
Notre Dame Journal of Formal Logic
Volume 54, Number 2, 2013

General Models and Entailment Semantics for
Independence Logic

Pietro Galliani

Abstract We develop a semantics for independence logic with respect to what
we will call general models. We then introduce a simpler entailment semantics
for the same logic, and we reduce the validity problem in the former to the va-
lidity problem in the latter. Then we build a proof system for independence logic
and prove its soundness and completeness with respect to entailment semantics.

1 Introduction

Logics of imperfect information are extensions of first-order logic (or, sometimes, of
other logics; see, e.g., Tulenheimo [15] and Väänänen [18]) which allow us to reason
about patterns of dependence and independence between variables.

Historically, the earliest such logic was branching quantifier logic (see Henkin
[7]), which adds to the language of first-order logic branching quantifiers such as�

8x 9y

8z 9w

�
'.x; y; z; w/;

whose interpretation, informally speaking, states that the choice of y is not dependent
on the choice of z and the choice of w is not dependent on the choice of x. A signif-
icant breakthrough in the study of this class of logics occurred with the development
of independence-friendly logic (see Hintikka and Sandu [8]).

1. The syntax of branching quantifier logic was significantly simplified, doing
away with complex structures of quantifiers such as the above one and intro-
ducing instead slashed quantifiers .9x=W /', whose informal interpretation
is “there exists an x, not dependent on any variables in W , such that '”.

2. The game-theoretic semantics of logics of imperfect information was defined
formally, and its properties were examined in detail.
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These developments made it possible to define, in Hodges [9], a compositional se-
mantics for independence-friendly logic which is equivalent to its game-theoretic se-
mantics modulo the axiom of choice. This semantics, called team semantics or trump
semantics, differs from Tarski’s semantics for first-order logic in that the satisfac-
tion relation is predicated not over single assignments but over sets of assignments1
(which we will henceforth call teams, after the terminology of Väänänen [16]).

This alternative semantics provided one of the main impulses toward the develop-
ment of dependence logic (see [16]), which separates the notion of dependence and
independence from the notion of quantification by doing away with slashed quanti-
fiers and introducing instead dependence atoms of the form D .t1; : : : ; tn/, where
t1; : : : ; tn are terms, which are satisfied by a team X if and only if the value of tn is a
function of the values of t1 : : : tn�1 in it. This—only at first sight minor—innovation
led to a number of significant advances in the study of the properties of logics of
imperfect information and, in particular, of their model theory; apart from the afore-
mentioned [16], we can refer here for example to the results of (Juha) Kontinen and
Väänänen [11] and (Jarmo) Kontinen [10].

Furthermore, a recent direction of research in the field of logics of imperfect in-
formation consists in the study of the model-theoretical properties of variants of de-
pendence logic obtained by substituting the dependence atoms with other kinds of
non-first-order atomic formulas. The earliest work along these lines was done by
Grädel and Väänänen [5], whose independence logic is equivalent to dependence
logic on the level of sentences (but expressively stronger on the level of formulas and
definability of classes of teams) and will be the main logical formalism examined
in the rest of this work; furthermore, we have multivalued dependence logic from
Engström [3] and inclusion logic and exclusion logic from Galliani [4].2

One property common to all these papers is that they are essentially concerned
only with the semantics of logics of imperfect information and its model-theoretic
properties. The corresponding proof theories, instead, are still relatively undevel-
oped. Nurmi’s Ph.D. thesis [14] discusses a proof system for a fragment of depen-
dence logic, but without proving its completeness, and the recent article by Kontinen
and Väänänen [12] presents a sound and complete deduction system for extracting
the first-order consequences of a dependence-logic theory; however, due to the equiv-
alence between dependence logic and existential second-order logic there exists no
hope of finding a sound and complete proof system for dependence logic or inde-
pendence logic with respect to their standard semantics. The present paper, drawing
inspiration from Henkin’s treatment of second-order logic (see [6]) and from the
analysis of branching quantifiers of López-Escobar [13], may be seen as a different
approach to the study of the proof theories of logics of imperfect information: instead
of restricting our language, we will weaken the semantics and consider a more gen-
eral class of models, and then we will develop a proof system capable of extracting
all valid formulas for this new semantics.

2 Independence Logic

In this section, we will briefly recall the syntax and the semantics of independence
logic, plus a few of its basic properties. It can be safely skipped by anyone who is
already familiar with the results of [5].
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As is often done in the field of logics of imperfect information, we will assume
that our expressions are always in negation normal form.

Definition 2.1 (Syntax) Let† be a first-order signature. Then the set NNF† of the
negation normal form formulas of our logic is the smallest set such that the following
hold:

NNF-lit: If ' is a first-order literal over the signature †, then ' 2 NNF†.
NNF-ind: If Et1, Et2, and Et3 are tuples of terms with signature †, then Et2?Et1 Et3 is

in NNF†.
NNF-_: If ' and  are in NNF†, then .' _  / is also in NNF†.3
NNF-^: If ' and  are in NNF†, then .' ^  / is also in NNF†.
NNF-9: If ' is in NNF† and x is a variable, then 9x' is in NNF†.
NNF-8: If ' is in NNF† and x is a variable, then 8x' is in NNF†.

The set Free.'/ of the free variables of a formula ' is defined similarly to the case
of first-order logic.

Definition 2.2 (Free variables) Let † be a first-order signature, and let ' 2
NNF†. Then the set Free.'/ of the free variables of ' is defined by structural induc-
tion on ' as follows:

Free-lit: If ' is a first-order literal, then Free.'/ is the set of all variables occur-
ring in '.

Free-ind: If ' is Et2?Et1 Et3, then Free.'/ is the set of all variables occurring in Et1,
Et2, or Et3.

Free-_: If ' is  _ � for some formulas  ; � 2 NNF†, then Free.'/ is
Free. / [ Free.�/.

Free-^: If ' is  ^ � for some formulas  ; � 2 NNF†, then Free.'/ is
Free. / [ Free.�/.

Free-9: If ' is 9x for some variable x and some  2 NNF†, then Free.'/ D
Free. /n¹xº.

Free-8: If ' is 8x for some variable x and some  2 NNF†, then
Free.'/ D Free. /n¹xº.

The following definition is standard.

Definition 2.3 (Team) Let V be a finite set of variables, and letM be a first-order
model. A team over M with domain V is a set of first-order assignments over M
with domain V .

The next definition will be useful to give the semantics for the “lax” (in the sense of
[4]) version of the existential quantifier that we will use.

Definition 2.4 (x-variation) Let M be a first-order model, let X be a team
over M , and let x be a variable symbol (not necessarily in Dom.X/). Then a team
X 0 of M with domain Dom.X 0/ D Dom.X/ [ ¹xº is said to be an x-variation of
X , and we write XŒx�X 0 if and only if the restrictions of X and X 0 to Dom.X/n¹xº
are the same.

At this point, we have all that we need in order to define the team semantics for
independence logic.
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Definition 2.5 (Team semantics for independence logic) Let † be a first-order
signature, letM be a first-order model of signature †, let ' 2 NNF†, and let X be a
team with domain containing Free.'/. Then we say that X satisfies ' inM , and we
writeM ˆX ', if and only if

TS-lit: ' is a first-order literal and, for all s 2 X ,M ˆs ' in the usual first-order
sense;

TS-ind: ' is Et2?Et1 Et3 for some tuples of terms Et1, Et2, and Et3, and for all s; s0 2 X
with Et1hsi D Et1hs0i there exists an s00 2 X with Et1Et2hs00i D Et1Et2hsi and
Et1Et3hs

00i D Et1Et3hs
0i;

TS-_: ' is  1 _ 2 for  1;  2 2 NNF† and X D Y [Z for some teams Y and
Z such thatM ˆY  1 andM ˆZ  2;

TS-^: ' is  1 ^  2 for  1;  2 2 NNF†,M ˆX  1, andM ˆX  2;
TS-9: ' is 9x for some variable x and some  2 NNF† and there exists a

team X 0 such that XŒx�X 0 (i.e., X 0 is an x-variation of X ) and such that
M ˆX 0  ;

TS-8: ' is 8x for some suitable x andM ˆXŒM=x�  , where

XŒM=x� D
®
sŒm=x� W s 2 X;m 2 Dom.M/

¯
:

As [5] shows, the dependence atom D .t1 : : : tn/ is equivalent to the independence
atom tn?t1:::tn�1

tn. Therefore, dependence logic is contained in independence
logic. The following result is also in [5].

Theorem 2.6 (see [5]) Let † be a first-order signature, let V D ¹v1; : : : ; vnº be
a finite set of variables, let Ev D v1 : : : vn, and let '.Ev/ 2 NNF† be an independence
logic formula with signature† and free variables in V . Then there exists an existen-
tial second-order logic formula ˆ.R/ such that, for all modelsM with signature †
and all teams X overM with domain V ,

M ˆX ' ,M ˆ ˆ
�
Rel.X/

�
;

where Rel.X/ D ¹s.Ev/ W s 2 Xº.

In [4], the converse of this result is proved.

Theorem 2.7 (see [4]) Let † be a first-order signature, let V D ¹v1; : : : ; vnº be
a finite set of variables, and let ˆ.R/ be an existential second-order formula with
signature † and with R as its only free variable, where R is a relational variable of
arity n. Then there exists an independence logic formula '.Ev/, over the signature †
and with free variables in V , such that

M ˆX ' ,M ˆ ˆ
�
Rel.X/

�
for all modelsM with signature† and all nonempty teamsX overM with domain V .

3 General Models for Independence Logic

In this section, we will develop a generalization of team semantics along the lines
of Henkin’s treatment of second-order logic. As we will see, the fact that indepen-
dence logic corresponds to existential second-order logic (and not to full second-
order logic) means that we will be able to restrict ourselves to considering only a
very specific kind of general model.
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Definition 3.1 (General model) Let† be a first-order signature. A general model
with signature † is a pair .M;G /, whereM is a first-order model with signature †
and G is a set of teams over finite—but not necessarily identical, nor of the same
size—domains, respecting the following condition.
� If n 2 N and '.x1 : : : xn; Em; ER/ is a first-order formula, where Em is a tuple
of constant parameters in Dom.M/ and where ER is a tuple of “relation pa-
rameters” corresponding to teams in G , in the sense that each Ri is of the
form

Ri D Rel.Xi / D
®
s.Ez/ W s 2 Xi

¯
for some Xi 2 G , then for

k'.x1 : : : xn; Em; ER/kM D
®
s W Dom.s/ D ¹x1; : : : ; xnº;M ˆs '.x1 : : : xn; Em; ER/

¯
it holds that k'.x1 : : : xn; Em; ER/kM 2 G .

Lemma 3.2 Let † be a first-order signature, and let .M;G / be a general model
with signature †. Then for all X 2 G and all variables y, XŒM=y� 2 G .

Proof Let Dom.X/ D ¹x1; : : : ; xnº, let R D Rel.X/, and consider the for-
mula '.x1 : : : xn; y/ D 9yR.x1 : : : xn/. Then take any assignment s with domain
¹x1; : : : ; xn; yº: by construction, M ˆs '.x1 : : : xn; y/ if and only if there ex-
ists a m 2 Dom.M/ such that sŒm=y�jEx 2 X , or, in other words, if and only if
s 2 XŒM=y�.4

We can easily adapt the team semantics of the previous section to general models.
We report all the rules here, for ease of reference; but the only differences between
this semantics and the previous one are in the cases GMS-_ and GMS-9.

Definition 3.3 (General model semantics for independence logic) Let † be a
first-order signature, let .M;G / be a general model of signature†, let ' 2 NNF† be
a formula of independence logic, and let X 2 G be a team with domain containing
Free.'/. Then we say that X satisfies ' in .M;G /, and we write .M;G / ˆX ' if
and only if

GMS-lit: ' is a first-order literal and, for all s 2 X , M ˆs ' in the usual first-
order sense;

GMS-ind: ' is Et2?Et1 Et3 for some tuples of terms Et1, Et2, and Et3, and for all
s; s0 2 X with Et1hsi D Et1hs0i there exists an s00 2 X with Et1Et2hs00i D Et1Et2hsi
and Et1Et3hs00i D Et1Et3hs0i;

GMS-_: ' is  1 _  2 for  1;  2 2 NNF† and X D Y [ Z for some teams
Y;Z 2 G such that .M;G / ˆY  1 and .M;G / ˆZ  2;

GMS-^: ' is  1^ 2 for  1;  2 2 NNF†, .M;G / ˆX  1 and .M;G / ˆX  2;
GMS-9: ' is 9x for some variable x and some  2 NNF† and there exists a

team X 0 2 G such that XŒx�X 0 and such that .M;G / ˆX 0  ;
GMS-8: ' is 8x for some suitable x and .M;G / ˆXŒM=x�  .

The usual semantics for independence logic satisfies a locality principle: in brief, the
satisfiability of a formula ' in a team depends only on the restriction of the team to
Free.'/. Let us verify that the same holds for general model semantics.

Lemma 3.4 Let .M;G / be a general model, and let X 2 G be such that
Dom.X/ D Ex Ey. Then XjEx D ¹s W Dom.s/ D Ex; 9 Em such that sŒ Em= Ey� 2 Xº is in G .
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Furthermore, let Y � XjG be such that Y 2 G . Then the team

X.Ex 2 Y / D ¹s 2 X W sjEx 2 Y º

is in G .

Proof By definition, XjEx is k'.Ex;R/kM , where ' is 9 Ey.REx Ey/ and R D Rel.X/.
Therefore, XjEx 2 G .

Similarly, X.Ex 2 Y / is k'.Ex Ey;R1; R2/kM , where ' is R1 Ex Ey ^ R2 Ex, R1 is
Rel.X/, and R2 is Rel.Y /.

Theorem 3.5 (Locality) Let .M;G / be a general model, letX 2 G , and let ' be an
independence logic formula over the signature ofM with Free.'/ � Ez � Dom.X/.
Then .M;G / ˆX ' if and only if .M;G / ˆXjEz '.

Proof The proof is by structural induction on '. We present only the passages
corresponding to disjunction and existential quantification, as the others are trivial.
� Suppose that .M;G / ˆX  1 _  2. Then, by definition, there exist teams Y
and Z in G such that X D Y [ Z, .M;G / ˆY  1, and M ˆZ  2. By
induction hypothesis, this means that .M;G / ˆYjEz  1 and .M;G / ˆZjEz  2.
But YjEz [ZjEz D XjEz , and hence .M;G / ˆXjEz  1 _  2.

Conversely, suppose that .M;G / ˆXjEz  1 _  2. Then there exist teams
Y 0; Z0 in G such that .M;G / ˆY 0  1, .M;G / ˆZ0  2, and XjEz D X 0 [ Y 0.
Now let Y be X.Ez 2 Y 0/, and let Z be X.Ez 2 Z0/; by construction,
Y [ Z D X , and furthermore Y 0 D YjEz and Z0 D ZjEz , and, by Lemma 3.4,
Y and Z are in G . Thus, by induction hypothesis, .M;G / ˆY  1 and
.M;G / ˆZ  2, and finally .M;G / ˆX  1 _  2, as required.
� Suppose that .M;G / ˆX 9x . Then there exists a team Y 2 G such
that XŒx�Y , and .M;G / ˆY  . By induction hypothesis, this means that
.M;G / ˆYjEzx

 too; and since XjEz Œx�YjEzx , this implies that M ˆXjEz 9x ,
as required.

Conversely, suppose that .M;G / ˆXjEz 9x . Then there exists a team
Y 0, with domain Ezx, such that M ˆY 0  , and XjEz Œx�Y 0. Now let Y be
.XŒM=x�/.Ezx 2 Y 0/. By Lemma 3.4, Y 2 G ; furthermore, YjEzx D Y 0, and
hence by induction hypothesis, .M;G / ˆY  . Finally, XŒx�Y ; indeed, if
s 2 X , then sjEz Œm=x� 2 Y 0 for some m 2 Dom.M/, and hence sŒm=x� 2 Y
for the same m, and on the other hand, Y is contained in XŒM=x�, and hence
if sŒm=x� 2 Y , it follows that s 2 X .

Therefore .M;G / ˆX 9x , as required.

As in the case of second-order logic, first-order models can be represented as a spe-
cial kind of general model.

Definition 3.6 (Full models) Let .M;G / be a general model. Then it is said to be
full if and only if G contains all teams overM .

The following result is then trivial.

Proposition 3.7 Let .M;G / be a full model. Then for all suitable teams X and
formulas ', .M;G / ˆX ' in general model semantics if and only ifM ˆX ' in the
usual team semantics.
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Proof This follows at once by comparing the rules of team semantics and general
model semantics for the case when G contains all teams.

How does the satisfaction relation in general model semantics change if we vary the
set G ? The following definition and result give us some information about this.

Definition 3.8 (Refinement) Let .M;G / and .M;G 0/ be two general models.
Then we say that .M;G 0/ is a refinement of .M;G /, and we write .M;G / � .M;G 0/,
if and only if G � G 0.

Intuitively speaking, a refinement of a general model is another general model, over
the same first-order structure, with more teams. The following result shows that
refinements preserve satisfaction relations.

Theorem 3.9 Let .M;G / and .M;G 0/ be two general models with .M;G / �
.M;G 0/, let X 2 G , and let ' be a formula over the signature of M with
Free.'/ � Dom.X/. Then

.M;G / ˆX ' ) .M;G 0/ ˆX ':

Proof The proof is an easy induction on '.
1. If ' is a first-order literal, the result is obvious, as the choice of the set of

teams G (or G 0) does not enter into the definition of satisfaction condition
GMS-lit.

2. If ' is an independence atom, the result is also obvious, for the same reason.
3. If .M;G / ˆX  1 _  2, then there exist two teams Y;Z 2 G such that
X D Y [ Z, .M;G / ˆY  1, and .M;G / ˆZ  2. But Y and Z are
also in G 0, and by induction hypothesis we have that .M;G 0/ ˆY  1 and
.M;G 0/ ˆZ  2, and therefore .M;G 0/ ˆX  1 _  2.

4. If .M;G / ˆX  1 ^  2, then .M;G / ˆX  1 and .M;G / ˆX  2. Then,
by induction hypothesis, .M;G 0/ ˆX  1 and .M;G 0/ ˆX  2, and finally
.M;G 0/ ˆX  1 ^  2.

5. If .M;G / ˆX 9x , then there exists an X 0 2 G such that XŒx�X 0 and
.M;G / ˆX 0  . But then X 0 is also in G 0, and by induction hypothesis
.M;G 0/ ˆX 0  , and finally .M;G 0/ ˆX 9x .

6. If .M;G / ˆX 8x , then .M;G / ˆXŒM=x�  . Then, by induction hypothe-
sis, .M;G 0/ ˆXŒM=x�  , and finally .M;G 0/ ˆX 8x .

This result shows us that, as was to be expected from the equivalence between in-
dependence logic and existential second-order logic, if we are interested in formulas
which hold in all general models over a certain first-order model, we only need to
pay attention to the smallest (in the sense of the refinement relation) ones. But do
such “least general models” exist? As the following result shows, this is indeed the
case.

Proposition 3.10 Let ¹.M;Gi / W i 2 I º be a family of general models with signa-
ture † and over the same first-order modelM . Then

�
M;

T
i2I Gi

�
is also a general

model.

Proof Let '.x1 : : : xn; Em; ER/ be a first-order formula with parameters, where each
Ri is of the form Rel.X/ for someX 2

T
i Gi . Then the team k'.x1 : : : xn; Em; ER/kM

is in Gi for all i 2 I , and therefore it is in
T
i2I G , as required.
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Therefore, it is indeed possible to talk about the least general model over a first-order
model.

Definition 3.11 (Least general model) Let M be a first-order model. Then the
least general model overM is the .M;L/, where

L D
\®

G W .M;G / is a general model
¯
:

As an example of a least general model, let n 2 N, and letMn be a model with empty
signature and domain ¹1; : : : ; nº. Then the least general model over Mn is actually
the full general model .Mn;Gn/, where Gn contains all teams over Mn. Indeed, let
¹v1; : : : ; vkº be a finite set of variables, and let

X D ¹s1; : : : ; sqº D

v1 : : : vk
s1 a11 : : : a1k
: : : : : : : : : : : :

sq aq1 : : : aqk

be any team over Mn with domain ¹v1; : : : ; vkº, where si .vj / D aij for all
i 2 1; : : : ; q and all j 2 1; : : : ; k. Then clearly q � nk , and furthermore, for
'.v1 : : : vk/ D

Wq
iD1

Vk
jD1 vi D aqi , we have

k'.v1 : : : vk ; a11 : : : aqk/kM D
®
s W Dom.s/ D ¹v1 : : : vkº;M ˆs '

¯
D X;

as required.
As this example shows, ifM is finite, then the least (and only) general model over

it is the full one. Hence, if we are only interested in finite models, general model
semantics is equivalent to the standard team semantics, and the same can be said
about the entailment semantics which we will develop later in this paper.

What is the purpose of least general models? The answer comes as a consequence
of Theorem 3.9 and can be summarized by the following corollary.

Corollary 3.12 Let† be a first-order signature, letM be a first-order model over
it, and let .M;L/ be the least general model over it. Then, for all teams X 2 L and
all formulas ' with signature † and with free variables in Dom.X/,

.M;L/ ˆX ' , .M;G / ˆX ' for all general models .M;G / overM:

Proof Suppose that .M;L/ ˆX '. Then take any general model .M;G /: by defi-
nition we have .M;L/ � .M;G /, and hence by Theorem 3.9 we have .M;G / ˆX '.

Conversely, suppose that .M;G / ˆX ' for all general models .M;G /; then in
particular, .M;L/ ˆX ', as required.

We can also find a more practical characterization of this “least general model.”

Proposition 3.13 Let M be a first-order model. Then the least general model
over it is .M;L/, where L is the set of all k'.Ex; Em/kM , where ' ranges over all
first-order formulas and Em ranges over all tuples of variables of suitable length.

Proof Let .M;G / be a general model, and let '.Ex; Em/ be a first-order formula with
parameters. Then, by the definition of a general model, we have that k'.Ex; Em/kM
is in G ; and since this is the case for all ', all Ex, and all Em, it follows at once that
L � G . Therefore, we only need to prove that .M;L/ is a general model.

Now, let '.Ex; Em; ER/ be a first-order formula, and let each Ri be Rel.Xi / for
some Xi 2 L. So for each Ri , any assignment s, and any suitable tuple of terms
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t ,M ˆs Ri Et if and only ifM ˆs  i .Et ; Eni / for some first-order formula  i with pa-
rameters Eni . Now let '0.Ex; Em; En1; En2; : : :/ be the expression obtained by substituting,
in ', each instance ofRi Et with i .Et ; Eni /; by construction, we haveM ˆs '.Ex; Em; ER/
if and only ifM ˆs '0.Ex; Em; En1; : : :/, and therefore

k'.Ex; Em; ER/kM D k'
0.Ex; Em; En1; En2; : : :/kM 2 L;

as required.

Definition 3.14 (Validity with respect to general models) Let † be a first-order
signature, let V be a finite set of variables, and let ' 2 NNF† be a formula of our
language with free variables in V . Then ' is valid with respect to general models if
and only if .M;G / ˆX ' for all general models .M;G / with signature † and for all
teams X 2 G with Dom.X/ � Free.'/. If this is the case, we write GMS ˆ '.

Definition 3.15 (Validity with respect to least general models) Let † be a first-
order signature, let V be a finite set of variables, and let ' 2 NNF† be a formula of
our language with free variables in V . Then ' is valid with respect to least general
models if and only if .M;L/ ˆX ' for all least general models .M;L/ with signa-
ture † and for all teams X 2 L with Dom.X/ � Free.'/. If this is the case, we
write LMS ˆ '.

Lemma 3.16 Let M be a first-order model with signature †, and let M 0 be an-
other first-order model with signature †0 � † such that the restriction ofM 0 to † is
preciselyM . Then for all general models G forM 0, for all formulas ' with signature
†, and for all X 2 G ,

.M;G / ˆX ' , .M 0;G / ˆX ':

Proof First of all, if .M 0;G / is a general model, then .M;G / is also a general
model. Then, the result is proved by observing that the truth conditions of our se-
mantics depend only on the interpretations of the symbols in the signature of the
formula (and on the choice of G , of course).

Lemma 3.17 Let .M;G / be a general model with signature †, let S … † be a
new relation symbol, and let X 2 G . Furthermore, letM 0 D MŒRel.X/=S� be the
extension ofM to the signature † [ ¹Sº such that SM 0 D Rel.X/. Then .M 0;G / is
a general model.

Proof Let '.Ex; Em; ER/ be a first-order formula with signature†[¹Sº and parame-
ters Em and ER, where eachRi is Rel.Xi / for someXi 2 G . Then let '0.Ex; Em; ER; S/ be
the first-order formula with signature†, where S now stands for the relation Rel.X/.
Now clearly

k'.Ex; Em; ER/kM 0 D k'
0.Ex; Em; ER; S/kM 2 G ;

as required.

Theorem 3.18 A formula ' is valid with respect to general models if and only if
it is valid with respect to least general models.

Proof The left-to-right direction is obvious. For the right-to-left direction, suppose
that LMS ˆ ', let .M;G / be a general model whose signature contains the signature
of ', and let X 2 G be a team whose domain ¹x1; : : : ; xnº contains all free variables
of '. Then consider the first-order model M 0 D MŒRel.X/=S�, where S is a new
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relation symbol, and take the least general model .M 0;L/ over it. We clearly have
that X 2 L, since

X D
®
s W Dom.s/ D ¹x1; : : : ; xnº;M 0 ˆs Sx1 : : : xn

¯
and, therefore, .M 0;L/ ˆX ' by hypothesis. Now, by Lemma 3.17, .M 0;G / is
a general model, and therefore by definition L � G , and hence by Theorem 3.9
.M 0;G / ˆX ' too. Finally, the relation symbol S does not occur in ', and therefore
by Lemma 3.16, .M;G / ˆX ', as required.

What this result tells us is that in order to check whether a formula is valid in all
general models, it suffices to check least general models. This is a direct conse-
quence of the correspondence between independence logic and †11: since in order to
verify whether a formula holds in a general model we have to verify the existence of
teams satisfying certain first-order properties, it follows at once that in order to verify
whether a formula holds in all general models, we can limit ourselves to examining
the smallest such models.

The same argument can be used for other logics of imperfect information, such
as, for example, IF logic or dependence logic; and our proof system will be easily
adaptable to such logics, either directly or by first translating formulas from these
logics into independence logic. However, the same cannot be said about logics of
imperfect information which involve universal quantifications over teams, such as,
for example, team logic (see Väänänen [17]) or intuitionistic dependence logic (see
Abramsky and Väänänen [1], Yang [19]); while an approach based on general mod-
els seems to be worth pursuing also for such formalisms, the equivalence between
validity in general models and validity in least general models—or validity with re-
spect to the entailment semantics which we will develop in the next section—will no
longer be available.

4 Entailment Semantics

Let M be a first-order structure, and let .M;L/ be the least general model over
it. Then, as we saw, L is the set of all teams corresponding to first-order formulas
with parameters. Therefore, in order to reason about satisfaction in a least general
model, there is no need to carry around the teams themselves; rather, we can use the
corresponding first-order formulas. In this section, we will develop this idea, building
up a new “entailment semantics” and proving its correspondence with general model
semantics over least general models.

We will then construct a proof system and prove its soundness and completeness
with respect to this semantics. Then, since—as we saw already—validity with re-
spect to least general models is equivalent to validity with respect to general models,
the proof system will also be shown to be sound and complete with respect to general
model semantics.

For the purposes of this work, entailment semantics acts as a bridge between gen-
eral model semantics and our proof system: by allowing us to abstract away from
higher-order objects such as teams, it will make it significantly easier for us to estab-
lish a connection between semantics and proof theory.

Furthermore, the semantics which we will build, with its more syntactic flavor,
is of independent interest. The phenomena of dependence and independence whose
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study is among the principal reasons for being of dependence logic and indepen-
dence logic are present in it, but the intrinsically higher-order nature of the usual
team semantics is not. Entailment semantics, in other words, can be seen as an at-
tempt to examine the content of the notions of dependence and independence from a
first-order perspective, rather than from the higher-order perspective implicit in the
formulation of team semantics.

Definition 4.1 (Parameter and team variables) Let VP D ¹p1; : : : ; pn; : : :º and
VT D ¹x; y; z; : : :º be fixed, disjoint, countably infinite sets of variables. We will
call any p 2 VP a parameter variable, and we will call any x 2 VT a team variable.
Furthermore, we will assume that any variable which occurs in any of our formulas
is a team variable or a parameter variable.

Definition 4.2 (Free parameter and team variables) Let ' be any formula. Then
FreeP .'/ D Free.'/ \ VP and FreeT .'/ D Free.'/ \ VT .

Parameter variables clarify the interpretation of expressions such asM ˆs .Ex; Em/:
this is simply a shorthandM ˆh[s .Ex; Ep/, where h is a parameter assignment with
domain Ep and with h. Ep/ D Em. Team variables, instead, are going to be used in
order to describe the variables in the domain of the team corresponding to a given
first-order expression: for any first-order .Ex; Ep/, where Ex are team variables and
Ep are parameter variables, and for any h with domain Ep, we will therefore have
k.Ex; Ep/kM;h D k.Ex; h. Ep//kM D ¹s W Dom.s/ D Ex;M ˆh[s º. For this reason,
parameter variables will never occur in the domain of a team, and, hence, from this
point on we will always assume that parameter variables never occur in independence
logic formulas but only in the first-order team definitions.

After these preliminaries, we can now give our main definition for this section.

Definition 4.3 (Entailment semantics for independence logic) Let M be a first-
order model with signature†, let .Ex; Ep/ be a first-order formula for the same signa-
ture with FreeT D Ex and FreeP D Ep, let h be a parameter assignment with domain
Ep, and let ' 2 NNF† be an independence logic formula.
Then we say that  satisfies ' in M under h, and we write M ˆ.h/ ', if and

only if
ES-lit: ' is a first-order literal, and for all assignments s with domain FreeT ./[

FreeT .'/ such thatM ˆh[s  , it holds thatM ˆs ';
ES-ind: ' is Et2?Et1 Et3 for some tuples of terms Et1, Et2, and Et3 and for all assign-

ments s and s0 with domain FreeT ./ [ FreeT .Et1Et2Et3/ such thatM ˆh[s  ,
M ˆh[s0  , and Et1hsi D Et1hs0i there exists an s00 such that M ˆh[s00  ,
Et1Et2hs

00i D Et1Et2hsi, and Et1Et3hs00i D Et1Et3hs0i;
ES-_: ' is  1 _ 2 and there exists a parameter assignment h0 extending5 h and

two first-order formulas 1 and 2 such that
� FreeP .1/;FreeP .2/ � Dom.h0/;
� M ˆ1.h0/  1;
� M ˆ2.h0/  2;
� M ˆh0 8Ev. $ 1 _ 2/, where Ev is FreeT ./ [ FreeT .1/ [

FreeT .2/;
ES-^: ' is  1 ^  2,M ˆ.h/  1 andM ˆ.h/  2;
ES-9: ' is 9xn and there exist a parameter assignment h0 extending h and a

first-order formula  0 with FreeP . 0/ � Dom.h0/ such that
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� M ˆ 0.h0/  ;
� M ˆh0 8Ev.9xn

0 $ 9xn/, where Ev is FreeT ./ [ FreeT . 0/;
ES-8: ' is 8xn and there exists a parameter assignment h0 extending h and a

first-order formula  0 with FreeP . 0/ � Dom.h0/ such that
� M ˆ 0.h0/  ;
� M ˆh0 8Ev.

0 $ 9xn/, where Ev is FreeT ./ [ FreeT . 0/.

The reason why the above semantics is called “entailment semantics” is because
its satisfaction relation describes a sort of entailment relation between a first-order
formula with parameters, which takes the role that teams have in the usual team
semantics, and an independence logic formula. In particular, it is easy to see that
according to our rule ES-lit, for all first-order literals '.Ex; Ep/, first-order formulas
with parameters .Ex; Ey/, and parameter assignments h, M ˆ.h/ ' if and only if
M ˆh 8Ex Ey..Ex/! '.Ex; Ey//.

Proposition 4.4 LetM be a first-order model with signature †, let .Ex; Ep/ be a
first-order formula with FreeP ./ D Ep, and let h, h0 be two parameter assignments
with domains containing Ep such that h. Ep/ D h0. Ep/. Then, for all independence logic
formulas ',

M ˆ.h/ ' ,M ˆ.h0/ ':

Proof The proof is a straightforward induction over '.

As the next result shows, entailment semantics is entirely equivalent to least general
model semantics.

Theorem 4.5 Let † be a first-order model, let .Ex; Ep/ be a first-order formula
with FreeP ./ D Ep, let h be a parameter assignment with domain Ep, and let
' 2 NNF† be an independence logic formula with free variables in Ex.

Furthermore, let .M;L/ be the least general model over M , and let X D

k.Ex; Ep/kM;h D ¹s W Dom.s/ D ¹Exº;M ˆh[s .Ex; Em/º. Then
.M;L/ ˆX ' ,M ˆ.h/ ':

Proof The proof is by structural induction on ' and presents no difficulties.
1. If ' is a first-order literal, .M;L/ ˆX ' if and only if, for all s 2 X , it

holds thatM ˆs '. But s 2 X if and only ifM ˆs .Ex; h. Ep//, and hence
.M;L/ ˆX ' if and only ifM ˆ ', as required.

2. If ' is an independence atom, the result is also obvious and follows at once
from a comparison of the rules GMS-ind and ES-ind.

3. If ' is  1 _  2,
.M;L/ ˆX  1 _  2

, 9Y;Z 2 L such that X D Y [Z; .M;L/ ˆY  1 and .M;L/ ˆZ  2
, 9h0 D hŒ Em=Eq� extending h and 912 such that, for Y D k1.Ex; EpEq/kM;h0 ;
Z D k2.Ex; EpEq/kM;h0 ; X D k.Ex; Ep/kM;h D k.Ex; Ep/kM;h0 D Y [Z;

.M;L/ ˆY  1; and .M;L/ ˆZ  2
, 9h0 D hŒ Em=Eq� extending h and 912 such thatM ˆh0 8Ev. $ 1 _ 2/;

M ˆ1.h0/  ; andM ˆ2.h0/ �

,M ˆ.h/  _ �:
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4. If ' is  ^ � ,
.M;L/ ˆX  ^ � , .M;L/ ˆX  and .M;L/ ˆX �
,M ˆ.h/  andM ˆ.h/ � ,M ˆ.h/  ^ �:

5. If ' is 9xn ,
.M;L/ ˆX 9xn , 9X

0
2 L such that XŒxn�X 0 and .M;L/ ˆX 0  

, 9h0 D hŒ Em=Eq� extending h and 9 0 such that, for X 0 D k 0.Ex; EpEq/kM;h0 ;
XŒxn�X

0; and .M;L/ ˆX 0  
, 9h0 D hŒ Em=Eq� extending h and 9 0 such thatM ˆh0 8Ev.9xn $ 9xn 0/
andM ˆ 0.h0/  
,M ˆ.h/ 9xn :

6. If ' is 8xn ,
.M;L/ ˆX 8xn , 9X

0
2 L such that X 0 D XŒM=xn� and .M;L/ ˆX 0  

, 9h0 D hŒ Em=Eq� extending h and 9 0 such that, for X 0 D k 0.Ex; Epq/kM;h0 ;
X 0 D XŒM=xn�; and .M;L/ ˆX 0  
, 9h0 D hŒ Em=Eq� extending h and 9 0 such thatM ˆh0 8Ev. 0 $ 9xn/
andM ˆ 0.h0/  
,M ˆ.h/ 8xn :

Definition 4.6 (Validity in entailment semantics) Let ' be an independence logic
formula. Then ' is valid in entailment semantics if and only if M ˆ.h/ ' for all
first-order modelsM with signature containing that of ', for all first-order formulas
.Ex; Ep/ over the signature of M , and for all parameter assignments h with domain
Ep. If this is the case, we write ENS ˆ '.

Corollary 4.7 For all formulas ', ENS ˆ ' if and only if LMS ˆ ' if and only
if GMS ˆ '.

It will also be useful to have a slightly more general notion of validity in entailment
semantics.

Definition 4.8 (Validity with respect to a team definition) Let .Ex; Ep/ be a first-
order formula, and let ' be an independence logic formula. Then ' is valid with
respect to  if and only if M ˆ.h/ ' for all first-order models M with signature
containing those of  and ' and for all parameter assignments h with domain Ep. If
this is the case, we writeˆ '.

Proposition 4.9 Let ' be an independence logic formula with FreeT .'/ D ¹x1;
: : : ; xkº, let Ex D x1; : : : ; xk , and let R be a k-ary relation symbol not occurring
in  . Then ENS ˆ ' if and only ifˆREx '.

Proof Suppose that ENS ˆ '. Then in particular, for any modelM whose signa-
ture contains that of ' and R we haveM ˆREx ', and henceˆREx '.

Conversely, suppose thatˆREx ', letM be a first-order model,6 and let X 2 L be
any team with domain ¹x1; : : : ; xkº. Let us then consider the modelM 0 obtained by
adding toM the k-ary symbol R with RM 0 D Rel.X/. By hypothesis,M 0 ˆREx ',
and furthermore, since RM 0 is in L already, the least general model over M 0 is
.M 0;L/ for the same L.
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Now .M 0;L/ ˆX ', and therefore, as R occurs nowhere in ', .M;L/ ˆX '

too. This holds for all X with domain ¹x1; : : : ; xkº; therefore by the locality theo-
rem (Theorem 3.5), the same holds for all domains containing FreeT .'/, and hence
LMS ˆ '. This implies that ENS ˆ ', as required.

In the next section, we will develop a sound and complete proof system for this notion
of validity with respect to a team definition.

5 The Proof System

In this section, we will develop a proof system for independence logic (with entail-
ment semantics) and prove its soundness and completeness.

Definition 5.1 (Sequent) Let � be a finite first-order theory with only parameter
variables among its free ones, let .Ex; Ep/ be a first-order formula, and let ' be an
independence logic formula with free variables in VT . Then the expression

� j  ` '

is a sequent.

The intended semantics of a sequent is the following.

Definition 5.2 (Valid sequents) Let � j  ` ' be a sequent. Then � j  ` ' is
valid if and only if for all models M and all parameter assignments h with domain
FreeP .�/ [ FreeP ./ such thatM ˆh � , it holds that

M ˆ.h/ ':

The following result is then clear.

Proposition 5.3 For all  and ',ˆ ' if and only if ; j  ` ' is valid.

Now, all we need to do is develop some syntactic rules for finding valid sequents.
We can do this as follows.

Definition 5.4 (Axioms and rules) The axioms of our proof system are the follow-
ing:

PS-lit: If ' is a first-order literal with no free parameter variables (i.e.,
FreeP .'/ D ;), then

8Ev. ! '/ j  ` '

for all first-order formulas  , where Ev D FreeT ./ [ FreeT .'/.
PS-ind: If Et1, Et2, and Et3 are first-order terms with no free parameter variables,

then

8Ev1Ev2
�
..v1/ ^ .v2/ ^ Et1.Ev1/ D Et1.Ev2//

! 9Ev3..v3/ ^ Et1Et2.Ev3/ D Et1Et2.Ev1/ ^ Et1Et3.Ev3/ D Et1Et3.Ev2//
�
j  ` Et2?Et1

Et3

for all  , where Ev1 and Ev2 are tuples of variables of the same lengths of
Ev D FreeT ./ [ FreeT .Et1Et2Et3/, Eti .Evj / is the tuple obtained by substituting Ev
with Evj in Eti , and the same holds for .Evj /.

The rules of our proof system are the following:
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PS-_: If �1 j 1 ` '1 and �2 j 2 ` '2, then, for all  , we have
�1; �2;8Ev

�
 $ .1 _ 2/

�
j  ` '1 _ '2;

where Ev is FreeT ./ [ FreeT .1/ [ FreeT .2/.
PS-^: If �1 j  ` '1 and �2 j  ` '2, then �1; �2 j  ` '1 ^ '2.
PS-9: If � j  0 ` ' and x is a team variable, then, for all  ,

�; 8Ev.9x 0 $ 9x/ j  ` 9x';

where Ev D FreeT ./ [ FreeT . 0/.
PS-8: If � j  0 ` ' and x is a team variable, then, for all  ,

�; 8Ev. 0 $ 9x/ j  ` 8x';

where, as in the previous case, Ev D FreeT ./ [ FreeT . 0/.
PS-ent: If � j  ` ' and

V
� 0 ˆ

V
� holds in first-order logic, then � 0 j  ` '.

PS-depar: If � j  ` ' and p is a parameter variable which does not occur free
in  , then 9p

V
� j  ` '.

PS-split: If �1 j  ` ' and �2 j  ` ', then
�V

�1
�
_
�V

�2
�
j  ` '.

Definition 5.5 (Proofs and proof lengths) Let � j  ` ' be a sequent. A proof of
this sequent is a finite list of sequents

.�1 j 1 ` '1/; : : : ; .�n j n ` 'n/ D .� j  ` '/

such that, for all i D 1; : : : ; n, �i j i ` 'i is either an instance of PS-lit or PS-ind
or it follows from ¹�j j j ` 'j W j < iº through one application of the rules of our
proof system.

Given a proof P D S1 : : : Sn, where each Si is a sequent, we define its length jP j
as n � 1, that is, as the number of sequents in the proof minus one.

Before examining soundness and completeness for this proof system, it will be useful
to obtain a couple of derived rules.

Proposition 5.6 The following rules hold:
PS-FO: If ' is a first-order formula with no free parameter variables, 8Ev. !
'/ j  ` ' is provable for all  , where Ev D FreeT ./ [ FreeT .'/.

PS-dep: If Et is a tuple of terms, t 0 is another term, and D .Et ; t 0/ stands for
t 0?Et t

0, then

8Ev1Ev2
�
.Ev1/ ^ .Ev2/ ^ Et .Ev1/ D Et .Ev2/

�
! t 0.Ev1/ D t

0.Ev2/ j  `D .Et ; t
0/

is provable for all  , where Ev1, Ev2 are tuples of the same length of
Ev D FreeT ./ [ FreeT .Et t 0/.

Proof

PS-FO: The proof is by structural induction on '.
1. If ' is a first-order literal, this follows at once from rule PS-lit.
2. If ' is  1 _  2, by induction hypothesis we have that 8Ev.. ^  1/ !
 1/ j ^ 1 `  1 and 8Ev..^ 2/!  2/ j ^ 2 `  2 are provable.
But then we can prove 8Ev. ! '1 _ '2/ j  ` ' as follows:
(a) 8Ev.. ^  1/!  1/ j  ^  1 `  1 (derived before);
(b) 8Ev.. ^  2/!  2/ j  ^  2 `  2 (derived before);
(c) j  ^ 1 `  1 (PS-ent, from (a), becauseˆ 8Ev.. ^ 1/!  1/

in first-order logic);
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(d) j  ^ 2 `  2 (PS-ent, from (b), becauseˆ 8Ev.. ^ 2/!  2/

in first-order logic);
(e) 8Ev. $ . ^  1/ _ . ^  2// j  `  1 _  2 (PS-_, from (c)

and (d));
(f ) 8Ev. ! . 1 _  2// j  `  1 _  2 (PS-ent: from (e), because
8Ev. ! . 1 _  2// entails 8Ev. $ . ^  1/ _ . ^  2// in
first-order logic).

3. If ' is  1 ^  2, by induction hypothesis we have that 8Ev. !  1/ j

 `  1 and 8Ev. !  2/ j  `  2 are provable. But then
(a) 8Ev. !  1/ j  `  1 (derived before);
(b) 8Ev. !  2/ j  `  2 (derived before);
(c) 8Ev. !  1/;8Ev. !  2/ j  `  1 ^  2 (PS-^, (a), (b));
(d) 8Ev. !  1 ^  2/ j  `  1 ^  2 (PS-ent, (c)),

as required.
4. If ' is 9x , by induction hypothesis we have that 8Ev8x

�
..9x/^ /!

 
�
j .9x/ ^  `  is provable. But then

(a) 8Ev8x
�
..9x/ ^  /!  

�
j .9x/ ^  `  (derived before);

(b) j .9x/ ^  `  (PS-ent, from (a));
(c) 8Ev.9x..9x/ ^  /$ 9x/ j  ` 9x (PS-9, from (b));
(d) 8Ev

�
..9x/ ^ .9x //$ 9x

�
j  ` 9x (PS-ent, from (c));

(e) 8Ev. ! 9x / j  `  (PS-ent, from (d)),
as required, where the last passage uses the fact that 8Ev. ! 9x / ˆ
8Ev
�
..9x/ ^ .9x //$ 9x

�
in first-order logic.

5. If ' is 8x , by induction hypothesis we have that 8Ev8x..9x/!  / j

9x `  is provable. But then
(a) 8Ev8x..9x/!  / j 9x `  (derived before);
(b) 8Ev8x..9x/ !  /, 8Ev.9x $ 9x/ j  ` 8x (PS-8, from

(a));
(c) 8Ev8x..9x/!  / j  ` 8x (PS-ent, from (c));
(d) 8Ev. ! 8x / j  ` 8x (PS-ent, from (d)),

where the last two passages hold because 8Ev.9x $ 9x/ is valid and
because 8Ev. ! 8x / entails 8Ev8x..9x/!  / in first-order logic,
where Ev D FreeT ./ [ FreeT . / (and, therefore, if x is free in  , then
x is in Ev).

PS-dep: By definition, D .Et ; t 0/ stands for t 0?Et t
0; therefore, by rule PS-ind we

have
8Ev1Ev2

�
..Ev1/ ^ .Ev2/ ^ Et .Ev1/ D Et .Ev2//

! 9Ev3..Ev3/ ^ Et t
0.Ev3/ D Et t

0.Ev1/ ^ Et t
0.Ev3/ D Et t

0.Ev2//
�
j  `D .Et ; t 0/:

But the formula
8Ev1Ev2

�
..Ev1/ ^ .Ev2/ ^ Et .Ev1/ D Et .Ev2//! t 0.Ev1/ D t

0.Ev2/
�

entails the premise, and therefore by rule PS-ent we have our conclusion.

Theorem 5.7 (Soundness) Suppose that � j  ` ' is provable. Then it is valid.

Proof If S is a provable sequent, then there exists a proof S1 : : : SnS for it. Then
we go by induction of the length n of this proof.
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Base case: Suppose that the proof has length 0. Then S is an instance of PS-lit
or of PS-ind. Suppose first that it is the former, that is, that

S D 8Ev. ! '/ j  ` '

for some first-order  and some first-order literal ', where Ev D FreeT ./ [
FreeT .'/ and ' has no parameter variables. Now suppose that M ˆh

8Ex. ! '/; then, by definition, if s is an assignment over team variables
such that M ˆh[s  , then M ˆs '. Therefore, by ES-lit, M ˆ.s/ ' in
entailment semantics, as required.

The case corresponding to PS-ind and ES-ind is entirely similar.
Induction case: Let S1S2 : : : SnS be our proof. For each i � n we have that
S1 : : : Si is a valid proof for Si , and hence by induction hypothesis that Si
is valid. Now let us consider which rule r was been used to derive S from
S1 : : : Sn.
1. If r was PS-lit or PS-ind, then .S/ is a proof for S already, and hence

by our base case S is valid.
2. If r was PS-_, then S is �1; �2;8Ev. $ .1 _ 2// j  ` '1 _ '2,

and there exist two i; j � n such that Si D .�1 j 1 ` '1/ and
Sj D .�2 j 2 ` '2/. By induction hypothesis, these sequents are
valid.
Now suppose that M ˆh �1; �2;8Ev. $ .1 _ 2//. Then, since
M ˆh �1, we have M ˆ1.h/ '1, and, analogously, since M ˆh �2
we have M ˆ2.h/ '2. Furthermore, M ˆh 8Ev. $ 1 _ 2/, and
therefore by rule ES-_ we haveM ˆ '1 _ '2, as required.

3. If r was PS-^, then Sn is of the form �1; �2 j  ` '1 ^ '2 and, by
induction hypothesis, �1 j  ` '1 and �2 j  ` '2 are valid. Now
suppose that M ˆh �1; �2; then M ˆ.h/ '1 and M ˆ.h/ '2, and
thereforeM ˆ.h/ '1 ^ '2 by ES-^.

4. If r was PS-9, then Sn is of the form �;8Ev.9x 0 $ 9x/ j  ` 9x',
where � j  0 ` ' is valid by induction hypothesis. Now sup-
pose that M ˆh �;8Ev.9x $ 9x 0/; then M ˆ 0.h/ ' and
M ˆh 8Ev.9x $ 9x 0/, and therefore M ˆ.h/ 9x' by rule
ES-9.

5. If r was PS-8, then Sn is of the form �;8Ev. 0 $ 9x/ j  ` 8x',
where � j  0 ` ' is valid by induction hypothesis. Now, suppose
that M ˆh �;8Ev.

0 $ 9x/. Then M ˆ 0.h/ ', and furthermore
M ˆh 8Ev.

0 $ 9x/. Therefore, by rule ES-8, M ˆ.h/ 8x', as
required.

6. If r was PS-ent, then Sn is of the form � 0 j  ` ', where � j  ` '
is valid by induction hypothesis and where

V
� ˆ

V
� 0 holds in first-

order logic. Now suppose that M ˆh �
0; then M ˆh � , and hence

M ˆ.h/ ', as required.
7. If r was PS-depar, then Sn is of the form 9p

V
� j  ` ', where

� j  ` ' holds by induction hypothesis and where the parameter vari-
able p does not occur free in  . Now suppose that M ˆh 9p

V
�;

then there exists an element m 2 Dom.M/ such that, for h0 D hŒm=p�,
M ˆh0 � . ThenM ˆ.h0/ '; but as p does not occur free in  we then
have, by Proposition 4.4, thatM ˆ.h/ ', as required.
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8. If r was PS-split, then Sn is of the form
�V

�1
�
_
�V

�2
�
j  ` ', where

�1 j  ` ' and �2 j  ` ' by induction hypothesis. Now suppose that
M ˆh

�V
�1
�
_
�V

�2
�
. ThenM ˆh �1 or M ˆh �2; and in either

case,M ˆ.h/ ', as required.

In order to prove completeness, we first need a lemma.

Lemma 5.8 Suppose that M ˆ.h/ '. Then there exists a finite � such that
� j  ` ' is provable and such thatM ˆh � .

Proof The proof is by structural induction on '.
1. If ' is a first-order literal or an independence atom, this follows immediately

from a comparison of ES-lit and PS-lit and of ES-ind and PS-ind.
2. If ' is 1_ 2 andM ˆ.h/ ', then, by definition, there exists an assignment
h0 extending h and two first-order formulas 1, 2 such that M ˆ1.h0/  1,
M ˆ2.h0/  2, and M ˆh0 8Ev. $ 1 _ 2/. Let Ep be the tuple of
parameters in Dom.h0/nDom.h/; now, by induction hypothesis we have that
there exist �1 and �2 such that �1 j 1 `  1 and �2 j 2 `  2 are provable,
and such that furthermoreM ˆh0 �1 andM ˆh0 �2.

But then the following is a correct proof:
(a) �1 j 1 `  1 (derived before);
(b) �2 j 2 `  2 (derived before);
(c) �1; �2;8Ev. $ 1 _ 2/ j  ` ' (PS-_, (a), (b));
(d) 9 Ep

�V
�1 ^

V
�2 ^ 8Ev. $ 1 _ 2/

�
j  ` ' (PS-depar, (c)).7

Finally,M ˆh 9 Ep
�V

�1 ^
V
�2 ^ 8Ev. $ 1 _ 2/

�
, as required, because

there exists a tuple of elements Em such that hŒ Em= Ep� D h0.
3. If ' is  1 ^  2 andM ˆ.h/ ', thenM ˆ.h/  1 andM ˆ.h/  2. Then,

by induction hypothesis, there exist �1 and �2 such that �1 j  `  1 and
�2 j  `  2 are provable and such that M ˆh �1�2. Then by rule PS-^,
�1�2 j  `  1 ^  2, as required.

4. If ' is 9x andM ˆ.h/ ', then there exists a tuple Ep of parameter variables
not in the domain of h, a tuple Em of elements of the model, and a formula  0
such that, for h0 D hŒ Em= Ep�,M ˆ 0.h0/  andM ˆh0 8Ev.9x 0 $ 9x/. By
induction hypothesis, we then have a � 0 such that � 0 j  0 `  andM ˆh0 � 0.

Then the following is a valid proof:
(a) � 0 j  0 `  (derived before);
(b) � 0;8Ev.9x 0 $ 9x/ j  ` 9x (PS-9);
(c) 9 Ep

�V
� 0 ^ 8Ev.9x 0 $ 9x/

�
j  ` 9x (PS-depar).

Furthermore,M ˆh 9 Ep
�V

� 0 ^ 8Ev.9x 0 $ 9x/
�
, as required.

5. If ' is8x andM ˆ.h/ ', then there exists a tuple Ep of parameter variables
not in the domain of h, a tuple Em of elements of the model, and a formula  0
such thatM ˆ 0.h0/  andM ˆh0 8Ev. 0 $ 9x/, where h0 D hŒ Em= Ep�. By
induction hypothesis, we can then find a � 0 such that � 0 j  0 `  is provable
andM ˆh0 � 0.

Then the following is a valid proof:
(a) � 0 j  0 `  (derived before);
(b) � 0, 8Ev. 0 $ 9x/ j  ` 8x (PS-8);
(c) 9 Ep

�V
� 0 ^ 8Ev. 0 $ 9x/

�
j  ` 8x (PS-depar).
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And, once again, the assignment h satisfies the antecedent of the last sequent,
as required.

The completeness of our proof system follows from the above lemma and from the
compactness and the Löwenheim–Skolem theorem for first-order logic.

Theorem 5.9 (Completeness) Suppose that � j  ` ' is valid, where � is finite.
Then it is provable.

Proof Since � j  ` ' is valid, for any first-order modelM over the signature of
� ,  , and ', and for all h such thatM ˆh � , we haveM ˆ.h/ ', and hence by the
lemma,M ˆh �M;h for some finite �M;h such that �M;h j  ` ' is provable.

Then consider the first-order, countable8 theory

T D
°^

�
±
[

°
:

^
�M;h WM is a countable model;

h is an assignment such thatM ˆh �
±
:

This theory is unsatisfiable. Indeed, suppose that M0 is a model that satisfies
V
�

under the assignment h0; then, by the Löwenheim–Skolem theorem, there exists a
countable elementary submodel .M 00; h00/ of .M0; h0/.

Now,M 00 ˆh00 � andM 00 is countable, and hence by definitionM 00 ˆh00 �M 00;h00 .
But thenM0 ˆh0

�M 0
0
;h0

0
too, and thereforeM0 is not a model of T .

By the compactness theorem, this implies that there exists a finite subset
T0 D

®
:
V
�M1;h1

; : : : ;:
V
�Mn;hn

¯
of T such that

®V
�
¯
[ T0 is unsatisfi-

able, that is, such that

� ˆ
�^

�M1;h1

�
_ � � � _

�^
�Mn;hn

�
:

Now, for each i , �Mi ;hi
j  ` ' can be proved. Therefore, by rule PS-split, we

have that
�V

�M1;s1

�
_ � � � _

�V
�Mn;sn

�
j  ` ' is also provable; and finally, by

rule PS-ent we can prove that � j  ` ', as required.

Using essentially the same method, it is also possible to prove a “compactness” result
for our semantics.

Theorem 5.10 Suppose that � j  ` ' is valid. Then there exists a finite �0 � �
such that �0 j  ` ' is provable (and valid).

Proof Let � D max.j�j;@0/, and consider the theory

T D � [
°
:

^
�M;h W jM j � �;M ˆh �

±
;

where, as in the previous proof, �M;h is a finite theory such that M ˆh �M;h and
such that �M;h j  ` ' is provable in our system.

Then T is unsatisfiable; indeed, if T had a model, then it would have a model
.M; h/ of cardinality at most �, and since that model would satisfy � it would satisfy
�M;h too, which contradicts our hypothesis.

Hence, by the compactness theorem, there exists a finite set
°V

�M1;h1
; : : : ;V

�Mn;hn

±
and a finite �0 � � such that

�0 ˆ
^
�M1;h1

_ � � � _

^
�Mn;hn

:
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But by rule PS-split, we have that
V
�M1;h1

_ � � � _
V
�Mn;hn

j  ` ' is provable,
and hence by rule PS-ent, �0 j  ` ' is also provable, as required.

6 Adding More Teams

The proof system that we developed in the previous section is, as we saw, sound and
complete with respect to its intended semantics. However, this semantics is perhaps
quite weak. All that we know is that the teams which correspond to parameterized
first-order formulas belong to our general models.

Rather than adding more and more axioms to our proof system in order to guar-
antee the existence of more teams, in this section we will attempt to separate our
assumptions about team existence from our main proof system. This will allow us
to modulate our formalism: depending on our needs, we may want to assume the
existence of more or of less teams in our general model.

The natural language for describing assertions about the existence of relations is,
of course, existential second-order logic. The following definitions show how it can
be used for our purposes.

Definition 6.1 (Relation existence theory) A relation existence theory ‚ is a set
of existential second-order sentences of the form 9 ER'. ER/, where ' is first order.

Definition 6.2 (‚-closed general models) Let .M;G / be any general model, and
let ‚ be a relation existence theory. Then .M;G / is ‚-closed if and only if for all
9 ER'. ER/ in ‚ there exists a tuple of teams EX 2 G such thatM ˆ 'Œ ERel. EX/= ER�.

Definition 6.3 (‚-valid sequents) Let � j  ` ' be a sequent, and let ‚ be a
relation existence theory. Then � j  ` ' is valid if and only if for all ‚-closed
models .M;G / and all parameter assignments h with domain FreeP .�/[ FreeP ./
such thatM ˆh � it holds that

.M;G / ˆkkh ':

Our proof system for ‚-closed general models can then be obtained by adding the
following rule to our system.

PS-‚: If �1. ES/; �2 j  ` ' is provable, where the relation symbols ES do not oc-
cur in �2, in  , or in ', and 9 ER

V
�1. ER/ is in‚ for some ER, then �2 j  ` '

is provable.

Theorem 6.4 (Soundness) Let � j  ` ' be a sequent which is provable in our
proof system plus PS-‚. Then it is ‚-valid.

Proof The proof is by induction on the length of the proof and follows very closely
the one given already. Hence, we only examine the case in which the last rule used
in the proof is PS-‚. Then, by induction hypothesis, we have that �1. ES/; � j  ` ',
is ‚-valid for some �1 and some ES which does not occur in � , in  , or in ', and
moreover, 9 ER

V
�1. ER/ is in ‚.

Now, let .M;G / be any‚-closed general model, and let us assume without loss of
generality that the relation symbols in ES are not part of its signature. Furthermore, let
h be a parameter assignment (with domain Free.�/ [ Free./) such thatM ˆh � .
By definition, there exists a tuple of teams EX 2 G such thatM ˆ

V
�1Œ ERel. EX/= ES�.

Now letM 0 beMŒ ERel. EX/= ES�; since EX is in G , it is not difficult to see that .M 0;G /
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is a general model. Furthermore, it is ‚-closed, M 0 ˆ �1, and M 0 ˆh � . Hence,
.M 0;G / ˆkkh ', but since the relation symbols ES do not occur in  or in ', this
implies that .M;G / ˆkkh '.

In order to prove completeness, we first need a definition and a simple lemma.

Definition 6.5 (‚FO ) Let ‚ be a relation existence theory. Then ‚FO is the
theory ¹�i Œ ESi= ER� W 9 ER�i . ER/ 2 ‚º, where the tuples of symbols ESi are all disjoint
and otherwise unused.

Lemma 6.6 Let ‚ be a relation existence theory, and letM be a model such that
M ˆ ‚FO . Then the least general model over it .M;L/ is ‚-closed.

Proof Consider any 9 ER�. ER/ 2 ‚. Then M ˆ �. ESi / for some tuple of relation
symbols ESi in the signature ofM . Then, the teams EX associated to the corresponding
relations are in L, and for these teams we haveM ˆ �Œ ERel. EX/= ER�, as required.

Theorem 6.7 (Completeness) Suppose that � j  ` ' is ‚-valid. Then it is
provable in our proof system plus PS-‚.

Proof LetM be any first-order model satisfying ‚FO , where we assume that the
relation symbols used in the construction of ‚FO do not occur in � , in  , or in '.
Then, by Lemma 6.6, .M;L/ is ‚-closed, and this implies that, for all assignments
h such thatM ˆh � ,M ˆkkh '.

Therefore, ‚FO ; � j  ` ' is valid, and hence, for some finite � � ‚FO it
holds that �;� j  ` ' is provable. Now we can get rid of � through repeated
applications of rule PS-‚ and, therefore, prove that � j  ` ', as required.

7 Conclusions

We began this work by defining a general semantics for independence logic. Then
we proved that—owing to the relationship between independence logic and existen-
tial second-order logic—in order to study validity with respect to this semantics it
suffices to examine least general models. We then showed that, because of the cor-
respondence between teams in least general models and first-order formulas with
parameters, we could limit ourselves to study entailments between first-order team-
defining formulas and independence logic formulas. Finally, we developed a sound
and complete proof system for this semantics, and we showed that this system can be
easily strengthened by assuming the existence of more teams.

As we said, the correspondence between independence logic and existential
second-order logic is of essential importance for the construction we described:
extending our approach to such logics as team logic or intuitionistic dependence
logic promises to be nontrivial, although certainly not impossible. The relationship
between our approach and the one developed by Kontinen and Väänänen in [12] is
also certainly worth investigating.

Furthermore, entailment semantics—the key ingredient of our construction, and
our “bridge” between general model semantics and the proof system—is, as we
wrote, of independent interest for a more syntactic approach to the study of depen-
dence and independence, and more in general for the study of this interesting family
of logics.
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Notes

1. Later, Cameron and Hodges [2] proved, through combinatorial methods, that no compo-
sitional semantics for such a logic exists in which the satisfaction relation is predicated
over single assignments.

2. That paper also characterized precisely the expressive power of independence logic with
respect to open formulas, thus answering an open problem of [5], and proved that inclu-
sion and exclusion logic are strictly weaker than independence logic.

3. Disjunction and conjunction are associative in this logic; hence, we will write '_ and
' ^  for .' _  / and .' ^  / wherever the intended meaning is clear.

4. Here by sŒm=y�jEx we intend the restriction of sŒm=y� to the domain ¹x1; : : : ; xnº. If y
is among x1; : : : ; xn, then this is the same of sŒm=y� itself; otherwise, it is simply s.

5. That is, Dom.h0/ � Dom.h/, and h0. Ep/ D h. Ep/.

6. Without loss of generality, we can assume that the signature ofM does not contain the
symbol R.

7. To be entirely formal, this passage consists of j Epj distinct applications of PS-depar, all
of which are correct because none of the parameters in Ep appear in  .

8. The fact that it is countable follows at once from the fact that it is a first-order theory
over a countable vocabulary.
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