the set of elements in

E which can be expressed as quotients of polynomials in

tt>P*7»«»» with coefficients in F. It is clear that P(a,{3,7,...)

is a field and is the smallest extension of F which contains

the elements a,(3,7,... • We shall call F(a,p,7,,..) the field

obtained after the adjunction of the elements a,p,7,... to F,

or the field generated out of F by the elements a,(3,7,... . In

the sequel all fields will be assumed commutative.

If F c E, then Ignoring the operation of multiplica-

tion defined between the elements of E, we may consider E as a

vector space over F. By the degree of E over F, written

(E/F), we shall mean the dimension of the vector space E over F.

If (E/F) is finite, E will be called a finite extension.

THEOREM 6. If F> B ,E are three fields such that

F c B c E, then

(E/F) - (B/*-)(E/fe).

Let A f̂ A2, •••,Ap be elements of E which are

linearly independent with respect to B and let

C-,, C0, ...,C be elements of B which are Independent
J. <& 8



14

with respect to P. Then the products C^Aj

where i = 1,2, ...,s and 3 = 1,2, ...jr

are elements of E which are independent with respect

to P. For1' if 2 alJciAj * 0, then ZCZa^jC^Aj
i*3 J i

is a linear combination of the A* with coefficients

in B and because the Aj were independent with res-

pect to B we have Zâ . C ± » 0 for each J. The

independence of the C. with respect to F then re-

quires that each a,, = 0. Since there are r.s elem-

ents C^ A, we have shown that for each r £ (E/B )

and s ̂  ( B/F) the degree (E/P) ^ r.s. Therefore,

(E/P) - (B/F)(E/B). If one of the latter numbers

is infinite, the theorem follows. If both (E/B )

and ( B/F) are finite, say r and s respectively, we

may suppose that the A* and the C^ are generating

systems of E and B respectively, and we show that

the set of products Cj^Aj is a generating system of

E over F. EachAeE can be expressed linearly in

terms of the Aj with coefficients in B . Thus,

A s 2BjAj. Moreover, each Bj being an element of B

can be expressed linearly with coefficients in F in

terms of the C^, i.e., B* = 2aiJ ci> 3 = 1,2,...,r.

Thus, A = Zâ . C^A. and the C^A* form an independ-

ent generating system of E over P.

Corollary. If F c F^^ c Pg c ... c Fn, then

(Fn/P) •

1) Henceforth, 0 will denote the zero
element of a field.
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B. Polynomials.

An .expression of the form a xn + â x11""1 + ... + ao JL n

is called a polynomial in F of degree n if the coefficients

a j«.«*a are elements of the field P and aQ f 0. Multiplica-

tion and addition of polynomials are performed in the usual

way1).

A polynomial in P is called reducible in P if it is

equal to the product of two polynomials in P each of degree at

least one. Polynomials which are not reducible In F are

called irreducible in P.

If f(x) = g(x)»h(x) is a relation which holds between

the polynomials f(x), g(x), h(x) in a field F then we shall say

that g(x) divides f(x) in P, or that g(x) is a factor of f(x).

It is readily seen that the degree of f(x) is equal to the sum

of the degrees of g(x) and h(x), so that if neither g(x) nor

h(x) is a constant then each has a degree less than f(x). It

follows from this that by a finite number of factorizations a

polynomial can always be expressed as a product of irreducible

polynomials In a field F.

For any two polynomials f(x) and g(x) the division

algorithm holds, I.e., f(x) = q(x)«g(x) + r(x) where q(x) and

r(x) are unique polynomials in F and the degree of r(x) is less

than that of g(x). This may be shown by the same argument as

the reader met In elementary algebra in the case of the field

of real or complex numbers. We also see that r(x) is the

1) If we speak of the set of all polynomials of
degree lower than n, we shall agree to In-
clude the polynomial 0 in this set, though
it has no degree In the proper sense.
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uniquely determined polynomial of a degree less than that of

g(x) such that f(x) - r(x) Is divisible by g(x). We shall call

r(x) the remainder of f(x).

Also, in the usual way, it may be shown that if a is a

root of the polynomial f(x) in F then x - a is a factor of

f(x), and as a consequence of this that a polynomial in a field

cannot have more roots in the field than its degree.

Lemma. If f (x) is an irreducible polynomial of

degree n in F, then there do not exist two polynomials each of

degree less than n in F waose product is divisible by f(x).

Let us suppose to the contrary that g(x) and h(x) are

polynomials of degree less than n whose product is divisible by

f(x). Among all polynomials occurring in such pairs we may

suppose g(x) has the smallest degree. Then since f(x) is a

factor of g(x)*h(x) there is a polynomial k(x) such that

k(x)'f(x) - g(x)-h(x).

By the division algorithm,

f(x) = q(x).g(x) + r(x)

where the degree of r(x) is less than that of g(x) and r(x) ̂  0

since f(x) was assumed irreducible. Multiplying

f(x) = q(x).g(x) •«• r(x)

by h(x) and transposing, we have

r(x)«h(x)=f(x)-h(x)-q(x)«g(x)-h(x)«f(x)-h(x)-q(x)-k(x)-f(x)

from which it follows that r(x)*h(x) is divisible by f(x).

Since r(x) has a smaller degree than g(x), this last is in con*

tradlctlon to the choice of g(x), from which the lemma follows.

As we saw, many of the theorems of elementary alge-

bra hold in any field F. ' However, the so-called Fundamental

Theorem of Algebra, at least in its customary form, does not
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hold. It will be replaced by a theorem due to Kronecker which

guarantees for a given polynomial in F the existence of an ex-

tension field in which the polynomial has a root. We shall

also show that, in a given field, a polynomial can not only be

factored Into irreducible factors, but that this factorization

is unique up to a constant factor. The uniqueness depends on

the theorem of Kronecker.

C. Algebraic Elements.

Let F be a field and E an extension field of F. If

a is an element of E we may ask whether there are polynomials

with coefficients in F which have a as root, a is called

algebraic with respect to F if there are such polynomials. Now

let a be algebraic and select among all polynomials In F which

have a as root one,f(x), of lowest degree.

We may assume that the highest coefficient of f(x)

is 1. We contend that this f (x) Is uniquely determined, that

It is Irreducible and that each polynomial in F with the root a

is divisible by f(x). If, indeed, g(x) is a polynomial in F

with g(a) = 0, we may divide g(x) • f(x)q(x) + r(x) where r(x)

has a degree smaller than that of f(x). Substituting x = a

we get r(a) - 0. Now r(x) has to be identically 0 since other-

wise r(x) would have the root a and be of lower degree than

f(x). So g(x) Is divisible by f(x). This also shows the

uniqueness of f(x). If f(x) were not irreducible, one of the

factors would have to vanish for x = a contradicting again the

choice of f(x).

We consider now the subset EQ of the following elem-

ents 6 of E:
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c + c^a + c0a" ••• ... + e ,ano j. <& n~ A

where g(x) is a polynomial In F of degree less than n (n being

the degree of f(x) ). This set EQ is closed under addition and

multiplication. The latter may be verified as followst

If g(x) and h(x) are two polynomials of degree less

than n we put g(x)h(x) » q(x)f(x) + r(x) and hence

g(a)h(a) - r(a). Finally we see that the constants

Co'°l'***'cn-l are uni(luely determined by the element 9. Indeed

two expressions for the same Q would lead after subtracting to

an equation for a of lower degree than n.

We remark that the internal structure of the set £o

does not depend on the nature of a but only on the irreducible

f(x). The knowledge of this polynomial enables us to perform

the operations of addition and multiplication in our set Eo-

We shall see very soon that Eo is a field; in fact, EQ is

nothing but the field F(a). As soon as this is shown we have

at once the degree, (F(a)/F), determined as n, since the space

F(a) is generated by the linearly Independent l,a,â , . . ,,an~̂ .

We shall now try to imitate the set EQ without having

an extension field E and an element a at our disposal* We

shall assume only an irreducible polynomial

f(x) - xn + â x11-1 + ... + a0

as given.

We select a variable £ and let E^ be the

set of all polynomials

of a degree lower than n. This set forms a group under

addition. V/e now introduce besides the ordinary multiplication



19

a new kind of multiplication of two elements g(£) and h(£)

of EI denoted by g(£) x h(£). It is defined as the remainder

of the ordinary product g(£) h(£) under division by

. We first remark that any product of m terms

, g 2^J» •••* Sm(^) is again the remainder of the ordinary

product g1(€)g2U) •••
 gm^'* Thls to true by definition for

m * 2 and follows for every m by induction if we Just prove the

easy lemma: The remainder of the product of two remainders

(of two polynomials) is the remainder of the product of these

two polynomials. This fact shows that our new product Is

associative and commutative and also that the new product

«l(5) * g 2(€) * ... x gm(£) will coincide with the old prod-

uct g1(C) g2(€)»" £m(€) if the latter does not exceed n in

degree. The distributive law for our multiplication is readily

verified.

The set E^ contains our field F and our multiplica-

tion in EI has for F the meaning of the old multiplication.

One of the polynomials of EI is g. Multiplying it i-times

with itself, clearly will Just lead to £*• as long as 1 < n.

For i = n this Is not any more the case since it leads to the

remainder of the polynomial £n. This remainder is

e - ««) —S,!*̂ 1 - an.25
n-2

We now give up our old multiplication altogether and

keep only the new onej we also change notation, using the

point (or Juxtaposition) as symbol for the new multiplication.

Computing in this sense

co * cl* * C2*2 * — * 'n-l*11"1

will really lead to this element, since all the degrees in*

volved are below n. But



20

rn _ ^ rn-l _ rn-2
V

Transposing we see that f(£) = 0.

We thus have constructed a set E^ and an addition and

multiplication In EX that already satisfies most of the field

axioms. E^ contains F as subfleld and g satisfies the equation

f(£) s °* We next have to show: If g(£)̂ 0 and h(£) are given

elements of Ê , there Is an element

In E-i such that

To prove It we consider the coefficients x^ of X(̂ ) as un-

knowns and compute nevertheless the product on the left side,

always reducing higher powers of £ to lower ones. The result

is an expression L + I^£ + . . . + Î .î 11" where each L^ is

a linear combination of the xi with coefficients In F. This

expression Is to be equal to h(£); this leads to the n

equations with n unknowns:

L - b , L.-b , ... , L n • bo o a. 1 n-1 n-1

where the b^ are the coefficients of h(£). This system will

be soluble If the corresponding homogeneous equations

L0 = 0, ^ = 0, ... , 1^ « 0

have only the trivial solution.

The homogeneous problem would occur if we should ask

for the set of elements X(g) satisfying g(€)'x(£) = 0.

Going back for a moment to the old multiplication this would

mean that the ordinary product 8(£)X(£) has the remainder 0,

and is therefore divisible by f($)* According to the lemma,

page 16, this is only possible for X(5) » 0.
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Therefore E^^ is a field.

, Assume now that we have also our old extension E with

a root a of f(x), leading to the set E . We see that E has ino o
a certain sense the same structure as E^ if we map the element

g(g) of E^ onto the element g(cc) of E . This mapping will

have the property that the image of a sum of elements is the

sum of the Images, and the image of a product is the product of

the Images.

Let us therefore define: A mapping a of one field

onto another which is one to one in both directions such that

o(a+p) = o(a) + o (p) and o(a«p) = o(a)» o((3) is called
an isomorphism. If th* fields in question are not distinct -

i.e., are both the same field - the Isomorphism is called an

automorphism. Two fields for which there exists an isomorphism

mapping one on another are called isomorphic. If not every

element of the image field is the Image under o of an element

in the first field, then a is called an Isomorphism of the

first field into the second. Under each isomorphism it is

clear that o(0) = 0 and o(l) = 1.

We see that EQ is also a field and that it is iso-

morphic to E.̂ .

We now mention a few theorems that follow from our

discussion:

THEOREM 7» (Kronecker) If f(x) is a polynomial in

a field F, there exists an extension E of F in which f(x) has

a root.

Proof: Construct an extension field in which

an irreducible factor of f(x) has a root.
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THEOREM 81 Let o be an Isomorphism mapping a field

Fon a field PT. Let f(x) be an irreducible polynomial in F

andf'yx) the corresponding polynomial in F*. If E a F(3) and

Ef « Ff(3f) are extensions of F and Ff.respectively,where

f(3) = 0 in E and f '(3') as 0 in E1, then o can be extended to

an isomorphism between E and Ef.

Proofs E and Ev are both isomorphic to EQ.

D. Splitting Fields.

If F, B end E are three fields such that F c B c E

then we shall refer to B as an intermediate field.

If E is an extension of a field F in which a poly-

nomial p(x) in F can be factored into linear factors, and if

p(x) can not be so factored in any intermediate field, then we

call E a splitting field for p(x). Thus, if E is a splitting

field of p(x), the roots of p(x) generate E.

A splitting field is of finite degree since it is

constructed by a finite number of adjunctions of algebraic

elements, each defining an extension field of finite degree.

Because of the Corollary on page 14, the total degree is finite.

THEOREM 9. If p(x) is a polynomial in a field F.

there exists a splitting field E of P(X)»

We factor p(x) in F into irreducible factors

f1(x)»...»fp(x) =» p(x). if each of these is of the

first degree then F itself is the required splitting

field. Suppose then that f̂ (x) is of degree higher

than the first. By Theorem 7 there is an extension

FI of F in which f̂ x) has a root. Factor each of

the factors f̂ x), •••*fr(x) into irreducible factors
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in P1 and proceed as before. We flnrlly arrive at a

field in which p(x) can be split into linear factors.

The field generated out of P by the roots of p(x) Is

the required splitting field.

The following theorem asserts that up to Isomorphisms,

the splitting field of a polynomial is unique.

THEOREM 10. Let a be an isomorphism mapping the

field F on the field Ff. Let p(x) be a polynomial in P and

p'Cx) the polynomial in Ff with coefficients corresponding to

those of p(x) under o . Finally, let E be a splitting field

of p(x) and Ef a splitting field of p'(x). Under these con-

ditions the isomorphism o can be extended to an isomorphism

between E and E1.

If f(x) is an irreducible factor of p(x) in P,

then E contains a root of f(x). For let

p(x) * (x-a1)(x-a2)...{x-ag) be the splitting of

p(x) in E. Then (x-ĉ Mx-ag).. .(x-ag) = f(x)*g(x).

We consider f(x) as a polynomial in E and construct

the extension field B « E(a) in which f(a) « 0.

Then (o-o1)-(a-a2)-...»(a-ag) = f(a)»g(a) = 0 and

a-ct£ being elements of the field B can have a prod-

uct equal to 0 only if for one of the factors, say

the first, we have a-â  = 0. Thus, a = a1, and c^

is a root of f(x).

Now in case (E/P) - 1, then E = F and p(x) can

be split in F. This factored form has an image in

F1 which is a splitting of p'(x), since the iso-

morphism o preserves all operations of addition and

multiplication in the process of multiplying out the
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factors of p(x) and collecting to get the original

form. Since p'(x) can be split In Ff, we must have

P1 » E1. In this case, o Itself Is the required

extension and the theorem Is proved If (E/P) » 1.

We proceed by complete Induction. Let us sup-

pose the theorem proved for all cases In which the

degree Is less than n > 1, and suppose (E/P) = n. We

factor p(x) Into Irreducible factors In Fj

p(x) = f.(x)«f0(x)»...-f (x). Not all of thesex & m
factors can be of degree 1, since otherwise p(x)

would split In P, and we should have (E/P) * 1 con-

trary to assumption. Hence, we may suppose the

degree of f̂ x) to be r > 1. Let

f£(x).f̂ (x)«...«fn(x) - P
f<x) be ttie factorization of

pf(x) Into the polynomials corresponding to

f1(x),...,f1|(x) under o. f£(x) Is Irreducible In

Pf, for a factorization of f'(x) In P1 would Induce3-'

under o~x a factorization of f.(x), which was

however taken to be Irreducible. Let a be a root

of f (x) In E and o1 a root of f *(x) in B». We

have (P(a)/P) » (F'(a')/*") - r > 1.

Also, by Theorem 8, the isomorphism o can be

extended to an isomorphism O1, between the fields

P(a) and F'(a').

Since F c P(a), p(x) is a polynomial in P(a) and

E is a splitting field for p(x) in F(a). Similarly

for pf(x). But (E/F) - (P(a)/P)(B/P(a)) • r*(B/F(a)K

Hence, (E/P(a)) < n, and, by our inductive assumption,

1) See page SO for the definition of o"1.
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GI can be extended from an isomorphism between F(a)

and F'(af) to an isomorphism 0g between E and Ev.

Since o1 is an extension of o , and Og an extension

of o-i, then O0 is an extension of o and the theoremx 2
follows.

Corollary; If p(x) is a polynomial in a field F,

then any two splitting fields for p(x) are isomorphic.

This follows from Theorem 10 if we take F • Ff

and o to be the identity mapping, i.e., o(x) - x.

As a consequence of this corollary we see that we are

justified in using tne expression Nthe splitting field of p(x)n

since any two differ only by an isomorphism. Thus, if p(x) has

repeated roots in one splitting field, so also in any other

splitting field it will have repeated roots. The statement

*p(x) has repeated roots11 will be significant without reference

to a particular splitting field.

B« Unique Decomposition of Polynomials into Irreducible Factors.

THEOREM 11. If p(x) is a polynomial in a field F,

and if p(x) * P1(x)-p2(x)»...«pp(x) * q1(x)«q2(x)*... -qgfx)

are two factorizations of p(x) into irreducible polynomials

each of degree at least one, then r • a and after a suitable

change in the order in which the qys are written,

pi(x) » ĉ U), i * 1,2,...,r, and c± e F.

Let F(a) be an extension of F in which

p. (a) = 0. We may suppose the leading coefficients

of the p.(x) and the q.(x) to be 1, for, by factoring

out all leading coefficients and combining, the con-

stant multiplier on each side of the equation must be
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the leading coefficient of p(x) ana nence can be

divided out of both sides of the equation. Since

0 = P1(a).p2(a)-...'pr(a) » p(a) * q]L(a)»... »qa(a)

and jlnce a product of elements of F(a) can be 0 only

If one of these is 0, It follows that one of the

q,(<x), say q_(a), is 0. This gives (see page 17)

p (x) * q (x). Thus p(x)«p(z)•••••? (x)

"• P1(xK8(«)»«..«qi(x) or

P1(xHpg(x)«...*pr(x) - qg(x)«...«qs(x)] « 0. Since

the product of two polynomials is 0 only if one of

the two is the 0 polynomial, it follow* that the

polynomial within the brackets is 0 so that

P2(x)«...-pr(x) » qg(x)-...«qg{x). If we repeat the

above argument r times we obtain

p (x) * q-tx), 1 • 1,2,,..,r. Since the remaining

q*s mns'c have a product 1, it follows that r * s.

P. group Characters.

If 0 is a multiplicative group, P a field an<* o a

homomorphlsm mapping a into P, then a is called a character of

0 in P. By homomorphism is meant a mapping a such that for

a, p any two elements of 0, o(a)»o((3) = o(a-p) and o(a) / 0

for any a. (If o(a) a 0 for one element a, then o(x) « 0 for

each xeo, since o(oy) m ofa)»a(y) * Q and ay takes all values

in G whan y assumes all values in a).

The characters <*i> °2> • ••,on are called dependent

if there exist elements alfa2>...9an not 'all zero in F such

that ajÔ x) + agOgU) + ... + «non(x) - 0 for each xeQ.

Such a dependence relation is called non-trivial. If the
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characters are not dependent they are called independent,

THEOREM 18. If o^Og, •••»°n are n mutually dis-

tinct characters of a group G in a field F> then

o ,0 2'"*'a are independent.

One character cannot bo dependent, since
al ° i(*) s ° implies a, = 0 due to the assumption

that ô (ct) ? 0. Suppose n >1. We make the induct-

ive assumption that no set of less than n distinct

characters is dependent. Suppose now that

al°l^x' * a2°2̂  + ••••*• an« n(«) = 0 Is a non-

trivial dependence between the o 9s. None of the

elements a^ is zero, else wa should have a depend-

ence between less than n characters contrary to our

inductive assumption. Since o. and o are distinct̂

there exists an element a in 6 such that

o.(cr) ̂  o (a). Multiply the relation between the

o*s by an
-1. We obtain a. relation

) +o(x) « o ,

Replace in this relation x by ox. We have

Vlfa)ol(x) * — * bn-l°n-l(a)an.l(x)*an(a)on(ac)=s(i

°P an(aj"lbi0i<a> °l<*> * ••• *an(x) * °-

Subtracting the latter from (*) we have

**») tb̂  on(a)-
1b1o1(a)]o1(x)4...̂ cn.1 on-1(x) » 0.

The coefficient of o^Cx) in this relation is not 0,

otherwise we should have b̂  on(o)"̂ b. o.(o), so that

°n{a)bl s biax(a) * (̂a)̂

and since bx 7* 0, we get ̂ («)
 s Ofa) contrary to
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the choice of a. Thus, (**) la a non-trivial depend-

ence between ô , 0g,..., °n.i which la contrary to

our inductive assumption.

Corollary,?. If E and Ef are two fields, and

o , o ,...,o are n mutually distinct isomorphisms

napping E into E', then °1»»««»°n are independent.

(Where "Independent" again means there exists no non-

trivial dependence £3.0 i(x) + ... + an°n(x) • 0

which holds for every xeB).

This follows from Theorem 12, aince E without the

0 la a group and the o'a defined in this group are

mutually distinct characters.

If a., o g,... a are isomorphisms of a field E into a

field E1, then each element a of E such that

o,(a) • o0(a) » ... • o (a) la called a fixed point of EX W I* «̂î ™—»«•••••••

under o^, o 2, .*•» on» This name la chosen because in the

case where the o'a are automorphisms and o^ is the identity,

i.e., o1(x) * x, we have ô (x) « x for a fixed point.

Lemma. The aet of fixed points of E is a aubfleld

of E. We shall call this aubfleld the fixed field.

For if a and b are fixed points, then

o-fa+b) « Oi<a) * °j,(fc) " a j( a^ * a j^b) « a,(a-«-b) and

o1(a«b) • Oj^Ja)- o±M » °j(a)* °j(b) *

Finally from ot(a) - Oj(a) we have (Oj^fa

- a1(a
-1) - o^e'1).

Thua, the sum and product of two fixed point a la a fixed point,

and the inverae of a fixed point la a fixed point. Clearly,

the negative of a fixed point la a fixed point.
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THEOREM 13. If o ,...,o are n mutually distinct

isomorphisms of a field E into a field E1, and if F is the

fixed field of E, then (E/F) » n,

Suppose to the contrary that (E/F) • r < n. We

shall show that we are led to a contradiction. Let

&>_, w2, ..., <«> be a generating system of E over F. In

the homogeneous linear equations

°n(w2)xn

°1( Wr)xl * °2{ Wr)x2 * — * °n( Wr)xn * °

there are more unknowns than equations so that there

exists a non-trivial solution which,we may suppose,

x_,x2,...,x denotes. For any element a in E we can

find a.,ag9...,a in F such that a * a^co^ + ...+ aro>r.

We multiply the first equation by o.f̂ ), the second

by CjCftg) And so on* Using that â F, hence that

Oj^faj,) • °j(ai) and also that oj(*1>
0Oj( Il1)"

aj(ft1«1),

we obtain

O ( a" ) x * — *

Adding these last equations and using

2
} + ••• * °i(arwr)

we obtain
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This, however, is a no n- trivial dependence relation

between a1,O2»...tOn which cannot exist according

to the Corollary of Theorem 12.

Corollary: If ov°'**''° are

the field E, and F is the fixed field, then (E/F) » n.

If F is a subfield of the field E, and o an

automorphism of E, we shall say that o leaves F fixed if for

each element a of F, o(a) = a. If o and t are two automor-

phisms of E, then the mapping o(t(x)) written briefly OT

is an automorphism, as the reader may readily verify. [E.g. ,

) * o(T(x«y)) * o(t(x)« t(y)) - o (t(x)

We shall call OT the product of o and i . If o is an

automorphism (o(x) * y), then we shall call o" the mapping

of y into x, i.e., o"1(y) = x the inverse of o . The reader

may readily verify that o -1 is an automorphism. The auto-

morphism I(x) = x shall be called the unit automorphism.

Lemma. If E is an extension field of F, the set G

of automorphisms which leave F fixed is a group.

The product of two automorphisms which leave F fixed

clearly leaves F fixed. Also, ttie inverse of any automorphism

in 6 is in G*

The reader will observe that G, the set of automorph-

isms which leave F fixed, does not necessarily have F as its

fixed field. It may be that certain elements in E which do

not belong to F are left fixed by every automorphism which
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leaves F fixed. Thus, the fixed field of G may be larger thanF.

0. Normal Extensions.

An extension field E of a field F is called a normal

extension if the group 0 of automorphisms of E which leave F

fixed has F for its fixed field, and (E/F) is finite.

Although the result in Theorem 13 cannot be sharpened

in general, there is one case in which the equality sign will

always occur, namely, in the case in which o_,o0,...,a isJ. <& n

a set of automorphisms which form a group. We prove

THEOREM 14. I£ ol'°2'***'°n *-s a group of auto-

morphisms of a field E and if F is the fixed field of

o., o0, ...,o . then (E/P) = n.JL fc n "'" • • «• ' « • • • -

If o , a 0, ...,o is a group, then the identityx » n
occurs, say, o^ » I. The fixed field consists of

those elements x which are not moved by any of the

o fs, i.e., ô (x) - x, i * 1,2, ...n. Suppose that

(E/F) > n. Then there exist n + 1 elements

a , <*„»•••» a ̂ ., of E which are linearly independent

with respect to F. By Theorem 1, there exists a non-

trivial solution in E to the system of equations

= 0

x,o(a,)^x^o (a _)*••• +x ,o (a ,)-0.
1 n 1 2 n 2 n*l n n-4-1

We note that the solution cannot lie in F, otherwise,

since o^ is the identity, the first equation would be

a dependence between a ,..., a .
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Among all non- trivial solutions XT/XO» •••>xn+;i
 we

choose one which has the least number of elements

different from 0* We may suppose this solution to be
al>a2* *• *'ar* Of"**0' where the first r terms are diff-

erent from 0. Moreover, r ̂  1 because a.o.(cu ) = 0

implies a1 = 0 since o^ta^) * o^ f 0. Also, we may sup-

pose ap = 1, since if we multiply the given solution by

ar
-1 we obtain a new solution in which the rtn term

is 1. Thus, we have
s 0

for 1 * l,2,...,n; Since a , . ..,a . cannot all belong

to F, one of these, say â , is in E but not in F. There

is an automorphism o for which °&) / a* If we

use the fact that a3/°2' • • *'an
 fom & Sf°uP» we see

pk*°l* 0k*02"**f0k*°n is a Permutation of

°l'02'*'*'°n" APPlytoC Ov *° the expressions in (*)
we obtain

for J m 1,2, ...,r, so that front Ojc°4
 m °̂

••* *°k{ar.l)ol(ar-l)

and if we subtract (*») from (*) we have

which is a non- trivial solution to the system ( v) having

fewer than r elements different from 0, contrary to the

choice of r.

Corollary 1; If P is the fixed field for the finite

group Q, then each automorphism o that leaves F fixed
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must belong to Q.

(E/P) = order of G = n. Assume there Is a o not

In G. Then F would remain fixed under the n+1 elements

consisting of o and the elements of G, thus contradict-

ing the Corollary to Theorem 13.

Corollary 21 There are no two groups G^ and G£ *ith

the same fixed field,

This follows immediately from Corollary 1.

If f (x) is an irreducible polynomial in F, then f(x) is

called separable if it does not have repeated roots* If E is

an extension of the field F, the element a of E is called

separable if it is root of a separable polynomial f(x) in P,

and E is called a separable extension if each element of E is

separable.

THEOREM 15. E is a normal extension of F if and only

if E is the splitting field of a polynomial p(x) in F whose

irreducible factors are separable.

Sufficiency. Under the assumption that E splits

p(x) we prove that E is a normal extension of F.

If (E/F) s 1* then our proposition is trivial,

since then E = P and only the unit automorphism leaves

F fixed.

Let us suppose that (E/P) = n > 1. We make the

inductive assumption that for all pairs of fields with

degree less than n our proposition holds.

Let p(x) * P1(x)-p2(x)«...-pr(x)

be a factorization of p(x) into separable factors. We

may suppose one of these to have a degree greater than
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one, for otherwise we should have (E/F) - 1. Suppose

deg p-^Cx) = s > 1. Let a^ be a root of p̂ (x). Then

(Ftâ /F) » deg p^x) - s. From (E/Ftĉ ))'(FCâ J/F)

= (E/F) = n it follows that (E/F(â )) < n. From the

fact that p(x) lies In Ffc^) and E Is a splitting field

of p(x) over F(â ), It follows by our Inductive assump-

tion that E Is a normal extension of F(cu). Thus, each

element In E which Is not In F(ct̂ ) Is moved by at least

one automorphism which leaves F(a,) fixed.

p, (x) being separable Its roots a , a , ...,a
i i <s s

are s distinct elements of E* By Theorem 8 there exist

isomorphisms o , o ,...,o mapping F(a.) on F(a.),

F(a2), .. •,F(ag),i respectively, which are each the ident-

ity on F and map a^ on a_, a g, ..., OB respectively.

Since o^ is the identity mapping, the fixed field Ff

of a ,...,a consists of those elements of F(a.)

which are not moved by any one of the mappings

o,o,...,o . The isomorphisms o ., o 0,..., o
1 <& S X A O

are mutually distinct since c^ has s different images.

Therefore, by Theorem 13, (FCa.J/F1) £ s. Since F c F',

(pt/p).(F(a1)/F
f) » (Ff̂ J/F) » s, from which it follons

that (F(â )/F() ̂  s, and this combined with the preced-

ing inequality gives (FfcuJ/F1) * s. This Implies

(Ff/F) « 1 or F = F1. Each point of Fjĉ ) which is not

in F is moved by one of the mappings o^, og,... o .

We now apply Theorem 10. E is a splitting field of

p(x) in F(a][) and is also a splitting field of p(x) in

F(a.). Hence, the Isomorphism Q± , which makes p(x) In
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. correspond to the same p(x) In P(a.), can be ex-

tended to an Isomorphic mapping of E on E, that is, to

an automorphism o£.

The sufficiency is now established. For, any elem-

ent of E which is not in F, either is not in P(a,) and is

then moved by an automorphism which even leaves F(â )

fixed, or else is in F(cu) and is then moved by one of

the automorphisms o ',..., o f •

Necessity* If E is a normal extension of P, then

E Is splitting field of a polynomial p(x) whose irred-

ucible factors are separable. We first prove the

Lemma. If E is a normal extension of F, then E is a

separable extension of P.

Let o , o 0, . . . , o be the group G of automorphisms of
1 <& s

E whose fixed field is P. Let a be an element of E, and let

a,an,a_, . . .,a be the set of distinct elements in the sequence23 r
o_ (a), o 0(a ),..., a (a). Since G Is a group,x <& s

0(0^) = o,(o k(a)) = °j°k^
a' ~ °m*a' = an-

Therefore, the elements a, a.,..., a are permuted by the auto-

morphisms of G. The coefficients of the polynomial

f(x) = (x-aHx-ag). ..(x-ar) are left fixed by each automor-

phism of G, since in its factored form, the factors of f(x) are

only permuted. Since the only elements of E which are left

fixed by all the automorphisms of G belong to P, f(x) is a

polynomial In P. If g(x) is a polynomial in P which also has

a as root, then applying the automorphisms of G to the express-

ion g(a) - 0 we obtain g(â ) = 0, so that the degree of

g(x) & s. Hence f(x) is irreducible, and the lemma Is
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established.

To complete the proof of the theorem, let ŵ Wg,. ..,u>t

be a generating system for the vector space E over F. Let

f.(x) be the separable polynomial having w^ as a root. Then

E is the splitting field of p(x) - f̂ xj-fgU)-... -f̂ x).

If f (x) is a polynomial in a field F, and E the

splitting field of f (x), then we shall call the group of auto-

morphisms of E over P the group of the equation f (x) * 0. We

come now to a theorem known in algebra as the Fundamental

Theorem of Galois Theory which gives the relation between the

structure of a splitting fieid and its group of automorphisms.

THEOREM 16. (Fundamental Theorem). If p(x) is a

polynomial in a field P, and G the group of the equation

p(x) » 0, where E is the splitting field of p(x), then;

(1) Each intermediate field is the fixed field for a subgroup

GB of G, and distinct subgroups have distinct fixed fields.

We say B and 0 B "belong*1 to each other. (2) The inter-

mediate field B is a normal extension of F if and only if the

subgroup GB is a normal subgroup of G. In this case the

group of automorphisms of B which leaves F fixed is isomorphio

to the factor group (G/Gg). (3) For each intermediate field

B , we have ( B/F) • index of <*B and (E/ B ) • order of

OB-
The first part of the theorem comes from the

observation that E is splitting field for p(x) when

p(x) is taken to be in any intermediate field. Hence,

E is a normal extension of each intermediate field B ,

so that B is the fixed field of the subgroup of G
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consisting of the automorphisms which leave B fixed*

That distinct subgroups have distinct fixed fields Is

stated in Corollary 2 to Theorem 14.

Let B be any intermediate field. Since B is

the fixed field for the subgroup G of G, by Theoremo
14 we have (E/B) = order of Gg. Let us call o(0)

the order of a group G and 1(G) its index. Then

o(G) - o(GB)*i(GB). But (E/P) - o(G), and

(E/P) » (E/B)»(B/F) from which (B/P) - 1(GB), which

proves the third part of the theorem.

The number 1(G0) is equal to the number of lefto

cosets of G_. The elements of G, being automorphisms
B

of E, are isomorphisms of BI that is, they map B iso-

morphically into some other subfleld of E and are the

identity on P. The elements of G in any one coset of

Gn map B in the same way. For let a •a. and
D 1

o«o be two elements of the coset 0G . Since
16 O

o, and 0g leave B fixed, for each a in B we have

00. (a) = 0(a) = aoo(a). Elements of different cosetsJL A
give different isomorphisms, for if o and T give the

same Isomorphism, 0(<x) » f(a) for each a in B, then

ô Tfa) = a for each a in B. Hence, a-1* » o^ , where

o. is an element of G~. But then 1 - 00^ and

TGg * 00. G = OGg so that 0 and T belong to the same

coset.

Each Isomorphism of B which is the identity on P

is given by an automorphism belonging to G. For let

0 be an isomorphism mapping B on Bf and the identity
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on F. Then under a, p(x) corresponds to p(x), and E

Is the splitting field of p(x) in B and of p(x) in Bf.

By Theorem 10, o can be extended to an automorphism

of of E, and since o> leaves F fixed it belongs to 6.

Therefore, the number of distinct isomorphisms of B

is equal to the number of cosets of G_ and is therefore
o

equal to (B/F).

The field oB onto which o maps B has obviously

oGgO"* as corresponding group, since the elements of

oB are left invariant by precisely this group.

If B is a normal extension of P, the number of

distinct automorphisms of B which leave F fixed is

(B/F) by Theorem 14. Conversely, if the number of

automorphisms Is (B/F) then B is a normal extension,

because if F1 is the fixed field of all these auto-

morphisms, then F c F» c B, and by Theorem 14, (B/F»)

is equal to the number of automorphisms in the group,

hence (B/F1) « (B/F). From (B/F) » (B/F«)(Ff/F)

we have (F1/?) - 1 or F = F1. Thus, B is a normal

extension of F If and only if the number of automorph-

isms of B is (B/F).

B is a normal extension of F if and only If each

isomorphism of B Into E is an automorphism of B.

ThjLs follows from the fact that each of the above con-

ditions are equivalent to the assertion that there are

the same number of isomorphisms and automorphisms.

Since, for each o , B = oB is equivalent to

oGgC"^ c GB, we can finally say that B Is a normal

extension of F if and only If GS is a normal
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subgroup of 0.

As we have shown, each Isomorphism of B Is des-

cribed by the effect of the elements of some left coset

of Q _, • If B is a normal extension these isoraorph-0
isms are all automorphisms, but in this case the cosets

are elements of the factor group (G/Gg) , Thus, each

automorphism of B corresponds uniquely to an element

of (G/GQ} and conversely. Since multiplication in

(6/0g) is obtained by iterating the mappings, the

correspondence is an Isomorphism between (G/GB ) and

the group of automorphisms of B which leave P fixed.

This completes the proof of Theorem 16.

H. Finite Fields.

It is frequently necessary to know the nature of a

finite subset of a field which under multiplication in the

field is a group. The answer to this question is particularly

simple.

THEOREM 17. If S is a finite subset (7* 0) of a field

F which is a group under multiplication in F, then S is a

cyclic group.

The proof is based on the following lemmas for

abelian groups!

Lemma 1. If in an abelian group A and B are two

elements of orders a and b, and if c is the least common mul-

tiple of a and b, then there is an element C of order c in the

group.

Proof: (a) If a and b are relatively prime, C - AB

has the required order ab. The order of <3a * Ba is b and
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therefore c is divisible by b. Similarly it is divisible by a.

Since Cab « 1 it follows o - ab.

(b) If d is a divisor of a, we can find in the

group an element of order d. Indeed A*' is this element.

(o) How let us consider the general case. Let

p ,p . »,.,p be the prime numbers dividing either a or b and
12 r

, n
P2

Call t. the larger of the two numbers n^ and m1. Then

c * PjL lPg *«.«py
 p •

According to (b) we can find in the group an element of order

p.ni and one of order p ̂  . Thus there is one of order p. *.

Part (a) shows that the product of these elements will have the

desired order e.

2. If there is an element C in an abelian

group whose order o is maximal (as is always the case if the

group is finite) then e is divisible by the order a ef every

element A in the gfroupi. hence xe » 1 is satisfied by each

element in the group.

Proof* If a does not divide o, the greatest common

multiple of a and o would be larger than e and we could find

an element of that order, thus contradicting the choice of o.

We now prove Theorem 17. Let n be the order of 8

and r the largest order occurring in &• Then xr — 1 • 0 is

satisfied for all elements of S. Since this polynomial of

degree r in the field cannot have more than r roots, it follows
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that r > n. On the other hand r $ n because the order of each

element divides n. 3 Is therefore a cyclic group consisting of

By a finite field is meant one having only a finite

number of elements*

Corollary: The non-gero elements of a finite field

form a cyclic group*

If a is an element of a field F, let us denote the

n-fold of a, i.e., the element of F obtained by adding a to

Itself n times, by na. It is obvious that n*(m*a) * (nm)*a and

(n«a)(m*b) « nm*ab. If for one element a ̂  0, there is an

Integer n such that n-a » 0 then n«b • 0 for each b in F, since

n-b • (n«a)«(a"1b) » 0-a-1b - 0. If there is a positive integ-

er p such that p*a • 0 for each a in F, and if p is the small*

eat integer with this property, then F is said to have the

characteristic p« If no such positive integer exists then we

say F has characteristic 0» The ̂ nraoteristic of a field is

always a prime number* for if p * r*s then pa * rs-a * r*(s*a)*

However, s«a »b^0ifa/0 aid r»b f 0 since both r and s

are less than p, so that pa f 0 contrary to the definition of

the characteristic. If na • 0 for a ̂  0, then p divides n, for

n »' qp + r where 0 - r < p and na * (qp + r)a * qpa + ra.

Hence na * 0 implies ra » 0 and from the definition of the

characteristic since r < p, we must have r « 0.

If F is a finite field having q elements and B an

extension of F such that (E/P) * n, then B has qn elements.

For if «x, <»2,...f »n is a basis of B over P, each element of

B can be uniquely represented as a linear combination
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at-w + XgWg -f ... + x «n where the x^ belong to F, Since

each x. can assume q values In F, there are qn distinct pos-

sible choices of x ....,xn and hence q
n distinct elements of

E. E is finite, hence, there ta an element a of B so that

B • P(q). (The non-zero elements of E form a cyclic group

generated by an olement a).

If we denote by P 5 [0,1,2, ...,p-l] the set of mul-

tiples of the unit element in a field F of characteristic p,

then P is a aubfield of F having p distinct elements. In fact,

P is isomorphic to the field of integers reduced mod p. If F

is a finite field, then the degree of F over P is finite, say

(P/P) * n, and F contains pn elements. In other words, tfre

order of any finite field is a power of its characteristic*

If F and F* are two finite fields having the same

order q, then by the preceding, they have the same character-

istic since q is a power of the characteristic* The multiples

of the unit in F and Ff form two fields P and Pf which are

isomorphic.

The non-aero elements of F and Ff form a group of

order q - 1 and, therefore, satisfy the equation x*"*1 -1 = 0.

The fields F and Ff are splitting fields of the equation x**1*!

considered as lying in P and Pf respectively. By Theorem 10,

the isomorphism between P and Pf can be extended to an Iso-

morphism between F and P1. We have thus proved

THEOREM 18. Two finite fields having the same num-

ber of elements are isomorphic.

Differentiation* If f(x) • aQ

is a polynomial in a field F, then we define
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f ' » a^ + 2*2* * ... * najjX11""1. The reader may readily verify

that for each pair of polynomials f and g we have

(f + g)f - f t * gf

(f'g)1 - fgf + gff

THEOREM • The polynomial f has repeated roots if and

only If In the splitting field E the polynomials f and f ' have

a common root. This condition la equivalent to the assertion

that f and f ' have a common factor of degree greater than

0 In F.

If a Is a root of multiplicity k of f(x) then

f = (x-«)kQ(x) where Q(a) / 0. This gives
1r .

f - (x-a)V(x)«- k(x-ar Q(x)

x) + kQ(x)]

If k > 1, then a Is a root of f f of multiplicity at

least k * 1. If k • 1, then f *(x) » Q(x) + (x-a)Qt(x)

and f r(a) =" Q(a) ̂ 0. Thus, f md f f have a root a In

common If and only If a Is a root of f of multiplicity

greater than 1.

If f and f ' have a root a In common then the

irreducible polynomial In F having a as root divides

both f and f f. Conversely, any root of a factor common

to both f and f f is a root of f and f '.

Corollary. If F is a field of characteristic 0 then

each irreducible polynomial in F Is separable.

Suppose to the contrary that the Irreducible poly-

nomial f(x) has a root a of multiplicity greater than 1.

Then, f v(x) la a polynomial which Is not identically
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zero (its leading coefficient is a multiple of the lead-

ing coefficient of f(x) and is not zero since the char-

acteristic is 0) and of degree 1 less than the degree

of f(x). But a is also a root of ff(x) which contra-

dicts the irreduciblllty of f(x).

I. Roots of Unity.

If F is a field having characteristic p, and E the

splitting field of the polynomial xn - 1 where p does not

divide n, then we shall refer to E as the field generated out

of P by the adjunction of a ̂ primitive nto root of unity.

The polynomial xn - 1 does not have repeated roots in

E, since its derivative, nx*1"1, has only the root 0 and has,

therefore, no roots in common with xn - 1. Thus, E is a nor-

mal extension of F. If ei»e2'***'en are the roots of xn - 1

in E, they form a group under multiplication and by Theorem 17

this group will be cyclic. If l,e,e2, ...,en-1 are the elements

of the group, we shall call e a primitive n^1 root of unity.

The smallest power of e which is 1 is the nth.

THEOREM 19. If E is the field generated from F by a

primitive nth root of unity, then the group G of E over F it

abelian for any n and cyclic if n la a prime number.

We have E * F(e), since the roots of xn - 1 are

powers of e. Thus, if a and ? are distinct elements

of 0, o(e) f *(e). But o(e) is a root of xn - 1

and, hence, a power of e. Thus, 0(e) = e1*0 where

n0 is an integer 1 * no < n. Moreover,



45

To(e) - T(en°) - (T(e))n* - en* * n° - OT(C). Thus,

nOT 2 nonT mod n. Thus, the mapping of o on no is a

homomorphism of 0 into a multiplicative subgroup of the

integers mod n. Since t f o implies t(e) jf o(e),

it follows that T / o implies no / nT mod n. Hence,

the homomorphism is an isomorphism. If n is a prime

number, the multiplicative group of numbers forms a cyc-

lic group.

J« Noether Equations*

If E is a field, and G * (ot ?*•••) a group of auto-

morphisms of E, any set of elements xo ,XT ,... in E will be

said to provide a solution to Noether's equations if

*0 * c(*t) * XOY ?or each o and ? in G. If one element

xo * 0 then XT « 0 for each T e G. As T traces G, or assumes

all values in G, and in the above equation x^ « 0 when xo « 0*

Thus, in any solution of the Noether equations no element

x » 0 unless the solution is completely trivial. We shall as-

sume in the sequel that the trivial solution has been

excluded.

THEOREM 20. The system xo,x̂ ,... is a solution to

Noether fs equations if and only if there exists an element a In

E, such that xfl « q/o (a) for each o .

For any a, it is clear that xo » a/a (a) is a solu-

tion to the equations, since

0/0 (a)» o(a/T (a)) » a/a (a)» o(a)/OT(a) * a/or (a). .

Conversely, let x̂ x̂ ,... be a non-trivial solution.

Since the automorphisms o,?f... are distinct they are

linearly independent, and the equation
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xa«o(z) * x^tCz) +... = 0 does not hold Identically*

Hence, there Is an element a in £ such that

*oo(a) * xTT(a) + ... « a / 0. Applying o to a gives

o(a) • 2 0<xT)«<rt(a).

Multiplying by XQ gives

x •o(a) • 20

Replacing xa«o(xT) by x(rr and noting that OT assumes

all values in 0 when t does, we have

x0«o(a) • 2 xyrfa) « a0

so that

x0 » a/o(a).

A solution to the No ether equations defines a mapping C

of Q into B, namely C(o) » XQ. If F is the fixed field of

0, and the elements xo lie in P, then C Is a character of Q.

For C(<n:) • x^ » x0»o(xc) «• x̂ ,̂  • C(O)»C(T) since

oCx^) • x^ if x̂ eF. Conversely, each character C of G in F

provides a solution to the No ether equations. Call C(o) = x0.

Then, since x̂ eP, we have ofx^) = XT. Thus,

Xp^otx^) » XO*XT
 a C(O)»C(T) = C(or) * XOT . We therefore

have, by combining this with Theorem 19,

THEOREM 81. If Q Is the group of the normal field B

over F, then for each character C of Q into F there exists an

element a in E such that C(o) = a/o(a) and, conversely, if

q/o(q) is in F for each a , then C(o) = a/a (a) is a character

of Q. If r is the least common multiple of the orders of

elements of Q, then areF.

We have already shown all but the last sentence of

Theorem 21. To prove this we need only show o(ar) = ar
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for each oe(K But ar/o (ar) - (a/o(a))P » ( C (o))r

" C (a r) » C ( I ) « 1.

K. Rummer1 a Fields.

If F contains a primitive n* root of unity, any split-

ting field E of a polynomial (x* - â U* - ag) ... (X* - a,.)

where â eF for 1 = 1,2,...,r will be called a Rummer exten-

sion of F, or more briefly, a Rummer field.

If a field F contains a primitive n root of unity, the

number n is not divisible by the characteristic Of F. Suppose,

to the contrary, F has characteristic p and n » qp. Then

yP . i » (y . 1)P since in the expansion of (y - l)p each co-

efficient other than the first and last is divisible by p and

therefore Is a multiple of the p-fold of the unit of F and

thus is equal to 0. Therefore x11 - 1 - (x*)p - 1 « (xq - l)p

and x11 - 1 cannot have more than q distinct roots* But we as-

sumed that F has a primitive n root of unity and

l,e,e2,...,en-1 would be n distinct roots of xn - 1. It fol-

lows that n is not divisible by the characteristic of P. For

a Kummer field E, none of the factors xn - a., a. ̂  0 has

repeated roots since the derivative, nx*1"1, has only the root

0 and has therefore no roots in common with x11 - a^. There-

fore, the irreducible factors of xn - â  are separable, so that

E is a normal extension of P*

Let ct£ be a root of x*1 - â  in E. If *]»*o'*"'en are

the n distinct n roots of unity in F, then

aicl»aie2'*"'aien wil1 be n dlfltinct roots of x31 - a^, and

hence will be the roots of x11 - â , so that E-FfcL̂ Gu,.. .*, a )•
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Let o and ? be two automorphisms In the group Q of E over i*.

For each a^, both a and T nap a. on some other root of

xn - a^. Thus, fCo^) * CIT a± and
 0(O • eio*

ai

e. and e. are n**1 root a of unity In the basic field P. It

follows that *( aCc^)) « T (ê â ) • ̂ (̂ĉ ) « eloclTat
88 o ( T (a,). Since o and T are comnrutative over the generat-

ors of E, they commute over each element of £• Hence, 6 is

commutative. If aeO, then o (a. ) » ej0ai» ° (<4.) " e* 2<** *
"nl H4etc. Thus, o (o. ) • a^ for n^ such that « ô

 1 " 1* Since

the order of an 11th root of unity is a divisor of n, we have

n^ a divisor of n and the least common multiple m of

n1, n g, ..., n r is a divisor of n. Since om(ai) « a^ for

1 « 1,2, ...,r It follows that m is the order of o • Hence,

the order of each element of 0 is a divisor of n and, there-

fore, the least common multiple r of the orders of the elem-

ents of 0 Is a divisor of n. If e is a primitive XL*** root of

unity, then e*̂  Is a primitive r***1 root of unity. These re-

marks can be summarized In the following

THEOREM 22. If E is a Summer field, i.e., a splitting

field of p(x) - (3̂  - ŝ HaP - **)... (jp - at)f where a± lie

in P, and P contains a primitive nto root of unity, then: (a)

B is a normal extension of P, (b) the group G of E over P is

abelian, (e) the least common multiple of the orders of the

elements of 0 is a divisor of n.

Corollary; If E is the splitting field of x̂  «• a, and

F contains a primitive pto root of unity where p is a

prime number, then either E » P and a? - a is split in

p, or xp - a Is irreducible and the group of B over P
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. la cyclio of order p*

The .order of each element of a is, by Theorem 22, a

divisor of p md, henoe, if the elonent is not the unit

its order must be p. If a is a root of xP - a, then

<x,ea,.,.fe*"
1« are all the roots of xp - a so that

P(a) * B and (BA) < P* Hence, the order of 0 does not

exceed p so that if G has one element different from the

unit, it and its powers mat constitute all of 0. Since

0 has p distinct elements and their behavior is deter*

mined by their effect on a, then a oust have p distinct

Images. Hence, the Irreducible equation in F for a mist

be of degree p and is therefore xp - a « 0.

The properties (a), (b) and (e) in Theorem 22 actu-

ally characterise Rummer fields*

Let us suppose that E is a normal extension of a

field F, whose group 0 over F Is abelian. Let us further

assume that if the least common multiple of the orders of

elements of 0 is r, then F contains a primitive rth root of

unity*

The group of characters X of 0 into the group of rth

roots of unity is isomorphic to 0. Moreover, to each oeG,

If o f 1, there exists a character CeX such that C(o) jf 1.

Let A denote the set of those non-zero elements a of

B for which arcP and let F. denote the non-iero elements of

F. It is obvious that A is a multiplicative group and that

P1 is a subgroup of A. Let Ar denote the set of rto powers

of elements in A and Fr the set of rth powers of elements
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of P.. The following theorem provides In most applications

a convenient method for computing the group G.

THEOREM 23. The factor groups (A/P.) and (A*/Pj) are

isonorphic to each other and to the groups (I and X.

We nap A on Ar by making aeA correspond to areAP. If

areF*, where aeP1 then beA Is napped on a
r If and only If

br » ar, that is, if b Is a solution to the equation

atp - ap » 0. But a, ea, e2a,..., e'̂ a are distinct solu-

tions to this equation and since e and a belong to P.,

It follows that b must be one of these elements and must

belong to P̂ . Thus, the inverse set in A of the sub-

group F* of A* Is Plf so that the factor groups (A/5?,)

and (Ar/F*) are isonorphie.

If a is an element of A, then (a/o (a))P» aT/o(a*)**l.

Hence, a/o (a) is an r**1 root of unity and lies in P̂ . Bjr

Theorem 21, a/o (a) defines a character C (o) of 0 in P.

We nap a on the corresponding character C* Each char-

acter C is by Theorem 21, image of some a. Moreover,

a«af is mapped on the character C(o) « a«af/o(a«av) m

a*af/o (a)« o(av) » C(o)* C'(o) » C«Cf(o), so that

the mapping la a homomorphlsm. The kernel of this hono-

morphism is the set of those elements a Tor which

a/o (a) ** 1 for each o , hence is F̂ . It follows*there*

fore, that (A/P1) is Isomorphlc to X and hence also to

0. In particular, (A/P,) is a finite group.

We now prove the equivalence between Kunmter fields

and fields satisfying (a), (b) and (c) of Theorem 22.
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THEOREM 24. If B la an extension field over F, then E

is a Kammer field if anft only if B is nonaal, its group 0 la

abelian and F contains a primitive r root e of unity where r

is the least common multiple of the orders of the elements of Q»

The necessity Is already contained in Theorem 22. We

prove the sufficiency* Oat of the group A, let

ftl'l'tg^l* • ••f«t*1t* the cosets of F^ Since â eA, we

have aj - â eF • Thus, aJL is a root of the equation

xp - â  « 0 and since eâ e â , ••.,€*"" â  are also roots,

xr - a, «ust split in E. We prove that B is the split*

ting field of (x* - a^Mx* - ag)...(xp - at) which wiU

complete the proof of the Theorem. To this end it suf-

fices to show that F{ a. ,Og, •••»a.) * E*

Suppose that P(o1,a2,...,ot) / B. Then Pfĉ ,...,̂ )

is an inteznediate field between F snd E, end since B is

noznal over F(a,, ••*̂ â ) there exists an automorphism

oeO, ô  1, which leaves F(a^»»««fa^) fixed. There exists

a character C of 0 for which C(o) ̂  1. Finally, there

exists an element a in B such that C(o) • a/o (a) ̂  1.

But avsF. by Theorem 21, hence aeA* Moreover,

A e F(cu, •••,at) since all the oosets ajF̂  are contained

in F(ctĵ  ..*,at). Since Pt̂ , ...,at) is by assumption

left fixed by o , o (a) « a which contradicts o/o

It follows, therefore, that Pfĉ , ...,at) » B.

xf B is a nor*̂ ! extenffion of F« of r*1

order p. ftn<^ if F contains a primitive p root of jwt^

then B is splitting field of an irreducible polynomial

x* • a in F.
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B is generated by elements a,,,..,a where a? e P.i n *
Let a. be not In F. Then xp - a is Irreducible, for

otherwise F(ou) would be an intermediate field between F

and B of degree less than p, and by the product theorem

for the degrees, p would not be a prime number, contrary

to assumption. B • Ffô ) is the splitting field of xP -a.

L. Simple Extensions.

We consider the question of determining under what condi-

tions an extension field is generated by a single element,

called a primitive. We prove the following

THEOREM 25. A finite extension B of F is primitive over

F if and only if there are only a finite number of intermediate

fields*

(a) Let B = F(a) and call f(x) « 0 the Irreducible

equation for a in F. Let B be an intermediate field

and g(x) the irreducible equation for a in B . The

coefficients of g(x) adjoined to F will generate a field

B9 between F and B. g(x) is irreducible in B ,

hence also In B1. Since B « Bf(a) we see (B/B)»(̂ Bf).

This proves B f » B . So B is uniquely determined by

the polynomial g(x). But g(x) is a divisor of f(x),

and there are only a finite number of possible divisors

of f(x) in B. Hence there are only a finite number of

possible Bfs.

(b) Assume there are only a finite number of fields

between B and F. Should F consist only of a finite number

of elements, then B Is generated by one element according

to the Corollary on page 41. We may therefore assume F to
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contain an Infinity of elements. We prove: To any two

elements a,p there is a y in E such that F(a,p) » P(r).

Let 7 » a + ap with a in F but for tiie moment undetermined.

Consider all the fields F(r) obtained in this way. Since

we have an infinity of affs at our disposal, we can find

two, say a1 and ag, such that the corresponding 7
fs,

71 » a + s^p and rg • a + agp, yield the same field

(̂7̂ ) * pt7g)- Since both 7̂  and 72 are in F̂ ), their

difference (and therefore p) is in tills field. Con-

sequently also r± - *iP * «• So F(«,p) c F̂ ). Since

F(7̂ ) c F(a,p) our contention is proved. Select now T)

in E in such a way that (F(i))/F) is as large as possible.

Every element e of E must be in F(TJ) or else we could

find an element 6 such that F(0) contains both t) and e.

This proves E * F(TJ).

THEOREM 86. If E » Ff̂ ôtg,...,fl̂ ) is a finite extension

of the field F, and â ag, •••*% are separable elements in E,

then there exists a primitive 0 in B such that B « F(3).

Proofs Let f̂ (x) be the irreducible equation of

a^ in F and let B be an extension of E that splits

f^lxifgCxKt.f^x). Then B is normal over F and con-

tains, therefore, only a finite number of intermediate

fields (as many as there are subgroups of G). So the sub-

field E contains only a finite number of Intermediate

fields. Theorem 25 now completes the proof.

M. Existence of a Normal Basis.

The following theorem is true for any field though we

prove it only in the case that F contains an infinity of elements,
THEOREM 27. If E Is a normal extension of F and

are the elements of Its group Q, there is an element
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0 in B auch that the n elements o.(0), <J2(9) * •"' °n̂ ^ are

linearly independent with respect to P.

According to Theorem 26 there is an a such that

B * F(a). Let f(x) be the equation for a, put a(o)«a

g1(x) is a polynomial in B having OL as root for k ̂  i

and hence

(1) g1(x) gfe(x) m 0 (mod f(x)) f or i f k .

In the equation

(2) gx(x) + g2U) * ••• + gn(x) - 1 - 0

the left side is of degree at most n - 1. If (2) is true

for n different values of x, the left side must be iden-

tically 0. Such n values are a-̂ ag, ...an , since

g1(a1) - 1 and gĵ ) - 0 for k ̂  1.

Multiplying (2) by ĝ x) and using (1) shows:

(3) ( gl(x))
2 s gl(x) (mod fU».

We next compute the determinant

(4) D(x) » |o1ok(g(x))| i,k - 1,2,. ..,n

and prove D(x)̂ 0« If we square It by multiplying column

by column and compute its value (mod f(x)) we get from

(1), (2), (3) a determinant that has 1 in the diagonal

and 0 elsewhere. So

(D(x))2al (modf(x)).

D(x) can have only a finite number of roots in F.

Avoiding them we can- find a value a for x such that

D(a) f 0. Now set 0 » g(a). Then the determinant

(5) | O O C O > | t 0 •
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Consider any linear relation

x^Ogtd) •§• ... * *n0n(0) " 0 where the x± are In

F. Applying the automorphism o^ to It would lead to n

homogeneous equations for the n unknowns x̂ . (5) shows

that x^ = 0 and our theorem Is proved.

N. Theorem of Natural Rationality.

Let F be a field, p(x) a polynomial in F whose irredu-

cible factors are separable, and let B be a splitting field for

p(x). Let B be an arbitrary extension of F, and let us denote

by BB the splitting field of p(x) when p(x) Is taken to lie

In B . If <£«,•••, a are the roots of p(x) In EB, then

F(ou*«..,a ) Is a subfield of EB which Is readily seen to

form a splitting field for p(x) in F. By Theorem 10, E and

F(<x,,...,a ) are isomorphlc. There Is therefore no loss of

generality If in the sequel we take E = F(a., . ..,a ) and assume

therefore that E is a subfield of EB. Also EB » B(â f . ••>a8).

Let us denote by E n B the intersection of E and B .

It Is readily seen that E rt B is a field and is intermediate

to F and E.

28. If Q is the group of automorphisms of E

over F« and H the group of E B over B, then H is Isomorphic to

the subgroup of Q having B n B as Its fixed field.

Each automorphism of E B over B simply permutes

â , ...fa8 in some fashion and leaves B , and hence also P,

fixed. Since the elements of EB are quotients of

polynomial expressions In a1,...,ag with coefficients in

B, the automorphism is completely determined by the

permutation It effects on a1,...,afl. Thus, each
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automorphism of EB over B defines an automorphism of

E * F(â ,...,a8) which leaves F fixed. Distinct automor-

phisms, since c^, ...,<xs belong to E, have different ef-

fects on E. Thus, the group H of EB over B can be con*

sidered as a subgroup of the group 0 of S over F. Each

element of H leaves E n B fixed since It leaves even all

of B fixed. However, any element of E which is not in

B n B is not in B , and hence would be moved by at least

one automorphism of H* It follows that E n B is the

fixed field of H.

Corollary: If. under the conditions of Theorem 28. the

group Q is of prime order, then either H • G or H con-

sists of the unit element alone.

Remark* The inductions in the proofs of Theorems 10

and 15 may be based on the number n of roots of the polynomial

which are in the extension but not in the given field. This

relieves the proofs of their dependence on Theorem 6, and also

simplifies them.


