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Uncomputably Noisy Ergodic Limits

Jeremy Avigad

Abstract V’yugin has shown that there are a computable shift-invariant mea-
sure on 2N and a simple function f such that there is no computable bound on
the rate of convergence of the ergodic averages Anf . Here it is shown that in
fact one can construct an example with the property that there is no computable
bound on the complexity of the limit; that is, there is no computable bound on
how complex a simple function needs to be to approximate the limit to within a
given ".

Let 2N denote Cantor space, the space of functions from N to the discrete space
¹0; 1º under the product topology. Viewing elements of this space as infinite se-
quences, for any finite sequence � of 0’s and 1’s let Œ�� denote the set of elements of
2N that extend � . The collection B of Borel sets in the standard topology are gener-
ated by the set of such Œ��. For each k, let Bk denote the finite � -algebra generated
by the partition ¹Œ�� j length.�/ D kº. If a function f from 2N to Q is measurable
with respect to Bk , I will call it a simple function with complexity at most k.

Let � be any probability measure on .2N;B/, and let f be any element of L1.�/.
Say that a function k from QC to N is a bound on the complexity of f if, for every
" > 0, there is a simple function g of complexity at most k."/ such that kf �gk < ".
If .fn/ is any convergent sequence of elements of L1.�/ with limit f , say that r."/
is a bound on the rate of convergence of .fn/ if, for every n � r."/, kfn � f k < ".
(One can also consider rates of convergence in any of the Lp-norms for 1 < p <1,
or in measure. Since all the sequences considered below are uniformly bounded, this
does not affect the results.)

Now suppose that � is a computable measure on 2N in the sense of computable
measure theory (see Hoyrup [1], Weihrauch [4]). Then if f is any computable el-
ement of L1.�/, there is a computable sequence .fn/ of simple functions that ap-
proaches f with a computable rate of convergence r."/; this is essentially what it
means to be a computable element of L1.�/. In particular, setting k."/ equal to the
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complexity of fr."/ provides a computable bound on the complexity of f . But the
converse need not hold: if r is any noncomputable real number and f is the constant
function with value r , then f is not computable, even though there is a trivial bound
on its complexity.

It is not hard to compute a sequence of simple functions .fn/ that converges to
a function f even in the L1-norm, with the property that there is no computable
bound on the complexity of the limit, with respect to the standard coin-flipping mea-
sure on 2N. Notice that this is stronger than saying that there is no computable bound
on the rate of convergence of .fn/ to f ; it says that there is no way of computing
bounds on the complexity of any sequence of good approximations to f .

To describe such a sequence, for each k, let hk be the Bk-measurable Rademacher
function defined by

hk D
X

¹� jlength.�/Dkº

.�1/�k�11Œ��;

where �k�1 denotes the last bit of � and 1Œ�� denotes the characteristic function of
the cylinder set Œ��. Intuitively, hk is a “noisy” function of complexity k. Finally,
let fn D

P
i�n 4

�'.i/hi , where ' is an injective enumeration of any computably
enumerable set, like the halting problem, that is not computable. Given any m, if n
is large enough so that '.j / > m whenever j > n, then for every i > n and every
x we have jfi .x/ � fn.x/j �

P
j�m 4

�j < 1=.3 � 4m/. Thus the sequence .fn/
converges in the L1-norm. At the same time, it is not hard to verify that if f is the
L1-limit of this sequence and g is a simple function of complexity at most n such
that �.¹x j jg.x/ � f .x/j > 4�.mC1/º/ < 1=2, then m is in the range of ' if and
only if '.j / D n for some j < n. Thus one can compute the range of ' from any
bound on the complexity of f .

The sequence .fn/ just constructed is contrived, and one can ask whether similar
sequences arise “in nature.” Letting Anf denote the ergodic average 1

n

P
i<n f ıTn,

the mean ergodic theorem implies that for every measure � on 2N and f in L1.�/,
the sequence .Anf / converges in theL1-norm. However, V’yugin [2], [3] has shown
that there is a computable shift-invariant measure � on Cantor space such that there
is no computable bound on the rate of convergence of .An1Œ1�/. In V’yugin’s con-
struction, the limit does not have the property described in the last paragraph; in
fact, it is very easy to bound the complexity of the limit in question, which places a
noncomputable mass on the string of 0’s and the string of 1’s, and is otherwise ho-
mogeneous. The next theorem shows, however, that there are computable measures
� such that the limit does have this stronger property.

Theorem There is a computable shift-invariant measure � on 2N such that if
f D limnAn1Œ1�, the halting problem can be computed from any bound on the
complexity of f .

Proof If � is any finite binary sequence, let �� denote the element ��� : : : of
Cantor space. For each e, define a measure �e as follows. If Turing machine e halts
in s steps, let �e put mass uniformly on these 8s elements:
� all 4s shifts of .1s03s/�,
� all 4s shifts of .13s0s/�.

Otherwise, let �e divide mass uniformly between 0� and 1�. Each measure �e is
shift invariant, by construction. I will show, first, that �e is computable uniformly
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in e, which is to say, there is a single algorithm that, given e, � , and " > 0, com-
putes �e.Œ��/ to within ". I will then show that information as to the complex-
ity needed to approximate f in .2! ;B; �e/ allows one to determine whether or
not Turing machine e halts. The desired conclusion is then obtained by defining
� D

P
e 2
�.eC1/�e .

If Turing machine e does not halt, �e.Œ��/ D 1=2 if � is a string of 0’s or a string
of 1’s, and �e.Œ��/ D 0 otherwise. Suppose, on the other hand, that Turing machine
e halts in s steps, and suppose that k < s. Then there are 2.k � 1/ additional strings
� with length k such that �e.Œ��/ > 0, each consisting of a string of 1’s followed by
a string of 0’s or vice versa. For each of these � , �e.Œ��/ D 1=4s, and if � is a string
of 0’s or a string of 1’s of length k, �e.Œ��/ D 1=2�.k�1/=4s. Thus when s is large
compared to k, the nonhalting case provides a good approximation to �e.Œ��/ when
length.�/ � k, even though e eventually halts. Thus, to compute �e.Œ��/ to within
", it suffices to simulate the eth Turing machine O.k="/ steps. If it halts before then,
that determines �e exactly; otherwise, the nonhalting approximation is close enough.

Now consider f D limnAn1Œ1� in .2! ;B; �e/. Note that .An1Œ1�/.!/ counts
the density of 1’s among the first n bits of !. If Turing machine e does not halt,
f .!/ D 1 if ! is the sequence of 1’s, and f .!/ D 0 if ! is the sequence of 0’s. Up
to a.e. equivalence, these are all that matters, since the mass concentrates on these
two elements of Cantor space. If Turing machine e halts in s steps, then f .!/ D 1=4
on the shifts of .1s03s/�, and f .!/ D 3=4 on the shifts of .13s0s/�.

Suppose that g is Bk-measurable. If Turing machine e halts in s steps and k is
much less than s, then roughly 3=4 of the shifts of .1s03s/� lie in Œ0k � and roughly
1=4 lie in Œ1k �; and roughly 3=4 of the shifts of .13s0s/� lie in Œ1k � and roughly 1=4
lie in 0k . But f .!/ only takes on the values 1=4 and 3=4, and g is constant on Œ0k �
and Œ1k �. So if k is much less than s, �e.¹! j jf .!/�g.!/j > 1=8º/ > 1=4. Turning
this around, given the information that �e.¹! j jf .!/ � g.!/j > 1=8º/ � 1=4 for
some g of complexity at most k enables one to determine whether or not Turing
machine e halts; namely, one simulates the Turing machine for O.k/ steps, and if it
has not halted by then, it never will.

Set � D
P
e 2
�.eC1/�e . Since, for any g,

�e
�®
!
ˇ̌
jf .!/ � g.!/j > 1=8

¯�
� �

�®
!
ˇ̌
jf .!/ � g.!/j > 1=.8 � 2eC1/

¯�
;

knowing a ke for each e with the property that �.¹! j jf .!/ � g.!/j > 1=.8 �

2eC1/º < 1=4 for some g of complexity at most ke enables one to solve the halting
problem. But such a ke can be obtained from a bound on the complexity of f . Thus
� satisfies the statement of the theorem.

The proof above relativizes, so for any set X there is a measure � on 2N, computable
fromX , such that no bound on the rate of complexity of f can be computed fromX .
As the following corollary shows, this implies that limnAn1Œ1� can have arbitrarily
high complexity.

Corollary For any v W QC ! N there is a measure � on 2N such that if
f D limnAn1Œ1� and k."/ is a bound on the complexity of f , then lim sup"!0 k."/=
v."/ D1.

Proof Let � be such that no bound on the complexity of f can be computed from
v. If the conclusion failed for some k, then there would be a rational "0 > 0 and N
such that for every " < "0, k."/ < N �v."/. But then k0."/ D N �v.min."; "0// would
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be a bound on the complexity of f that is computable from v, contrary to our choice
of �.
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