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Polyadic Quantification via Denoting Concepts

Ori Simchen

Abstract  The question of the origin of polyadic expressivity is explored and
the results are brought to bear on Bertrand Russell’s 1903 theory of denoting
concepts, which is the main object of criticism in his 1905 “On Denoting.” It is
shown that, appearances to the contrary notwithstanding, the background ontol-
ogy of the earlier theory of denoting enables the full-blown expressive power of
first-order polyadic quantification theory without any syntactic accommodation
of scopal differences among denoting phrases such as ‘all ¢’, ‘every ¢’, and ‘any
@’ on the one hand, and ‘some ¢’ and ‘a ¢’ on the other. The case provides an
especially vivid illustration of the general point that structural (or ideological)
austerity can be paid for in the coin of ontological extravagance.

What accounts for the expressive power of first-order polyadic quantification the-
ory compared to its relatively impoverished monadic kin? The standard answer is
that the former permits interaction among distinct quantifiers binding distinct vari-
ables within one and the same formula. This answer, while surely correct, does not
pinpoint precisely where expressive power lies. I propose to delve deeper into the
issue. Doing so will also lead to a surprising discovery about an important but often-
neglected episode in the history of logic.

We begin by considering a simple formalization exercise. Take the argument from
‘Everyone loves everyone’ to ‘Everyone is loved by someone or other’. In weigh-
ing the polyadic vs. monadic formalization alternatives, two connected features of
the argument present themselves. First, the argument, while clearly valid, will not
be rendered so by the resources made available by monadic quantification theory,
whereby the premise would be formalized along the lines of YxL'x and the con-
clusion along the lines of VxL”x." This is a familiar expressive shortcoming of the
monadic framework relative to the polyadic one. Second, but no less familiar, is the
fact that in a monadic setting the argument cannot be distinguished formally from
arguments that are obviously distinct from it, such as the valid one from ‘Everyone
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loves everyone’ to ‘Everyone loves someone or other’. This latter claim would be
captured by something along the lines of VxL"”x. Polyadic quantification theory
offers an account of both the validity of the argument and its distinctness from the
second argument. First, the argument can be formalized as a valid inference from
VxVyLxy to Vy3xLxy. Second, the inference in question can be distinguished from
the equally valid but distinct inference from VxVyLxy to Vx3yLxy. Moreover, we
can further distinguish these arguments from other valid arguments in the vicinity,
such as the one from ‘Everyone loves everyone’ to ‘Someone is loved by everyone’,
captured by the valid inference from VxVyLxy to IyVxLxy.

What accounts for such expressive variety? The answer will emerge clearly when
we compare the above three consequences of ‘Everyone loves everyone’ and their
nonequivalent formalizations.

(a) ‘Everyone is loved by someone or other.’ Vy3dxLxy
(b) ‘Everyone loves someone or other.’ Vx3yLxy
(c) ‘Someone is loved by everyone.’ dyVxLxy

Let us register a few useful observations. First, while the order of the quantifiers in
(a) and (b) is the same, the order of the binding occurrences of the variables is differ-
ent.” Second, while the order of the quantifiers in (a) and (c) is different, the order of
the binding occurrences of the variables is the same. Finally, the order of the bound
occurrences of the variables is fixed throughout. We can stipulate, as is common
among some practitioners of formalization into polyadic quantification theory, that
the order of bound occurrences of variables within a given occurrence of a predicate
letter is to remain fixed as in (a)—(c) above.” Then under such a stipulation the logi-
cal variety exhibited by (a)—(c) arises from interaction between two distinct ‘orders’:
the order of the quantifiers themselves and the order of the binding occurrences of
the variables.

Let us change our stipulation, however. Let us stipulate, as is also common among
some formalizers, that the order of binding occurrences of variables in formulas is
to remain fixed. Under this stipulation we retain the above logical variety by letting
the order of the bound occurrences of the variables vary. So according to this option
we replace Lxy representing x loving y with Lyx representing y loving x as needed.
Specifically, the above sentences will be relettered as follows.

(@) ‘Everyone is loved by someone or other.’ Vx3yLyx
(b") ‘Everyone loves someone or other.” Vx3yLxy
(¢') ‘Someone is loved by everyone.’ IxVyLyx

Under the stipulation that the order of the binding occurrences of the variables is
fixed, logical variety derives from the interaction between the order of the quanti-
fiers on the one hand and the order of the bound occurrences of the variables on the
other. In sum, on either alternative the match between the binding and the bound
occurrences of variables determines for each quantifier which position(s) in the sen-
tence it is to govern. All that matters is that the quantifiers have the right ‘addresses’.
So if we compare, for example, Vy3dx Lxy and Vx3yLyx, the two sentences are ex-
pressively equivalent to the extent that the first quantifier universally quantifies into
the second position in the predicate letter whereas the second quantifier existentially
quantifies into the first position.
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But there is yet another alternative for observing the stipulation that binding oc-
currences of variables have a fixed order without loss of logical variety. This third
alternative involves enriching the nonlogical vocabulary. Take (c), for example. In-
stead of relettering IyVxLxy to get the (¢’) alternative 3xVyLyx we can observe
the stipulation of alphabetical order for the binding occurrences of the variables and
observe the further initial stipulation of alphabetical order for the bound occurrences
of the variables by resorting to a distinct predicate letter L ™! expressing the converse
relation of being loved. On this third option our variety is as follows.

(@”) ‘BEveryone is loved by someone or other.’ VxIyL~lxy
(b”) ‘Everyone loves someone or other.’ Vx3dyLxy
(¢”) ‘Someone is loved by everyone. IxVyL~lxy

Call the difference between L and L~! a difference in a predicate letter’s ‘direction’.
What we have done is stipulate both that the order of the binding occurrences of
variables be fixed and that the order of the bound occurrences of the variables be
fixed. What accounts for logical variety now is not the interaction between the order
of the quantifiers and the order of binding occurrences of variables, as in (a)—(c).
Nor is it the interaction between the order of the quantifiers and the order of the
bound occurrences of the variables as in (a’)—(c"). Rather, what accounts for logical
variety now is the interaction between the order of the quantifiers and the directions
of the predicate letters. In such cases as the ones above, where there is a perfect
match between the number of argument places in a lexically simple matrix and the
number of quantifiers that govern it, we might as well dispense with the variables
and represent our variety as follows.

(@”) ‘Everyone is loved by someone or other.’ L~'v3
(b”) ‘Everyone loves someone or other.” Lv3
(¢”") ‘Someone is loved by everyone.’ L~ '3y

Of course, this will not work in general because it will not work, for example, for
cases where multiple argument places are governed by a single quantifier. It is only
offered here as a heuristic aid for things to come. But, in general, if we enrich the lan-
guage to include for every (n-place) predicate letter the rest of its (n! — 1) directional
variants, we can observe the stipulation that the order of the binding occurrences of
variables is alphabetical while observing the further stipulation that the order of ini-
tial (among possibly multiple) bound occurrences of distinct variables within each
predicate letter is alphabetical as well.* Of course, if we were to draw inferences
under such a formalization protocol we would need special provisions linking the
various predicate letters of our enriched language. Thus, for example, in the absence
of such provisions we could not infer 3xVyL~!xy from VxVyLxy. But this limita-
tion on the formal system does not spoil the point that our enriched formal language
can capture the full expressivity of first-order polyadic quantificational theory with
the above stipulations in place.

The point bears a brief illustration. Let y be a triadic predicate in the original
language and let u, v, w be variables such that the first precedes the second alpha-
betically while the second precedes the third. We add the 3! — 1 directional variants
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of w under the following mapping ¢:
E(yuvw) = yuvw
E(wuwo) = vy uvw
E(youw) = vy 2uvw
E(wovwu) = t//_3uvw
E(ywuv) = v *uvw
E(ywou) = yuvw.

Consider now the following validity:
Yo@Fuyuww — Ivyovww).

To obtain the result that the order of binding occurrences of variables is alphabetical
we reletter as follows:
Yu(Fo youu — Jwywuu).

Next, to obtain the desired result of alphabetical order for (initial) bound occur-
rences of variables as well, we translate into the new vocabulary, scanning bound
occurrences from left to right and scanning the list specifying ¢ from top to bottom:

4

Yu@oy 2uvu — Jwy *uuw).

Finally, to restore the validity we would need to include in the transformation rules
of the formal system provisions for ‘backward’ translation, reversing the last step via
¢

Let us now go back and consider our original language and some arbitrary
polyadic sentence S. S has an equivalent in Prenex Normal Form, Qquy ... Quu,M,
where for each i, 1 <i < n, Q; is either 3 or V and M is the quantifier-free matrix
with the u; as its free variables and where the order of the binding occurrences of the
variables in the prefix is fixed alphabetically. Now, under the intended interpretation
of the language the matrix M defines an n-place relation R. We can introduce
into the language a new n-place predicate letter whose extension is R. If for every
polyadic sentence S in the original language we introduce such an n-place predicate
letter together with the rest of its directional variants gof , 1 < j < n!, then for each
polyadic sentence of the original language there will be a PNF equivalent with the
following four features: (1) its matrix is a single predicate letter, (2) the number of
quantifiers in its prefix is identical to the number of argument places in that predicate
letter, (3) the order of the binding occurrences of its variables is fixed alphabetically,
and (4) the order of the bound occurrences of its variables is fixed alphabetically as
well. In effect, this last option makes the order of the quantifiers the sole determi-
nant of polyadic quantificational variety, provided, of course, that the language is
sufficiently rich to include for each sentence S of the old language the new predicate
letters go}s . Such a PNF equivalent, using one of those newly introduced predicate

letters, might just as well be written as q)fQ], eery On

Let us now bring this general lesson to bear on an all-but-forgotten episode in
the history of logic. Russell’s theory of denoting concepts in [5] is far less famil-
iar than its famous later rival, the theory of Russell [6]. The theory of denoting
concepts encapsulates Russell’s early attempt to account for generality within his
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overall metaphysics of discreteness, the view Hylton called ‘Platonic Atomism’.°
Denoting concepts are an exception to the rule that Russellian propositions contain
what they are about. These denoting concepts are expressed by the so-called denot-
ing phrases: phrases of the form ‘a ¢’, ‘some ¢’, ‘any ¢’, ‘every ¢’, ‘all ¢’, and ‘the
¢, and their job is to denote certain combinations of entities.” Thus, for example,
in the proposition expressed by ‘Mary is out’, Mary herself occurs as a constituent,
but in the proposition expressed by ‘Every girl is out’, the every girl denoting con-
cept occurs as a constituent and denotes a certain complex of girls. Similarly, in the
proposition expressed by ‘Some boy is in’, the some boy denoting concept occurs as
a constituent and denotes a certain complex of boys. And yet it is not the case that ev-
ery girl occurs as a constituent in the second proposition, nor is it the case that some
boy occurs as a constituent in the third. Rather, the propositions in question contain
denoting concepts, items whose job it is to further denote what the propositions are
about:

A concept denotes when, if it occurs in a proposition, the proposition is not

about the concept, but about a term connected in a certain peculiar way with

the concept. If I say, ‘I met a man’, the proposition is not about a man: this is

a concept which does not walk the streets, but lives in the shadowy limbo of

the logic-books. What I met was a thing, not a concept, an actual man with a

tailor and a bank-account. [5, p. 53]
Russell [6] poses various difficulties for this theory, which Russell wrongly identifies
with Frege’s theory of sense. Chief among them is the problem posed in the difficult
Grey’s Elegy passage, which will not be rehearsed here, but which seems to bear a
certain resemblance to Frege’s concept horse problem.

One issue not raised in [6], however, is the capacity of the earlier theory of denot-
ing concepts to capture first-order polyadic quantificational expressivity, in particu-
lar, the theory’s ability to capture scope distinctions. And yet it is not uncommon
to suppose that the theory is deficient on this score.® This raises an interesting in-
terpretive problem: given the close scrutiny to which the theory is put in [6], and
given Russell’s obvious preoccupation with matters of scope, how is it that this most
glaring flaw of the theory is never discussed? The correct answer is that no such flaw
exists. Within Russell’s early metaphysical framework the theory of denoting con-
cepts is perfectly suitable to account for the full expressivity of first-order polyadic
quantification theory.

The apparent problem with the theory is this. It can easily seem as though denot-
ing concepts cannot track scope distinctions. This is so to the extent that denoting
concepts do not admit of nesting, each doing its denoting work independently of the
others. Take, for example, the scopally ambiguous ‘Every boy loves some girl’. In
polyadic quantification theory we render such ambiguity as follows,

(1) Vx(Bx — 3y(Gy A Lxy))

(i1) Iy(Gy A Vx(Bx — Lxy)),

but the contrast is perhaps better discerned via the restricted quantification notation,
(i) [every x : Bx][some y : Gy](Lxy)
(ii") [some y : Gy][every x : Bx](Lxy).
The theory of denoting concepts, on the other hand, can only render the contrast as a
contrast between these two propositions:

(i”) [LOVE (every boy denoting concept)(some girl denoting concept)]
(ii”) [LovE~!(some girl denoting concept)(every boy denoting concept)].”
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But now it can easily seem that (ii””) would be rendered more simply as (i”) by
reversing the order of the relata and replacing the relation Love™! with its converse
LOVE, in which case the supposed contrast disappears. It can thus easily seem that
the theory of denoting concepts is expressively inadequate.

Not so, however, on Russell’s own metaphysical terms.'’ For Russell a propo-
sition of the form Rab is distinct from one of the form R~ 1ba, for the relation R
and its converse R~! are themselves distinct entities. Relations, for Russell, have di-
rections by their very nature.'! So insofar as these distinct relations are constituent
entities of their respective propositions, the propositions in question are themselves
distinct. And so, (i”) # (ii”). In general, for each relation R of adicity n, Russell
will distinguish n! directionally distinct R-relations.'” What accounts for logical va-
riety in this rich Russellian realm of propositions is the interaction between the order
of the relata and the directions of the relations that relate them. Let ¢ (uq, ..., uy,)
be a quantifier-free formula that captures one of the directionally distinct n-place
R-relations. Then there will be an intended one-to-one mapping f? from the n! pos-
sible reletterings among the free u;s of the formula onto the n! directionally distinct
R-relations.”

With such resources in hand, the expressive adequacy of the theory of denoting
concepts is easily demonstrated. Let S be a polyadic sentence.'* Then it has a PNF
equivalent Qug ... Q,u, M where the order of the binding occurrences of the vari-
ables in the prefix is fixed alphabetically. The Russellian interpretation of this PNF
sentence will be

[fM(M)(Q; denoting concept), . . ., (Q, denoting concept)]."”

And this latter proposition will be true just in case S is true under the intended in-
terpretation. The theory of denoting concepts is thus vindicated, offering the full
expressivity of first-order polyadic quantification theory without variable-binding.

What about logical relations among these Russellian propositions? Earlier we
noted that one way to secure polyadic expressivity is to enrich the language to include
for each predicate letter all of its directional variants but that the price of such en-
richment is the need for special provisions linking these distinct directional variants
in order to facilitate intuitively valid inferences. With the Russellian accommodation
of polyadic expressivity the situation is somewhat different. Russellian propositions
are possible facts and their constituents are worldly items. As we saw, the ontology
is rich enough to include for each n-place relation its n! — 1 directional variants. But
Russell also held that implication among propositions is built into this ontology and
is determined by the propositions’ constitutional makeup.'® And this makeup is de-
termined, once again, by the interaction between the direction of the relation and the
order of the relata. It is then by appeal to general features of reality—such as that
if one of the girls is loved by each and every one of the boys then each of the boys
loves some girl or other but not the other way around—that the Russellian logician
can maintain that while (ii”) above implies (i”), (i") fails to imply (ii”’). Admittedly,
in [5] Russell worries about the truth conditions for nested polyadic quantification
and what he offers in this regard does seem inadequate.'’ The present point is that if
we abstract from Russell’s own failed attempts to specify those truth conditions and
focus on the metaphysics of the propositions themselves, his early theory of denoting
concepts has the resources to capture full polyadic expressivity.
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Finally, it is often supposed that the later theory of [6] achieved a certain onto-

logical economy over its predecessor.'® On the earlier view, given that ‘every boy
loves some girl’ is meaningful, the denoting phrases ‘every boy’ and ‘some girl’
had each to make its own contribution of a distinctive constituent to the proposition
expressed by the entire sentence. But with the later theory it is no longer assumed
that it is a condition on the meaningfulness of denoting phrases that they contribute
their distinctive constituents to the propositions expressed. With the advent of con-
textual definitions, denoting concepts could be eliminated from Russell’s ontology
in one fell swoop. And if I am right, with the later theory in place there is no longer
any logical need for a multiplicity of directionally distinct variants of a given relation
either, which constitutes yet another easily overlooked pruning of Russell’s ontology.

o8]

6.

Notes

.Or Vx(Px — L’x) and Vx(Px — L"x), respectively, but we shall assume throughout

that quantification is restricted to persons. In all that follows we let use-mention ambigu-
ities be settled by the context.

. By a ‘binding’ occurrence of a variable we mean an occurrence of a variable immediately

following a quantifier. By a ‘bound’ occurrence of a variable we mean an occurrence of
a variable in a position that is quantified into. Thus, in Jug(u) the first occurrence of
the variable is a binding occurrence while the second occurrence is a bound occurrence.
Writers on logic often regard occurrences of quantifiers as already including the binding
occurrences of the variables, but for present purposes we refrain from doing so.

. More precisely, in any polyadic formula we can stipulate that within a given occurrence

of a predicate letter the order of initial (among possibly multiple) bound occurrences of
distinct variables be ordered alphabetically. Thus, in any polyadic formula of the form
...y(..u...v...)..., where u and v are initial (among possibly multiple) bound oc-
currences of distinct variables, we can stipulate that u precede v alphabetically and reletter
the rest of the formula to accommodate the stipulation. For the sake of readability we pro-
ceed as though our variables are just x, y, and z. Assuming infinitely many variables at
our disposal, alphabetical order will be (x1, y1, 21, X2, ¥2, 22, X3, ... ).

. More precisely, if y is a predicate letter with # and v among its variables and u is earlier

in the alphabet than v, we can stipulate both that the binding occurrence of u occur before
the binding occurrence of v in the overall formula and that the initial bound occurrence of
u in y occur before the initial bound occurrence of v in y.

. Compared with Quine’s familiar syntactic Schonfinkel-inspired elimination of variables

in [4] the present method is semantic, proceeding as it does via a model.

See Hylton [3], especially Chapter 4.

. In all that follows we focus on the first five cases and ignore the sixth.

. Even those who are most sympathetic to the theory assume that it requires some construc-

tive reinterpretation to accommodate logical variety. Thus, for example, in Dau [1] it is
claimed that Russell’s theory can capture scope distinctions only if we understand it as
requiring that the various denoting concepts (say, the some girl denoting concept and the
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a girl denoting concept) are to take different scopes (wide and narrow, respectively). We,
on the other hand, refrain from making any such assumption about denoting concepts. In-
deed, for present purposes we follow the logician’s habit of treating all denoting phrases
(with the exception of ‘the’-phrases) as being either existential or universal.

. The brackets indicate Russellian propositions, which are also possible facts. The verb in

all caps indicates the relation in question.

From this point on, by ‘Russell’ I shall mean the Russell of [5].

. “It is characteristic of a relation of two terms that it proceeds, so to speak, from one to

the other” ([5, p. 95], italics in the original). As Russell makes clear in the surrounding
discussion, all relations have directions, including symmetric ones. Thus, for example,
the relation of meeting (or MEET) will have the relation of being met by (or MEET_I) as
its converse. And while [MEETab] will imply and be implied by [MEET ™ !ba], the two
propositions will be distinct, differing both in the order of the relata and in the relation
itself.

. “The relation which holds between b and a whenever R holds between a and b will be

called the converse of R, and will be denoted R". The relation of R to R”is the relation of
oppositeness, or difference of sense” [5, p. 96].

. Williamson [7] criticizes the view that relations are distinct from their converses on the

grounds that such distinctness would render relational expressions semantically indeter-
minate and that polyadic expressivity has no use for it. Indeed, as we saw above, by the
standards of contemporary polyadic quantification theory the difference between Rab and
Rba resides only in the order in which the univocal R relates a and b. As for the charge
of semantic indeterminacy, Russell would have little interest in such language-oriented
matters, falling as they do outside the purview of logic proper. When it comes to denoting
concepts, on the other hand, he would distinguish the denoting concept the relation R
from the denoting concept the relation R”and would say that the first inherently denotes
R while the second inherently denotes R,

.If S is quantifier-free, then it has a straightforward Russellian capture as the bearing of an

n-place relation, n > 1, among »n individuals.

. Assuming, contra Russell, that both ‘all’ and ‘any’ are equivalent to ‘every’ and that ‘a’

is equivalent to ‘some’, each of these Q; denoting concepts, 1 < i < n, will be either the
everything denoting concept or else the something denoting concept.

Thus Russell says of two-place relations R: “they all have a converse, that is, a relation
R”such that a Rb implies and is implied by b R'a, whatever a and b may be” [5, p. 97].

. See Chapter VIII of [5]. See also Chapter 3 of [2].

. Thus Hylton: “According to the theory of denoting concepts, the denoting concept every

person, say, was such an entity [an entity in the proposition corresponding to a denoting
phrase in the sentence —OS]; according to the OD theory, however, there is no such entity”
[3, p. 239].
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