
VI OUTLINE OF A GENERAL THEORY OF STATISTICAL INFERENCE

The theories of Fisher, Newman and Pearson are restricted

In two respects. First, they consider only the problem of

testing a hypothesis and that of estimation by point or In-

terval. The second restriction Is that only the case In which

-f\.ls a k-parameter family of distribution functions Is In-

vestigated. Both restrictions are serious from the point of

view of applications.

There are many Important statistical problems which are

neither problems of testing a hypothesis, nor problems of es-

timation. We have already given such an example In Section 1.

As a further Illustration, let us consider the following cases

Let X^f •••fXp be p Independently and noimally distributed ran-

dom variables with unit variances and unknown means ê ,...ep.

Furthermore, let Ml'-'̂ in be n Independent observations on

X̂ (l » 1,2,...,p). Suppose we test the hypothesis that

Q̂  =s ... a 0p = o, and decide to reject this hypothesis on the

basis of the pn observations *la(a = l,2,...,n; 1 • l,2,...,p).

In such cases we are usually Interested In knowing which mean

values are not zero, i.e.,we wish to subdivide the set of p

mean values Ô ...̂ - Into two subsets, such that one of them

contains the mean values which are zero and the other the mean

values which are not zero. This subdivision has to be done, of

course, on the basis of the pn observations xifl. More pre-

cisely, we have to deal with the following statistical problems

There exist 2P different subsets of the set (9̂ ,«*f,0p). De-

note these subsets by ĉ ,...,«2p, respectively. Let Ĥ
37
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(k = 1,...,2P) be the hypothesis that the mean values contained

in the set (dfe are equal to zero and all other mean values are

unequal to zero. On the basis of the pn observations we have

to decide which hypothesis Hk from the set of the 2
P possible

hypotheses should be accepted. This problem cannot be con-

sidered as a problem of testing a hypothesis nor a problem of

estimation.

A similar problem arises if we wish to classify a set of

regression coefficients into the class of non-zero and the

class of zero regression coefficients. In- problems of regres-

sion we often take it for granted that the regression in ques-

tion is a polynomial and we have to determine on the basis of

the observations the degree of the polynomial to be fitted*

That is to say, we have to decide on the basis of the observa-

tions which hypothesis of the sequence of hypotheses

%f Hg, Eg,..., Hn,... should be accepted. The symbol Hn

(n = 1,2,...) denotes the hypothesis that the regression is a

polynomial of n-th degree. These examples illustrate suffici-

ently the necessity of the extension of the theory of statis-

tical inference to the general case as formulated in Section 1.

The case in whichilcannot be represented as a k-parameter

family of distribution functions is quite important. As an

illustration, consider the following problems Let (x1,y1),...

(xn9yn) be n independent pairs of observations on a pair (X,Y)

of random variables. Suppose we wish to test the hypothesis

that X and Y are Independently distributed and we do not have

any a priori knowledge about the Joint distribution of X and Y.

In this case .A. consists of all distribution functions
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,xn9yn) which can be written In the form

where J may be an arbitrary function* The subclass o> consists

of all distribution functions Flx^y^, •.•,*,!, yn) which can be

written In the fora

Hence, £L cannot be represented as a k- parameter family of

functions.

The problem given above as an Illustration has been treat-

ed by H* Ho tell Ing and Margaret Pabst (see reference 8)» An-

other problem, where .TX Is the class of all continuous distri-

butions, has been considered In paper (see reference 21). We

shall give here an outline of a theory of statistical Inference

dealing with the following general problem1 ' s,

Let X1,«..,Xn be a set of n random variables. It Is know

that the Joint probability distribution function F(x̂ f • ••fxn)

of X̂ ,...9Xn Is an element of a certain class JT. of distribu-

tion functions. Let 8 be a system of subclasses of JCX. For

each element co of S denote by H^ the hypothesis that the true

distribution Fjx̂ ,...,̂ ) of Xi,...,Xn Is an element of <*>.

Denote by Eg the system of all hypotheses corresponding to all

elements of 8. Let ẑ  be the observed value of X̂  (l=l,...,n).

We have to decide by means of the observed sample point

En = (*!,.,. ,*,>) which hypothesis of the system HS of hypo*

theses should be accepted. That Is to say, for each hypothesis

HU we have to determine a region of acceptance MO> In the n-

dlmenslonal sample space. The hypothesis Hw will be accepted

11) This theory has been developed In reference 16
for the case thatjfULs a k-parameter family
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If and only if the sample point falls in the region Mw. The

regions Mw and Mw»
 are, of course, disjoint for w ̂  w1. Fur-

thermore , 2 ttw is equal to the whole sample space. The statis-
u> w

tical problem is that of the proper choice of the system Kg of

the regions o£ acceptance*

The choice of the system Mg of regions of acceptance is

equivalent to the choice of a function w(En) defined over all

points En of the sample space. The value of the function

6)(£n) is an element of S determined as follows: Since the ele-

ments of Mo are disjoint and since 2 MM is equal to the whole0 w ui

sample space, for each point £n'there exists exactly one ele-

ment to of S such that En is contained in Mw. The value of the

function to(En) is that element to of S for which En is an ele-

ment of MQJ. Hence, we can replace Mg by the function to(En)

and for each sample point En we decide to accept the hypothesis

Hw(En). We will call w(En) the statistical decision function.

Hence, the statistical problem jls that of choosing the statis-

tical decision function Q)(En) •

The choice of w(En) will essentially be affected by the

relative Importance of the different possible errors we may

commit. We commit an error whenever we accept a hypothesis Hw

and the true distribution is not an element of to. We introduce

a weight function for the possible errors. The weight function

w[F,ciQ is a real valued non-negative function defined for all

elements F of _/i_ and all elements to of S, expressing the re-

lative importance of the error committed by accepting Hw when

F is true. If F is an element of w then w[P,o)] = 0, otherwise

w[~F,arj>0. The question as to how the form of the weight func-

tion W[F,CI>J| should be chosen is not a mathematical nor statistical
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one. The statistician who wants to test certain hypotheses

must first detexmlne the relative Importance of all possible

errors end this will depend on the special purposes of his in-

vestigation. If this is done, we shall in general be able to

give a more satisfactory answer to the question as to how the

statistical decision function should be chosen. In many cases,

especially In statistical questions concerning Industrial pro-

duction, we are able to express the Importance of an error in

monetary terms, that is, we can express the loss caused by the

error considered In terms of money. We shall also say that

w QP,W] is the loss caused by accepting Hw when F Is true*

Suppose that we make our decisions according to a statis-

tical decision function w(En), and that the true distribution

is the element F(xi,...,xn) ofjf2_« Then the expected value of

the loss is obviously given by the Stleltjes integral

(5) fw[F..

whe,ije the integration is to be taken over the whole sample space

Mn. We shall call the expression (5) the risk of accepting a

false hypothesis when F is the true distribution function.

Since we do not know the true distribution F we shall have to

study the risk r£p] as a function of F. We shall call this

function the risk function. Hence, the risk function is defined

over all elements F of j\_. The form of the risk function de-

pends on the statistical decision function w(En) and on the

weight function W£F,«] . in order to express tills fact, we

shall denote the risk function associated with the statistical

decision function w(En) and the weight function wjjp,<iT]al8o by
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We Introduce the following definitions:

Definition 1. Denote by w(En) and w»(En) two statistical

decision functions for the same system Hg of hypotheses. We

shall say that w(En) and w
! (En) are equivalent relative to the

weight w{Ff«] If the risk function r̂ p|w(En), wQF,oT]j

Is Identically equal to the risk function r [p|w'(En),w[p,w]j

l.e.j for any element F of A we have

Definition 2. Denote by w(En) and w»(En) two statistical

decision functions for the same system % of hypotheses. We

shall say that co(En) la tmifogmiy batter than w'(En) relative

to the weight function w(p,w}if w(En) and w
f(En) are not equiva-

lent and for each element F of A we have

*/FM%), w[Ffw] J * r /Flu'CBn;, w[F,w]\ .

Definition 5. A statistical decision function w(En) Is

said to be admissible relative to the weight function w[p,w]

If no unlfonily better statistical decision function exists re*

latlve to the weight function considered*

First principle for the choice of the statistical decision

function* We choose a statistical decision function which Is

admissible relative to the weight function considered.

There can scarcely be given any argument against the ac-

ceptance of the above principle for the selection of «(En).

However, this principle does not lead In general to a unique

solution. There exist In general many admissible statistical

decision functions. We need a second principle for the choice

of a best adnlsslble decision function.
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The choice between two adnissible decision functions w(En)

and «• (En) may be affected by the degree of our a priori con*

f idenee *in the truth of the different elements of TV. * Suppose,
•\

for instance, that for a certain element F̂  of ./X we have

for another element F2 of JT1 we have

r{p2lw(ln.),wjp,§) > r {F2|«'(En),w[F,tt]j

and for any other element P ̂  P^, ̂  F2 we have

r ̂ Fltt(En),w(j',ttlJ - r /Flw'tlnhwCF,^ .

If we have much greater a priori confidence in the truth of PI

than in that of Fg, we will probably prefer ca(En) to w«(En).

On the other hand, if we think a priori that F2 Is more likely

to be true than F^, we may prefer wf(En) to u>(En).

Suppose we can express our a priori degree of confidence

by a non-negative additive set function p(t)) defined over a cer-

tain system of subsets TJ of Jl , where ptAj * !• That is to say

the value of p( tj) expresses the degree of our a priori belief

that the true distribution is an element of the subset T). In

such a case it seems very reasonable to consider a decision

function w*Ha) as "best" if the value of the Integral

£ r{F|«(En), w [>*«]} <*P

becomes a minimum for w(En) = «*(En). That is, we consider a

decision function ca*tln) as
 wbestn if it minimizes a certain

weighted average of the risk function.

However, it is doubtful that a set function expressing our

a priori degree of belief can meaningfully be constructed*

Therefore, we prefer to formulate the notion of a "best" dec-

ision function independently of such considerations.
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Denote by r <w(En), w) F,w]j the least upper bound of

|P|w(En), wj]p,(̂\ with respect to P, where P may be any ele-r

ment of JHL-*

Definition 4* A decision function to*(En) Is said to be a

"best*1 decision function If r/w(En), w[jF,w]J becomes a mini-

mum for w(En) » co*(Bn). (The weight function
 W[K*3] i» con-

sidered fixed.)

This definition of a "best" decision function seems to be

a very reasonable one, although it Is not the only possible one*

One could reasonably define a decision function as "best" if It

minimizes a certain weighted average of the risk function.

However, there are certain properties of the "best" decision

function according to definition 4, which seem to Justify the

use of that definition. One of the most Important properties

of a "best11 decision function In the sense of definition 4 is

that the risk function Is a constant, i.e., it has the same

value for all elements P of̂ L. This has been shown In the

case that.TV.i8 a k-parameter family of distributions, and the

weight function w[p,w|and the distribution functions F satisfy

certain restrictive conditions. The constancy of the risk func-

tion seems to be very desirable from the point of view of appli-

cations since this property makes it possible to evaluate the

exact magnitude of the risk associated with the statistical de-

cision. In the theory of confidence Intervals the confidence

coefficient, a, i.e., the probability that the confidence In-

terval will cover the unknown parameter, is Independent of the

value of the unknown parameter. This fact, which is considered

to be of basic importance In the theory of interval-estimation,
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is analogous to the constancy of the risk function In our gen-

eral theory since 1-a can be considered In a certain sense as

the risk associated with the Interval estimation. (The quantity

1-a Is exactly equal to the risk In the sense of our definition,

if the weight function takes only the values 0 and 1.)

Finally, I should like to make some remarks about the re-

lationship of the general theory as outlined here, to the parti-

cular theory of unlfonnly most powerful and asymptotically most

powerful tests which were discussed before. In the case of

testing the simple hypothesis that the unknown distribution

Ftx̂ ...,̂ ) is equal to a particular distribution Fo(x̂ , ...Xj}),

the system 8 of subsets of ..fL consists only of two elements ŵ

and ug where oxj. contains the single element Fo and wg is the

complement of ŵ  in/X. Hence, the decision function <*>(En) can

assume merely the values w^ and og* Let H^ be the subnet of

the sample space consisting of the points ̂  for which w(En)=wi

and let tt^ be the set of points En for which u(ln)*cd2» The

set Hffe is the complement of He*. In the sample space. Obviously

the set W- is the critical region, in the sense of the Neyman-

Pearson theory. It Is easy to see that if for any a(0<a<l) a

uniformly best critical region of alee a for testing F • Fo

exists, then for any arbitrary weight function and for any

admissible (see definition 5) decision function w(En), the set

H«2 will be a unlfonnly best critical region. In particular, the

set Hjfe corresponding to the "best" decision function (see def-

inition 4) ŵ ll be a uniformly best critical region. Hence, the

form of the weight function affects merely the size of the re*

gion Ĥ  associated with the "beat" decision function w(En),
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but It will always be a uniformly beat critical region in the

aenae of the Neyman-Pearson theory. Similar conaiderationa

hold concerning asymptotically moat powerful tests. Let the

sequence {wn} (n=l,2,..,,ad inf.) of critical regions be an as*

jmptotically moat powerful teat for testing the simple hypothe-

sis F » Fo. Then for sufficiently large n the region Wn la

practically a uniformly beat critical region and, therefore, It

will be an excellent approximation to the region which la "beat11

In the aenae of definition 4 irrespective of the ahape of the *

weight function of errors.

As we have seen, for building up a general theory of

statistical inference, the following three steps have to be

made!

1. Formulation of the general problem of statistical

inference.

2. Definition of the "beat* procedure for making sta-

tistical decisions, i.e., definition of the "beat11

statistical deolaion function.

5. Solution of the mathematical problem of calculating

the "beat19 statistical decialon function.

The problem of statistical Inference, as we have formulated

it here,seems to be sufficiently broad to cover the problema in

practical applications. The aeoond atep will always be, to a

certain extent, arbitrary. The definition of "beat11 decialon

function given here seems to be a satisfactory one. Moreover,

under certain restrictive conditions it has the Important prop-

erty that the rlak function aaaoclated with the "beat" deciaion

function la constant, I.e., It has the same value for all ele-

ments of_Tl_. However, there may be other deflnitiona of a
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"beat" decision function worth Investigating. Decision func-

tions which minimise a certain average of the risk function may

be of special Interest. Concerning step 3, there are many

mathematical problems as yet unsolved.


