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An Order-Theoretic Account of
Some Set-Theoretic Paradoxes

Thomas Forster and Thierry Libert

Abstract We present an order-theoretic analysis of set-theoretic paradoxes.
This analysis will show that a large variety of purely set-theoretic paradoxes
(including the various Russell paradoxes as well as all the familiar implemen-
tations of the paradoxes of Mirimanoff and Burali-Forti) are all instances of a
single limitative phenomenon.

1 Set-Theoretical Paradoxes

“Logical Paradoxes”? The paradoxes of the Age of the Crisis in Foundations were
divided by Ramsey—in a robust classification that endures to this day—into two
bundles called the Semantic paradoxes and the Logical paradoxes. The semantic
paradoxes (paradox of the liar, paradox of the smallest number not definable in fewer
than nineteen syllables, . . . ) are so called because they involve semantic notions
such as truth and definability; the logical paradoxes do not. We incline to the view
that—since the semantic paradoxes involve notions additional to those involved in
the logical paradoxes—it is necessary to understand the logical paradoxes before
tackling the semantic paradoxes.

The logical paradoxes fall naturally into two classes:

(i) those that involve set-theoretic notions only; and

(ii) those that involve other mathematical notions, such as cardinals or ordinals
or other data structures such as lists or streams.

In the spirit of the last paragraph we suggest that the best way to understand (ii) is
to first master (i). Furthermore, the paradoxes of bundle (ii) give rise to paradoxes
involving set-theoretic notions only once we decide on implementations in set theory
for the non-set-theoretic notions that they concern. It is therefore good policy to

Received November 16, 2009; accepted April 25, 2010; printed December 1, 2010
2010 Mathematics Subject Classification: Primary, 03E65; Secondary, 03E70
Keywords: set-theoretic paradoxes, logical paradoxes, Russell paradox, Mirimanoff

paradox, Burali-Forti paradox
c© 2010 by University of Notre Dame 10.1215/00294527-2010-033

1

http://www.nd.edu/~ndjfl
http://www.nd.edu


2 Thomas Forster and Thierry Libert

identify those paradoxes of naïve set theory that show themselves in this way as
paradoxes in their own right and to distinguish them from the paradoxes of which
they are implementations.

We take a very literal view here of what the language of set theory is: it is the
language whose sole nonlogical gadget is ‘∈’.1 On this reading, the concepts of
function, cardinal, stream, well-ordering, . . . are not part of set theory, though of
course they can be implemented in it. We need to distinguish the semiformal logical
paradoxes (that use incompletely formalized mathematical notions like ordered pair,
function, and well-ordering) from the formalized counterparts that are their imple-
mentations in set theory. Accordingly, we shall insist that the paradoxes of naïve set
theory are a proper subset of the collection of logical paradoxes. The paradoxes of
Cantor and Burali-Forti are logical paradoxes all right but they are not paradoxes of
naïve set theory because they involve the notions of cardinal and ordinal.

Typically one associates a paradox of naïve set theory with a specific set existence
axiom and, in fact, with a specific closed set abstract ‘{x | ϕ(x)}’. Comprehension
axioms are usually thought of as coming equipped with parameters, but it is worth
recording here that all paradoxical set abstracts can actually be set up without them
and within a first-order language only. Moreover, hardly any of them seem to require
extensionality, and this fact tells us that the set-theoretic paradoxes are not au fond
set-theoretic phenomena.

Some set existence axioms are refutable in first-order logic. Some, as we shall
see, are not paradoxical on their own, but give rise to contradiction in conjunction
with set existence axioms (with parameters) that are so uncontroversial and so weak
that most people don’t even know their names. There are two weak principles which
we will study below:

Adjunction ‘x ∪ {y} exists for all x and y’, that is,

∀x∀y∃z∀w(w ∈ z ↔ w ∈ x ∨ w = y);

Subcission ‘x\{y} exists for all x and y’, that is,

∀x∀y∃z∀w(w ∈ z ↔ w ∈ x ∧ w 6= y).

We are indebted to Hazen for introducing us to these names; the second is his
coinage. The operations themselves are to be found in [10].

The best-known paradoxes of pure set theory are Russell’s paradox and its gener-
alizations with exponent n, that is, those associated with the following set abstract,
for each n ∈ N0:

‘{x | ¬ ∃y1 . . . ∃yn−1(x ∈ yn−1 ∈ · · · ∈ y1 ∈ x)}’.

It is worth emphasizing that the nonexistence of these classes is a theorem of first-
order predicate logic: no set-theoretic axioms are needed. Indeed (although we will
not develop this point) these nonexistence results can be proved purely construc-
tively. A (constructive) proof of the nonexistence of ‘{x | ∀y(x ∈ y → y 6∈ x)}’
(supplied by Grice) can be found in the Appendix.

All the paradoxes of naïve set theory seem to have the special character that we
notice in Russell’s paradox, namely, that the way one arrives at a contradiction is
by asking whether the corresponding set abstract belongs to itself or not; so self-
membership seems to play a key role. However, not every paradox of naïve set
theory is associated with a set abstract as simple as Russell’s.
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The paradox of Mirimanoff—in one of its many forms—can be set up as a kind
of generalization of Russell with exponent ∞, and to look like a purely set-theoretic
paradox, but a paradox in an infinitary language, in the sense that it seems that we
can prove by logic alone the nonexistence of

‘{x | ¬ ∃y1 . . . ∃yn . . . (· · · ∈ yn ∈ · · · ∈ y1 ∈ x)}’.

One has to be careful in saying things like this, since one does not want to put too
much weight on the idea of a proof in infinitary languages. Without resorting to such
languages the present version of Mirimanoff does not appear as a paradox of naïve
set theory because it involves the notion of stream.

The more elaborate the non-set-theoretic notions involved in a logical paradox, the
more complicated will be the set abstract associated with any implementation of that
paradox in set theory. In the case of the paradoxes of Mirimanoff and Burali-Forti,
the two corresponding collections of sets, namely, the collection of well-founded
sets and the collection of von Neumann ordinals, admit inductive definitions. Not
all paradoxical classes have inductive definitions (the Russell class is not inductively
defined, for example); this is nevertheless a straw in the wind. There is a tendency for
inductively defined families of sets to be paradoxical—at least in those cases where
the operations that construct them have some infinitary, higher-order, or unbounded
character (see [3], Section 5, for a general result along these lines). Such families
of sets can be thought of in naïve set theory as least fixpoints (lfps) of functions that
are monotone on the poset of all sets under inclusion; for example, the cumulative
hierarchy appears as the lfp for the function that sends a set to the set of all its
subsets—namely, the power set operation; the collection of von Neumann ordinals
appears as the lfp for the function that sends a set to the set of its transitive subsets.
We are greatly struck by the observation that, in contrast, the corresponding greatest
fixpoints (gfps) seem not to be paradoxical.

This contrast between the lfps and the gfps might seem odd: If the lfp is para-
doxical (and is therefore a proper class) then surely the gfp must also be a proper
class. . . ? To think like this is to resort to ZF-style ways of thinking—and therefore
ZF-style ways of foreclosing exploration—before we are compelled to. The gfp of
the power set operation is not a paradoxical object: we know this because there are
consistent set theories with a universal set.

On the other hand, to think naïvely is not to think carefully—naïve set theory is
inconsistent after all. As a matter of fact, it is not true that the collection of well-
founded sets—however this is implemented—coincides with the lfp of the power set
operation acting on sets, because (as we shall see in Section 5) there are consistent
set theories in which this latter object can be proved to be a set.

These thoughts about fixpoints prompted us to have a look at set-theoretic para-
doxes from an order-theoretic viewpoint. And—since classes that are paradoxical in
one system may well be entirely harmless in another—we have opted for an external
analysis through what we call membership structures, rather than any analysis inter-
nal to a particular set theory. Not only are we going to prove in this paper that lfps of
certain monotone functions associated with the power set operation are intrinsically
paradoxical, but more generally that what we shall call quasi lfps are. This will en-
able us to see that a large variety of purely set-theoretic paradoxes (including all the
familiar implementations of the paradoxes of Mirimanoff and Burali-Forti, as well
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as the various Russell paradoxes) are actually one and all manifestations of the one
phenomenon—and one not even specifically set-theoretic.

2 Membership Structures, Galois Connections

We work in an informal meta-set-theory, which will not be spelled out, since not
much depends on it; readers can mostly please themselves which system they wish
to reason it. However, we are emphatically not going to assume the axiom of choice.

We define a membership structure as a pair 〈V, s〉 where V is a set and
s : V −→ P (V ). Elements of V are containers and the contents of a con-
tainer a is precisely the subset s(a) of V . We will use boldface letters for contents,
writing a for s(a) when convenient. Accordingly, given a membership structure
〈V, s〉, we say that a is a member of b, and write a ∈s b, if a ∈ b. We will refer to
∈s as the membership relation associated with s. Of course, membership structures
could equally be defined by relational structures of type 〈V, R〉, where V 6= ∅ and
R ⊆ V × V .

That way of thinking is reminiscent of di Giorgi’s view on structures for the lan-
guage L of set theory, namely, as a set V together with an injection s : V ↪→ P (V ).2

The injectivity of s clearly compels the membership relation ∈s to be extensional, as
indeed befits a membership relation in set theory. What is striking about this picture
is its simplicity: all the information about the model 〈V, ∈s〉 is encoded in the choice
of the injection s, and the whole transfinite structure of ∈ has been compressed into
two levels. We will use common set-theoretic terminology even in those cases where
s is not 1-1.

Given a membership structure 〈V, s〉, the language LV is L extended by the ele-
ments of V as constants, and then, given a closed LV -formula ϕ, we write ϕs for the
interpretation of ϕ in 〈V, ∈s〉, that is, ϕ where ∈ is interpreted by ∈s , and where all
quantifiers are taken to range over V . We will make use of the common set-theoretic
abbreviations in expressing formulas of L or LV . In particular, we might be using
operations such as power set ‘P ’, union ‘

⋃
’, and other set abstracts while these

might not be defined, the only proviso being that they can be eliminated from the
formula in which they appear. We let P1(V ) denote the set of (first-order) definable
subsets of V , that is, A ∈ P1(V ) if and only if there exists an LV -formula ϕ(x) (with
at most x as free variable) such that A = {a ∈ V | ϕ(a/x)s}. The notation P1∗(V )
is when parameters are proscribed, that is to say, when defining formulas ϕ(x) are
restricted to L.

Clearly, s[V ] ⊆ P1(V ), given that s(b) = {a ∈ V | a ∈s b} for each b ∈ V ,
by definition of ∈s . In contrast the discovery that P1∗(V ) 6⊆ s[V ], for example,
{a ∈ V | a /∈s a} /∈ s[V ] was rather a shock: containers cannot have just any
L-definable subset of V as contents. In other words, there are limitations on the kind
of contents available to elements of membership structures.

Remark 2.1 Subsets of V that can be proved not to belong to s[V ] in a given
membership structure 〈V, s〉 will be said to be problematic rather than “paradoxical.”
There is clearly nothing actually paradoxical about the theorem of Cantor’s that says
that s : V −→ P (V ) can never be surjective.3
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Cantor’s diagonal construction provides one particular answer to the following some-
what combinatorial question.

Question 2.2 Given a set V together with a function s : V −→ P (V ), how can
one generate a W ⊆ V such that W /∈ s[V ]?

More generally, any paradoxical set abstract ‘{x | ϕ(x)}’, when interpreted in 〈V, s〉,
will provide us with a particular answer to that question. What we are going to do in
this paper is to provide answers—which we call limitative results—that will account
for multiple set-theoretic paradoxes simultaneously.

Our limitative results will involve some order-theoretic machinery, which will be
introduced in Section 3. For the moment we will illuminate a few basic set-theoretic
notions from an order-theoretic viewpoint, which can easily be done by adopting
di Giorgi’s view on set-theoretic structures.

Given a membership structure 〈V, s〉, we regard 〈P (V ), ⊆〉 as a complete upper-
semilattice and define σ as the unique endomorphism such that, for all a ∈ V ,

σ({a}) := s(a).

In other words, we regard 〈P (V ), ⊆〉 as the free complete upper-semilattice on V ,
with the inclusion map ι : V −→ P (V ) : a 7−→ {a}, and we look at s as a
substitution,4 its action on every A ⊆ V being just defined by

σ(A) :=

⋃
{s(b) | b ∈ A}.

Remark 2.3 In the set-theoretic case, an object a ∈ V such that a = {a}—that is,
s(a) = ι(a)—is called a Quine atom. Such objects have no substitutive action: they
just fix the corresponding “variables,” namely, atoms in P (V ).

The theory of Galois connections on posets tells us that to any function g preserving
sups on a complete lattice L we can associate a unique function d preserving infs
such that for all x, y in L , g(x) 6 y if and only if x 6 d(y)—in which case 〈g, d〉 is
called a Galois connection (or an adjunction) on L; g is the left (or lower) adjoint, d
the right (or upper) one. It is also standard that any left (respectively, right) adjoint
preserves all existing sups (respectively, infs).

Now, since σ preserves sups in 〈P (V ), ⊆〉, it must have a right adjoint, which we
denote by π , and which is actually defined on every B ⊆ V by

π(B) := {a ∈ V | s(a) ⊆ B},

for it is readily seen that σ(A) ⊆ B ⇐⇒ A ⊆ π(B), for all A, B ⊆ V . We shall call
〈σ, π〉 the canonical Galois connection associated with 〈V, s〉. General properties of
Galois connections ensure that (σ ◦ π)(A) ⊆ A ⊆ (π ◦ σ)(A) for all A ⊆ V . It is
actually the case here that (σ ◦ π)(a) = a for each a ∈ V .

Remark 2.4 We note that any Galois connection 〈ρ, θ〉 on 〈P (V ), ⊆〉 can be seen
as the canonical Galois connection of some membership structure 〈V, s〉, namely,
s : V −→ P (V ) defined by s(b) := (ρ ◦ ι)(b) for each b ∈ V . This is of course
because ρ(A) =

⋃
{ρ({b}) | b ∈ A} for every A ⊆ V , given that ρ preserves

⋃
. All

that is to say that membership structures on V and Galois connections on 〈P (V ), ⊆〉

are synonymous, mathematically speaking.5
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In the set-theoretic case, σ and π correspond exactly to the union ‘
⋃

’ and power
set ‘P ’ operations, respectively. And saying that a set-theoretic structure 〈V, s〉
satisfies the axiom of union (respectively, power set) just amounts to saying that
s[V ] is closed under σ (respectively, π ). Most axioms of set-theory are indeed
intended to provide closure properties of s[V ] with respect to natural or simply
useful operations. After all, comprehension and its restricted versions are some
forms of completeness. Basic axioms that are going to play a role later are the
axiom of singleton, which holds in 〈V, s〉 precisely when ι[V ] ⊆ s[V ], and the
axiom of self-subcission, which holds in 〈V, s〉 when (s − ι)[V ] ⊆ s[V ], where
s − ι : V −→ P (V ) : a 7−→ s(a)\ι(a). These two are restricted versions of
(respectively) the axioms of adjunction and subcission mentioned in Section 1.

3 Inductive and Transitive Subsets

Given a ⊆-monotone operator θ on P (V ), we recall that the set of fixpoints fix(θ) is
a complete sublattice of 〈P (V ), ⊆〉. In particular, θ has an lfp and a gfp, which we
denote by ⊥θ and >

θ , respectively, and which are given by

⊥θ =

⋂
ind(θ) & >

θ
=

⋃
trans(θ),

where

ind(θ) := {A ⊆ V | θ(A) ⊆ A} & trans(θ) := {A ⊆ V | A ⊆ θ(A)}.

Cued by the notation, we shall refer to members of ind(θ) (respectively, trans(θ)) as
θ-inductive (respectively, θ -transitive) subsets of V . Clearly these notions are dual,
and we note that for any Galois connection 〈ρ, θ〉 in 〈P (V ), ⊆〉, trans(θ) = ind(ρ).
Our choice of terminology is in part guided here by the set-theoretic case where
a ∈ V is said to be transitive precisely when a ⊆ π(a), or equally σ(a) ⊆ a—
whereas it is sometimes said to be fat (instead of inductive) when π(a) ⊆ a. We
shall also use the terminology ∈-inductive (respectively, ∈-transitive) instead of π -
inductive (respectively, π -transitive).

We are going to be interested in what we shall call quasi-least-fixpoints (qlfps)
and quasi-greatest-fixpoints (qgfps) of certain monotone operators—but the reader
is warned that these so-called qlfps and qgfps might, in fact, not be fixpoints at all!

Definition 3.1 Given a ⊆-monotone operator θ on P (V ) and S ⊆ P (V ), we
define the qlfp and qgfp of θ generated by S, respectively, by

⊥
S
θ :=

⋂
(ind(θ) ∩ S) & >

θ
S :=

⋃
(trans(θ) ∩ S).

Thus ⊥θ and >
θ just correspond to S := P (V ), and we note that >

θ
S is monotone in

S, that is,
S1 ⊆ S2 ⇒ >

θ
S1

⊆ >
θ
S2

,

whereas ⊥
S
θ is antimonotone in S, that is,

S1 ⊆ S2 ⇒ ⊥
S2
θ ⊆ ⊥

S1
θ .

However, both are monotone in θ , that is,

θ1 v θ2 ⇒ ⊥
S
θ1 ⊆ ⊥

S
θ2 & >

θ1
S ⊆ >

θ2
S ,

where θ1 v θ2 if and only if ∀A ⊆ V, θ1(A) ⊆ θ2(A). Besides, consider the
following fact.



Set-Theoretic Paradoxes 7

Fact 3.2 For any ⊆-monotone operator θ on P (V ) and S ⊆ P (V ), we have

(i) ⊥
S
θ ∈ ind(θ) (respectively, >

θ
S ∈ trans(θ));

(ii) ⊥
S
θ ∈ fix(θ) (respectively, >

θ
S ∈ fix(θ)) whenever S is closed under θ and θ

is a right adjoint (respectively, left adjoint).

(iii) ⊥
S
θ ∈ fix(θ) (respectively, >

θ
S ∈ fix(θ)) whenever S is closed under θ and S

is closed under arbitrary
⋂ (

respectively,
⋃)

.6

Proof (i) For every B ∈ ind(θ) ∩ S, ⊥
S
θ ⊆ B, so that θ(⊥S

θ ) ⊆ θ(B) ⊆ B. It
follows that θ(⊥S

θ ) ⊆ ⊥
S
θ , that is, ⊥

S
θ ∈ ind(θ).

(ii) Let I := ind(θ) ∩ S. Assuming that S is closed under θ , we have θ [I] ⊆ I.
On the other hand, assuming that θ preserves

⋂
, we have θ(⊥S

θ ) =
⋂

θ [I]. Then it
follows from both assumptions that ⊥

S
θ =

⋂
I ⊆

⋂
θ [I] = θ(⊥S

θ ).

(iii) Assuming S is closed under
⋂

, ⊥
S
θ ∈ S; hence ⊥

S
θ ∈ ind(θ) ∩ S by (i). Then

θ(⊥S
θ ) ∈ ind(θ) ∩ S too, since S is closed under θ . So ⊥

S
θ ⊆ θ(⊥S

θ ).
The proof for >

θ
S is dual. �

We now turn to basic facts about duality.

Definition 3.3 Given a ⊆-monotone operator θ on P (V ), we define its dual θ̂ by
θ̂ (A) := θ(A−)−, where A−

:= V \A, for each A ⊆ V .

Clearly, ̂̂θ = θ , ρ̂ ◦ θ = ρ̂ ◦ θ̂ , and we note that 〈ρ, θ〉 is a Galois connection on
〈P (V ), ⊆〉 if and only if 〈θ̂ , ρ̂〉 is. Furthermore, we have the following.

Fact 3.4 For any ⊆-monotone operator θ on P (V ) and S ⊆ P (V ), we have

(i) ind(θ̂) = −trans(θ) & trans(θ̂) = −ind(θ),

(ii) ⊥
S
θ̂

= (>θ
−S)− & >

θ̂
S = (⊥−S

θ )−,

where −S := {A−
| A ∈ S}, for each S ⊆ P (V ).

Proof Immediate. �

As our main concern will be with the π operator or variants of it, it is worth making
explicit the definition of its dual: for every B ⊆ V ,

π̂(B) := {a ∈ V | s(a) G B},

where ‘G’ is defined for all A, B ⊆ V by

A G B ⇐⇒ A ∩ B 6= ∅.

4 The First Limitative Theorem

The production of set-theoretic paradoxes always involves self-membership some-
how. The following proposition precisely shows what kind of constraints this can
induce in the case of qlfps of a monotone operator θ bounded by π .

Proposition 4.1 Suppose θ v π and a ⊆ ⊥
S
θ for some a ∈ V, S ⊆ P (V ). Then,

a ∈s a implies B\{a} /∈ S for every B ∈ ind(θ).
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Proof Let B ∈ ind(θ) and B ′
:= B\{a}; so a /∈ B ′. Suppose a ∈ a and B ′

∈ S.
To get a contradiction, we show that θ(B ′) ⊆ B ′, which would imply a ⊆ B ′ since
a ⊆ ⊥

S
θ , and then a ∈ B ′. As B ′

⊆ B, we have θ(B ′) ⊆ θ(B) ⊆ B, by monotonicity
and the fact that B ∈ ind(θ). On the other hand, a /∈ θ(B ′). Otherwise, using our
assumption on θ , we would have a ∈ π(B ′), that is, a ⊆ B ′, and again a ∈ B ′.
Hence θ(B ′) ⊆ B ′. �

Accordingly, self-membership will be blocked for qlfps whose generating families
are replete, in the following sense.

Definition 4.2 Given a membership structure 〈V, s〉 and a ⊆-monotone operator θ
on P (V ), we say that S ⊆ P (V ) is θ -replete if

∀a ∈ V, a ∈ ind(θ) H⇒ ∃B ∈ ind(θ) : B\{a} ∈ S.

Remark 4.3 Some families are intrinsically θ -replete for every θ ; for example,
−ι[V ] or (s − ι)[V ], and a fortiori P1(V ) or P (V ). Others are if we assume 〈V, s〉
satisfies basic assumptions; for example, −s[V ] if 〈V, s〉 |H singleton, or s[V ] if
〈V, s〉 |H self-subcission. Of course, whenever S1 is θ -replete, so is S2 with S1 ⊆ S2.

On the other hand, self-membership is forced for distinguished subsets of V , notably
the ∈-inductive ones.

Lemma 4.4 If a ∈ ind(π) for some a, then a ∈s a.

Proof We simply observe that for every a ∈ V , a ∈ π(a). Therefore, if a is
π-inductive, that is, π(a) ⊆ a, then a ∈ a. �

So we can deduce the following limitative result from Proposition 4.1.

Theorem 4.5 Assume that S is π -replete. Then, whenever A ∈ ind(π) and
A ⊆ ⊥

S
π , we have A /∈ s[V ]. In particular, ⊥

S
π /∈ s[V ].

Proof Suppose that A ∈ ind(π), A ⊆ ⊥
S
π , and A = a for some a ∈ V . As S is

π-replete and a ∈ ind(π), it is the case that B\{a} ∈ S for some B ∈ ind(π), so
a /∈s a by Proposition 4.1. But a ∈s a by Lemma 4.4. �

It should be stressed that Theorem 4.5 is applicable not only to any qlfp of π whose
generating family S is π -replete, but also to any ∈-inductive subset below such a
qlfp—see Example 4.6. That said, we recall that ⊥

S
π is antimonotone in S, so that

any consequence of Theorem 4.5 with S2 ⊇ S1, for some π -replete S1, is already a
consequence of Theorem 4.5 with S1.

Now, to turn an application of that limitative result into a paradox of first-order
naïve set theory, one needs the corresponding problematic subset of V to be in
P1∗(V ). In view of Definition 3.1, that will be the case of ⊥

S
π provided the gen-

erating family S is quantifiable in L. To give an illustration, let us identify here a
variety of set-theoretic paradoxes that are associated with one possible choice for S
in Theorem 4.5, namely, S := −ι[V ].

Example 4.6 (Russell’s paradox with exponent n) For each n ∈ N0, let

ϕn(x) :≡ ¬∃y1 . . . ∃yn−1(x ∈ yn−1 ∈ · · · ∈ y1 ∈ x),

with the obvious convention that ϕ1(x) :≡ ¬(x ∈ x), and let

ϕ∞(x) :≡ ¬∃y1 . . . ∃yn . . . (· · · ∈ yn ∈ · · · ∈ y1 ∈ x),
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though this is not an L-formula. Then, for any n ∈ N0 ∪ {∞}, let

Rn := {a ∈ V | [ϕn(a)]s}.

Clearly, R∞ ⊆ Rn+1 ⊆ Rn for each n ∈ N0, and we remark that R1 = ⊥
−ι[V ]
π .

Indeed, we have

(⊥−ι[V ]
π )− = >

π̂
ι[V ]

=
⋃

{B ∈ ι[V ] | B ⊆ π̂(B)}

= {a ∈ V | ∃b ∈ V : a ∈ ι(b) & ι(b) ⊆ π̂(ι(b))}

= {a ∈ V | ∃b ∈ V : a = b & b ∈ s(b)}

= {a ∈ V | [a ∈ a]s}.

Now we observe that Rn is π -inductive, or equally that R−
n is π̂ -transitive, for each

n ∈ N0 ∪ {∞}. For n = 1 this follows from Fact 3.2(i) since R−

1 = >
π̂
ι[V ]

. Now
suppose n > 1, finite, and that a ∈ R−

n . Then there exist b1, . . . , bn−1 in V such that
a ∈s bn−1 ∈s . . . ∈s b1 ∈s a, or equally b1 ∈s a ∈s . . . ∈s b2 ∈s b1, which shows
that b1 ∈ s(a) ∩ R−

n , so s(a) G R−
n , that is, a ∈ π̂(R−

n ). The proof for n = ∞ is
similar. Thus we have shown that Rn ∈ ind(π) and Rn ⊆ ⊥

−ι[V ]
π , so it follows from

Theorem 4.5 that Rn never belongs to s[V ] for all n ∈ N0 ∪ {∞}. In other words,
‘{x | ϕn(x)}’ is always a paradoxical set abstract, as is widely known for n = 1,
and this does not rely on any set-theoretic assumption other than the existence of the
incriminated set-abstract—even in the case n = ∞, though this is not expressible
in L. Note also that it is not hard to concoct examples of membership structures in
which R∞ ( Rn+1 ( Rn for each n ∈ N0. For example, the membership structure
given by V := {a, b} with a := {b}, b := {a} is such that ∅ = R2 ( R1 = V .

So Russell’s paradox and its generalizations with exponent n all appear as manifes-
tations of the above limitative result. We show in the next section that so are the
inductive and regular versions of Mirimanoff’s paradox.

5 Well-foundedness and Regularity

Mirimanoff’s paradox concerns the set of all well-founded sets, that is, as commonly
stated, the set of all those sets such that there is no infinite descending ∈-chain start-
ing at them. Chains are not purely set-theoretic objects, though they can of course
be implemented as sets. However, we are not going to define well-foundedness in
terms of descending chains here. That would require us to assume the axiom of
dependent choice in order to show that the well-founded part of a membership struc-
ture satisfies ∈-induction, which can arguably be regarded as the main motivation
for well-foundedness, independently of any form of choice.7 Then another source
of complications is the second-order nature of induction principles. These can only
be approximated in first-order theories by axiom schemes, which can nevertheless be
replaced in some set-theoretic systems by a single axiom.

By Definition 3.1, ⊥
S
π is the largest subset A of V such that

∀B ∈ S, π(B) ⊆ B H⇒ A ⊆ B.

In other words, ⊥
S
π is the largest subset for which ∈-induction over S works. We

therefore identify ⊥
P (V )
π as the (standard) well-founded part of 〈V, s〉, which will

be denoted by Wf2. The superscript ‘2’ is to remind us of the second-order nature
of that object and to distinguish it from its first-order approximation Wf1, which we
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then recognize as ⊥
P1(V )
π . In set-theoretical contexts it seems natural to also con-

sider the zero-order, grounded version Wf0 that we define as ⊥
s[V ]
π . It follows from

Theorem 4.5 that Wf2 and Wf1 are always problematic, whereas Wf0 is problematic
only when s[V ] is π -replete, as for instance when 〈V, s〉 |H self-subcission (cf. Re-
mark 4.3). These limitations are what we call the inductive versions of Mirimanoff’s
paradox.

Remark 5.1 Unless the membership structure is finite, and as pointed out above,
the axiom of dependent choice is needed in the metatheory in order to show that
Wf2

= R∞. We shall not pay much attention in the sequel to second-order classes as
we want our discussion to be transposable—as far as possible—into first-order set
theory.

The zero-order version gives rise directly to a paradox of first-order naïve set the-
ory, since the definition of Wf0 involves quantification over s[V ] only, so that
Wf0

∈ P1∗(V ):

Wf0
:= ⊥

s[V ]
π =

⋂
{B ∈ s[V ] | π(B) ⊆ B}

= {a ∈ V | ∀b ∈ V, π(b) ⊆ b ⇒ a ∈ b}

= {a ∈ V | [∀y(Py ⊆ y → a ∈ y)]s}.

However, we emphasize that the nonexistence of the corresponding set abstract

‘{x | ∀y(Py ⊆ y → x ∈ y)}’

is not a theorem of first-order predicate logic: some (other) instances of comprehen-
sion are needed, such as self-subcission. As a matter of fact, there are set-theoretic
structures in which Wf0

∈ s[V ] (see Examples 5.6 and 5.8 below).
On the other hand, one would also remark that Wf0

= V in any model of a
set theory that outlaws fat sets, for example, any set theory that has unrestricted
separation, as does Zermelo’s system (among others).

Fact 5.2 Assume 〈V, s〉 |H separation.8 Then there is no b ∈ V such that
π(b) ⊆ b.

Proof Suppose there was b ∈ V such that π(b) ⊆ b. By separation, there would
exist r ∈ V such that r = b ∩ R1, where R1 := {a ∈ V | a /∈s a} (cf. Example 4.6).
But then r ∈s b, so one would have r ∈s r if and only if r /∈s r . �

So Wf0 is unlikely to collect well-founded sets only. At the first-order level that
should be the role of Wf1, though this might not be first-order definable. One way
of showing that Wf1

∈ P1∗(V ), precisely, goes by showing that Wf1 coincides with
the collection of regular sets, to which we now turn.

We write Rg for ⊥
−s[V ]
π , which we call the regular part of 〈V, s〉 since

Rg := ⊥
−s[v]
π =

⋂
{B ∈ −s[V ] | π(B) ⊆ B}

= {a ∈ V | ∀b ∈ V, π(b−) ⊆ b−
⇒ a ∈ b−

}

= {a ∈ V | ∀b ∈ V, a ∈ b ⇒ b 6⊆ π̂(b)}

= {a ∈ V | [∀y(a ∈ y → ∃z(z ∈ y ∧ z ∩ y = ∅))]s},

and this indeed corresponds to the notion of regularity that one uses in set theory.
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Remark 5.3 The regularity condition is not to be confused with the ∈-minimality
requirement that appears in the usual formulation of the foundation axiom in ZF,
which asserts that V = F, where

F := {a ∈ V | [a = ∅ ∨ ∃x(x ∈ a ∧ x ∩ a = ∅))]s}.

Although the assertion V = F is logically equivalent to V = Rg, it should be clear
that in general F 6= Rg; for example, in any 〈V, s〉 with a, b ∈ V such that a = V ,
b = ∅, and {a} ∈ s[V ], we have a ∈ F\Rg. On the other hand, a basic set-theoretic
assumption suffices to ensure that Rg ⊆ F.

Fact 5.4 Assume 〈V, s〉 |H self-adjunction.9 Then Rg ⊆ F.

Proof Let a ∈ Rg with a 6= ∅. Now, consider b ∈ V such that b = a ∪ {a}. As
a ∈s b and a ∈ Rg, there is some c ∈ V such that c ∈s b and c ∩ b = ∅. It is not the
case that c = a, since a 6= ∅. Hence c ∈s a. On the other hand, c ∩ a = ∅, because
c ∩ b = ∅. This shows that a ∈ F. �

It follows from Theorem 4.5 that Rg is problematic whenever −s[V ] is π -replete, as
for instance when 〈V, s〉 |H singleton (cf. Remark 4.3). And this limitation is what
we call the regular version of the paradox of Mirimanoff. Again we stress that the
nonexistence of the corresponding set abstract

‘{x | ∀y(x ∈ y → ∃z(z ∈ y ∧ z ∩ y = ∅))}’

requires other instances of comprehension, such as singleton. Or else self-subcission
and complement, for we note that Rg = Wf1 whenever −s[V ] = s[V ], that is,
when 〈V, s〉 |H complement. But most set theorists would consider the existence of
complement as more controversial than the one of singleton or even self-subscission.
Note by the way that singleton and self-subcission are relatively independent of each
other in the presence of complement; for example, the membership structure made of
two Quine atoms—that is, V := {a, b} with a = {a}, b = {b}—satisfies complement
and singleton but not self-subcission.

Clearly, Wf1
⊆ Rg, since −s[V ] ⊆ P1(V ) and ⊥

S
π is antimonotone in S. Any

ZF-ist would tell us that Wf1
= Rg, but this is due to the axiomatic cocktail of

ZF. The key ingredients are in fact separation and transitive containment, which is a
consequence of replacement in ZF.

Fact 5.5 Assume that 〈V, s〉 |H separation + transitive containment10 and let
B ∈ P1(V ) such that π(B) ⊆ B. Then Rg ⊆ B. So it follows that Rg ⊆ Wf1.

Proof Suppose a ∈ Rg but a /∈ B. Then take any b ∈ V such that a ∈s b and
b ⊆ π(b), and let c ∈ V such that c := b ∩ Bc (separation). As a ∈s c and a ∈ Rg,
there exists d ∈s c such that d ∩ c = ∅. But as d ∈s b and b ⊆ π(b), we have
d ⊆ b, and thus d ⊆ B since d ∩ b ∩ Bc

= ∅. But then d ∈ B, because π(B) ⊆ B,
which is impossible as d ∈ Bc. �

It is not true in Zermelo’s system that Wf1
= Rg; that is essentially why the axiom

of foundation asserting that V = Wf1 can only be expressed by a first-order axiom
scheme in Z (see [1]). On the other hand, there are situations where separation fails
but nevertheless Wf1

= Rg.
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Example 5.6 (GPK+) In the topological set theory GPK+ (see [2])—where sepa-
ration fails—it is also the case that Wf1

= Rg but the reason there is merely that
Wf1

∈ −s[V ] ∩ ind(π), so that Rg ⊆ Wf1. The situation in GPK+ is interesting in
that Wf1 ( Wf0 ( V , where Wf1

= Rg /∈ s[V ], but Wf0
∈ s[V ], which does not

contradict Theorem 4.5 yet because self-subcission is prohibited in GPK+. We have
not been able to prove in the theory that the topological closure of Wf1 is precisely
Wf0, although this is in fact the case in all natural models of GPK+—the so-called
hyperuniverses—as one would expect. Besides, we note that in both ZF and GPK+

the first-order well-founded part of the universe Wf1 just coincides with the famil-
iar von Neumann cumulative hierarchy. And this is defined as usual, by transfinite
iteration of the power set operation ‘P ’ from ∅, which of course requires the prior
internal development of the machinery of von Neumann ordinals. It might be sur-
prising then that what we get in GPK+ by iterating ‘P ’ from ∅ is not the least set
fixpoint of ‘P ’, namely, Wf0, but Wf1, which is a proper class contained in Wf0! To
understand the situation, we recall that in topological models of GPK+ s[V ] appears
to be the set of closed subsets with respect to some suitable topology on V . So in the
complete lattice 〈s[V ], ⊆〉, the sup operator is not the union operator but its closure.
As a matter of fact, in topological models of GPK+, s[V ] is not closed under unions
unless the ‘index set’ itself is in s[V ], which cannot be the case if this is taken to be
the class of all von Neumann ordinals, because of Burali-Forti paradox.

Whether there are general assumptions that force Rg ⊆ Wf1 is not clear. Note that
whenever this is the case, Rg must be a fixpoint of π , for Wf1 is by Fact 3.2(ii), given
that P1(V ) is closed under π . Here it would not be sensible to ask −s[V ] to be itself
closed under π . It turns out that a simple set-theoretic assumption would ensure at
least that Rg ∈ fix(π).

Fact 5.7 Assume that 〈V ; s〉 |H adjunction. Then π(Rg) = Rg.

Proof It suffices to show that Rg ⊆ π(Rg), as Rg ∈ ind(π) by Fact 3.2(i). So let
a ∈ Rg, b ∈s a (we may of course assume a 6= ∅) and b ∈s c. We want to show
that there is d ∈s c such d ∩ c = ∅. If a ∈s c, we are done since a ∈ Rg. Assume
then that a /∈s c and let e ∈ V such that e := c ∪ {a} (adjunction). As a ∈s e and
a ∈ Rg, there is d ∈s e with d ∩ e = ∅. Since b ∈ a ∩ c, it is not the case that d = a.
Therefore, d ∈s c and d ∩ c = ∅. �

Yet there are set-theoretic structures where Rg is not a fixpoint of π , not even Wf0,
though this latter naïvely appears by definition as the lfp of ‘P ’!

Example 5.8 (Skala [9]) Take V := {a, b, c, d} with a := ∅, b := {a, b, c},
c := {d}, and d := V . Clearly −s[V ] = s[V ], and one can see that π(b) = {a, b} ⊆ b,
whereas π(a) = {a} 6⊆ a and π(c) = {a, c} 6⊆ c, so that Wf0

= Rg = b,
but π(b) /∈ s[V ]. It is also easy to see that Wf1(= Wf2

= R∞) = {a}, so that
Wf1

∈ P1∗(V ) here, though Wf1 ( Rg. That set-theoretic structure is proved to be
a model of Skala’s topological set theory (see [6], Example 8.1), in which system
Wf0 and Rg are sets, indeed one and the same set, for the axiom of complement
holds. That Wf0 cannot be proved to be a fixpoint of ‘P ’ in Skala’s theory lies in
the fact that—unlike GPK+—the power set axiom does not hold; that is, s[V ] may
not be closed under π (cf. Fact 3.2(ii)).
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One could of course refrain from using the terminology “set theory” for such set-
theoretic systems as Skala’s, but we feel this would miss the point. The point is that
the set-theoretic paradoxes are not peculiar to set theory. Such finite examples of set-
theoretic structures as the one here above bear witness to the purely combinatorial
nature of so-called set-theoretic paradoxes—which is the message (or one of them)
of this paper.

6 The Second Limitative Theorem

We are now going to extend the limitative result of Section 4 to fixpoints of monotone
operators θ with θ v π as suggested by Proposition 4.1. We shall in fact restrict
ourselves to the operators πD defined for each D ⊆ V by πD(A) := D ∩ π(A), for
all A ⊆ V . It turns out that suitable choices of D can then lead directly to results of
the kind we are seeking.

Define
T := {a ∈ V | a ⊆ π(a)}.

Lemma 6.1 Suppose D ⊇ T. If a ∈ fix(πD) for some a, then a ∈s a.

Proof Suppose D ⊇ T and a = D ∩π(a). Then a ⊆ π(a), that is, a ∈ T, so a ∈ D
by assumption. Thus, since a ∈ π(a), we have a ∈ D ∩ π(a) = a. �

So we deduce the following limitative result.

Theorem 6.2 Assume that S is πD-replete and let D be such that D ⊇ T. Then,
whenever A ∈ fix(πD) and A ⊆ ⊥

S
πD

, we have A /∈ s[V ]. In particular, ⊥S
πD

/∈ s[V ]

provided S is closed under πD .

Proof Suppose that A ∈ fix(πD), A ⊆ ⊥
S
π , and A = a for some a ∈ V . As S is

πD-replete and a ∈ ind(πD), it is the case that B\{a} ∈ S for some B ∈ ind(πD),
so a /∈s a by Proposition 4.1. But a ∈s a by Lemma 6.1. Now, that ⊥

S
πD

/∈ s[V ]

whenever S is closed under πD follows from Fact 3.2 given that πD preserves
⋂

—
this is a right adjoint too. �

It is worth stressing that Theorem 6.2 is applicable only to fixpoints of πD that are
below ⊥

S
πD

, and this latter may well not be such a fixpoint. Accordingly, Theo-
rem 4.5 is not—strictly speaking—a special case of Theorem 6.2, although πD = π
for D = V . The restriction to fixpoints of πD comes from Lemma 6.1 and appears
to be necessary in the proof, as well as the condition D ⊇ T. That said, given that
⊥

S
πD

⊆ ⊥
S
π , we remark that Theorem 6.2 brings nothing new when D is ∈-inductive,

because of the following simple observation.

Fact 6.3 Suppose π(D) ⊆ D. Then fix(πD) ⊆ fix(π).

Proof Suppose πD(A) = A. Then A ⊆ π(A) and A ⊆ D. From the latter and
our assumption on D, we get π(A) ⊆ D. So π(A) ⊆ D ∩ π(A) = A, and then
π(A) = A, showing that fix(πD) ⊆ fix(π). �

We shall see in the next section that for some non-∈-inductive D ⊇ T there are
indeed problematic subsets provided by Theorem 6.2 that are themselves not ∈-
inductive—so Theorem 6.2 brings something genuinely new. This happens most
notably in the case where D = T and the corresponding limitation is just related
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to the Burali-Forti paradox. Other choices for D will provide us with lesser-known
paradoxical classes of naïve set theory.

7 Well-foundedness and Transitivity

The Burali-Forti paradox concerns the set of all ordinals, thought of as concretiza-
tions of order types of well-ordered sets. In ordinary set theory we usually use
the von Neumann ordinals for this purpose. However, this requires nontrivial set-
theoretic assumptions such as replacement. Nevertheless, people do things like
(i) implement ordinals à la von Neumann, and then (ii) argue that the collection
of all von Neumann ordinals cannot be a set because of Burali-Forti. But that is a
bit misleading. The collection of von Neumann ordinals is a paradoxical object quite
independently of it being the destination of the collection of all ordinals under the
von Neumann implementation.

Fact 7.1 The von Neumann ordinals are precisely the well-founded hereditarily
transitive sets.11

Informal proof That every von Neumann ordinal is hereditarily transitive follows
from the facts that every von Neumann ordinal (i) is transitive and (ii) is the set of all
its predecessors—all of which are transitive. So by ∈-induction every von Neumann
ordinal is not only transitive but hereditarily transitive.

For the other direction we remark that a transitive set of von Neumann ordinals
is itself a von Neumann ordinal. So it follows by ∈-induction on the hereditarily
transitive sets that they are all von Neumann ordinals. �

The point is that the pure set-theoretic paradox of the collection of well-founded
hereditarily transitive sets is not only the von Neumann implementation of the Burali-
Forti paradox, but also a manifestation of Theorem 6.2.

Given a set-theoretic structure 〈V, s〉 and a property ϕ(x) in LV , we write H1
ϕ for

⊥
P1(V )
πVϕ

where Vϕ := {a ∈ V | 〈V, s〉 |H ϕ(a)}. Clearly H1
ϕ ⊆ H1

true = Wf1, and by
Definition 3.1, H1

ϕ can be characterized as the largest subset A of Wf1 satisfying the
following principle of ∈-induction:

∀B ∈ P1(V ), π(B) ∩ Vϕ ⊆ B H⇒ A ⊆ B. (1)

Note there can be at most one A ∈ ind(πVϕ ) ∩ P1(V ) satisfying (1). On the other
hand, since P1(V ) is closed under πVϕ , H1

ϕ not only belongs to ind(πVϕ ), but also
to fix(πVϕ ) by Fact 3.2(ii). In other words, A := H1

ϕ is a solution to the reflexive
equation A = πVϕ (A), which we expand into

∀a ∈ V, a ∈ A ⇐⇒ ϕs(a) & a ⊆ A. (2)

Now, assuming H1
ϕ is definable, it would be entirely characterized by (2), because of

the following.

Fact 7.2 There is at most one definable A ⊆ Wf1 satisfying (2) above.

Proof The proof goes by ∈-induction. Suppose A1, A2 ∈ P1(V ) satisfy (2). Then
let B := {a ∈ V | a ∈ A1 ⇔ a ∈ A2}. Clearly, B ∈ P1(V ), and we show that
B ∈ ind(π). Let a ∈ V such that a ⊆ B. If a ∈ A1, then ϕs(a) and a ⊆ A1 by
(2)[⇒], so a ⊆ A2 by the definition of B, since a ⊆ B. Hence a ∈ A2 by (2)[⇐].
Likewise, a ∈ A2 implies a ∈ A1. Thus a ∈ B. Now, given that π(B) ⊆ B, we get
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Wf1
⊆ B by (1)[with ϕ :≡ true] and it follows therefrom that A1 = A2 whenever

A1, A2 ⊆ Wf1. �

As it is, (2) could only serve as a recursive definition of H1
ϕ . As in the particular case

of Wf1 discussed in Section 5, some set-theoretic assumptions might be required in
order to show that H1

ϕ ∈ P1∗(V ). It is well known, for instance, that in any set theory
where the operation of transitive closure ‘T C ’ is available, and where foundation
holds, H1

ϕ can be defined as

‘{x | ∀y(y ∈ T C{x} → ϕ(y))}’.

On the other hand, in ZF without foundation as well as in GPK+ (cf. Example 5.6),
H1

ϕ can be defined as the sharpened cumulative hierarchy one obtains by transfinite
iteration of the power set operation restricted to ϕ-subsets. Accordingly, and in view
of (2), we shall refer to H1

ϕ as the collection of well-founded hereditarily ϕ-sets,
which is a natural set-theoretical object.

Remark 7.3 As we did in Section 5 for well-founded sets, one could also consider
the zero-order version H0

ϕ , which at least always belongs to P1∗(V ). However, the
particular case of Wf0 has revealed that this really seems to be of minor interest from
a classical set-theoretic point of view, say.

It follows from Theorem 6.2 that H1
ϕ is intrinsically problematic whenever T ⊆ Vϕ ,

that is, whenever the property ϕ holds for transitive sets. Such a property is un-
bounded in the sense that it is true in particular for all (von Neumann) ordinals.
When ϕ is inductive, H1

ϕ = H1
true = Wf1 by Fact 6.3; when ϕ is hereditary, it is

worth noting that H1
ϕ has a simple form.

Fact 7.4 Suppose ϕ is hereditary, that is, Vϕ ⊆ π(Vϕ). Then H1
ϕ = Wf1

∩ Vϕ .

Proof We are tacitly assuming here that both H1
ϕ and Wf1 are definable. Then,

in view of Fact 7.2, we are going to show that Wf1
∩ Vϕ ∈ fix(πVϕ ). We have

πVϕ (Wf1
∩ Vϕ) = π(Wf1

∩ Vϕ) ∩ Vϕ = π(Wf1) ∩ π(Vϕ) ∩ Vϕ = Wf1
∩ Vϕ , since

Wf1
∈ fix(π) and Vϕ ⊆ π(Vϕ). �

The property of being transitive, that is, trans(x) :≡ x ⊆ Px, or equally
trans(x) ≡

⋃
x ⊆ x, is neither inductive nor hereditary, and is the least choice

for ϕ. It gives rise to the collection H1
trans of hereditarily well-founded transitive

sets, which we identified as the collection of von Neumann ordinals. Here are
natural examples of ϕ for which H1

trans ( H1
ϕ ( Wf1 is consistent.

Example 7.5 Call a set x extensional if the membership relation restricted to the
members of x is extensional, that is, if the following property holds:

ext(x) :≡ ∀y∀z(y ∈ x ∧ z ∈ x ∧ y ∩ x = z ∩ x → y = z).

In any set theory, transitive sets are extensional—so are transitive classes, more
generally, which is a mere consequence of the axiom of extensionality. There-
fore, the collection H1

ext of hereditarily well-founded extensional sets is gen-
uinely a paradoxical object. Basic set-theoretic assumptions would ensure that
H1
trans ( H1

ext ( Wf1. For instance, assuming pairing and the existence of the
empty set only, one can see that H1

ext |H singleton, but H1
ext 6|H pairing.
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Example 7.6 Call a set x normal if it has a transitive closure, that is, if the following
property holds:

norm(x) :≡ ∃y(x ⊆ y ∧ y ⊆ Py ∧ ∀z(x ⊆ z ∧ z ⊆ Pz → y ⊆ z)).

Obviously, any transitive set is normal, so the collection H1
norm of hereditarily well-

founded normal sets is a paradoxical object. Note that assuming power set and 10-
separation, a set is normal if and only if it belongs to a transitive set;12 that is,

norm(x) ≡ ∃y(x ∈ y ∧ y ⊆ Py).

Thus formulated, normality is plainly a hereditarily property, so that H1
norm =

Wf1
∩ Vnorm by Fact 7.4. Now, Zermelo’s system (including foundation) is consis-

tent with H1
trans ( H1

norm ( Wf1(= V ), for transitive containment is not provable:
it is consistent to have sets without transitive closure in Z (see [1] or [7] for other
references).

Remark 7.7 (Hinnion) One can concoct many other examples from the mere defini-
tion of transitivity if one assumes that some (definable) notion of cardinality (| |, 6)
is available. For example, the following choices for ϕ(x) will do:

- |
⋃
x| 6 |x|;

- ∀y(y ∈ x → |y| 6 |x|);
- ∀y(y ∈ x → |Py| 6 |Px|).

It might be interesting to find an axiomatic characterization of particular paradoxical
classes H1

ϕ such as those in Examples 7.5 and 7.6. After all, the axioms of Zermelo-
Fraenkel—including foundation—are just meant to characterize H1

true. We leave
this task to workers who will come after us.
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Appendix

A constructive proof of the nonexistence of ‘{x | ∀y(x ∈ y → y 6∈ x)}’:
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Notes

1. There is a tradition, going back to the earliest days of set theory, of having a more in-
clusive view of what set theory is. There may be a more inclusive version for which it
is possible to supply both a clear definition and a motivation, but we have never encoun-
tered one. We quote Zermelo here ([11] p. 200):

Set theory is that branch of mathematics whose task is to investigate math-
ematically the fundamental notions ‘number’, ‘order’ and ‘function’, taking
them in their pristine simple form, and to develop thereby the logical foun-
dations of all of arithmetic and analysis; thus it constitutes an indispensable
component of the science of mathematics.

2. Di Giorgi never wrote it up, but the idea is explained and exploited in [4].

3. It is true that in some proof-theoretic presentations the proof of Cantor’s theorem can be
pathological (lacks a normal form) but these features are not our concern here.

4. We are referring here to the algebraic notion of substitution in free algebras, which gen-
eralizes the syntactic notion of substitution in term algebras—these being the absolutely
free algebras on the corresponding signature. The reader not familiar with that notion
may just think here of members of ι[V ] (or simply V ) as “variables” and members of
P (V ) as “terms” built up from variables with the operation “

⋃
” (of unbounded arity).

5. See also [8].

6. It follows in particular from (iii)—not from (ii)—that ⊥
P (V )
θ = ⊥θ ∈ fix(θ), for any θ .

7. Recall that we are not assuming choice in the metatheory.

8. That is, for all a ∈ V and B ∈ P1(V ), a ∩ B ∈ s[A].

9. That is, for all a ∈ V , a ∪ {a} ∈ s[V ].

10. That is, for each a ∈ V , there is b such that a ∈s b and b ⊆ π(b). Assuming 10-
separation and power set, transitive containment is equivalent to the axiom of transitive
closure.

11. This fact (assuming foundation) has been known for some time; for example, it was
stated in a letter from Bernays to Gödel of 3 May 1931. See [5] p. 112.

12. Cf. note attached to Fact 5.5.
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