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Indestructible Strong Unfoldability

Joel David Hamkins and Thomas A. Johnstone

Abstract Using the lottery preparation, we prove that any strongly unfoldable
cardinal κ can be made indestructible by all <κ-closed κ+-preserving forcing.
This degree of indestructibility, we prove, is the best possible from this hypothe-
sis within the class of <κ-closed forcing. From a stronger hypothesis, however,
we prove that the strong unfoldability of κ can be made indestructible by all
<κ-closed forcing. Such indestructibility, we prove, does not follow from in-
destructibility merely by <κ-directed closed forcing. Finally, we obtain global
and universal forms of indestructibility for strong unfoldability, finding the exact
consistency strength of universal indestructibility for strong unfoldability.

1 Introduction

The unfoldable cardinals were introduced by Villaveces in [20] along with their com-
panion notion, the strongly unfoldable cardinals, which turn out to be the same
as what Miyamoto [19] independently introduced as the Hκ+ reflecting cardinals.
These cardinals lie relatively low in the large cardinal hierarchy, somewhat above
the weakly compact cardinals, and they relativize to L in the sense that every unfold-
able cardinal is unfoldable in L and in fact strongly unfoldable there, as in L the two
notions coincide. For this reason, the notions of unfoldability and strong unfoldabil-
ity, although not equivalent, have the same consistency strength, bounded below by
the totally indescribable cardinals and above by the subtle cardinals.

Definition 1.1

(1) An inaccessible cardinal κ is unfoldable if for every ordinal θ it is θ -
unfoldable, meaning that for every transitive set M of size κ with κ ∈ M
there is a transitive set N and an elementary embedding j : M → N with
critical point κ and θ ≤ j (κ).
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(2) An inaccessible cardinal κ is strongly unfoldable if for every ordinal θ it is
θ -strongly unfoldable, meaning that for every transitive set M of size κ with
κ ∈ M |H ZFC− and M<κ

⊆ M there is a transitive set N and an elementary
embedding j : M → N with critical point κ such that θ ≤ j (κ) and Vθ ⊆ N .

Unfoldability therefore generalizes the familiar weak compactness embedding prop-
erty by insisting that the target models N be increasingly tall or close to V . In
Definition 1.1, one can equivalently insist that θ < j (κ) by composing embeddings.
After the introduction of unfoldability, it became gradually apparent that unfoldabil-
ity embeddings were amenable to various techniques borrowed from much stronger
large cardinal contexts. For example, Hamkins [9] adapted methods from strong
cardinals to lift unfoldability and strong unfoldability embeddings through fast func-
tion forcing and the Easton support iterations that control the GCH and its failures.
Dz̆amonja and Hamkins [4] adapted methods from supercompact cardinals to show
that ♦κ(REG) can fail at a strongly unfoldable cardinal κ . Miyamoto [19] used
supercompactness methods with his Hκ+ -reflecting cardinals (equivalent to strong
unfoldability) to obtain weak versions of PFA. Other PFA applications appeared in
[14] and in [11]. The underlying indestructibility phenomenon hinted at in these
arguments was verified in Johnstone’s dissertation [14; 15], which established that
every strongly unfoldable cardinal κ can be made indestructible by all <κ-closed κ-
proper forcing. For a cardinal κ with κ<κ = κ , the class of κ-proper forcing includes
all κ+-c.c. forcing and all ≤κ-closed forcing, as well as finite iterations of these, and
is included within the class of all κ+-preserving forcing. The main question left
open in [15] was whether the indestructibility phenomenon could be extended to all
<κ-closed κ+-preserving forcing. In this article, we answer affirmatively.

Theorem 1.2 (Main Theorem) If κ is strongly unfoldable, then after suitable
preparatory forcing, the strong unfoldability of κ becomes indestructible by all
<κ-closed κ+-preserving set forcing.

More specifically, the proof shows that if κ is strongly unfoldable, then after the
lottery preparation of κ relative to a function with the strong unfoldability Menas
property, the cardinal κ remains strongly unfoldable and becomes indestructible by
all <κ-closed κ+-preserving forcing. This class of forcing goes beyond the class of
<κ-closed κ-proper forcing and includes, for example, the forcing to destroy certain
stationary subsets of κ+ (whereas classical arguments show that <κ-closed κ-proper
forcing necessarily preserves such stationarity). We call particular attention to the
fact that our theorem involves <κ-closed forcing and not merely <κ-directed closed
forcing, a degree of indestructibility which is impossible for supercompact or even
measurable cardinals. This issue is fully discussed in Section 5, where we prove
among other things that indestructibility by <κ-closed forcing, for a strongly un-
foldable cardinal κ , is not a consequence of indestructibility by <κ-directed closed
forcing.

A key technical advance, highlighted in the proof of the Main Theorem, allows
for the comparatively broad degree of indestructibility and seems to place this result
beyond previously known methods. In broad strokes, to be sure, we perform an Eas-
ton support preparatory forcing and ultimately lift an embedding from the ground
model to the forcing extensions—the same general outline of all similar indestruc-
tibility results—and more specifically we follow the method of [15] for obtaining
indestructibility with strongly unfoldable cardinals. Nevertheless, at a key step of
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the argument we have a V -generic filter g ⊆ Q that we want to be X -generic for a
suitable elementary substructure X ≺ Hλ, and whereas in previous arguments this
was accomplished by making restrictive hypotheses on Q, such as requiring Q to
have size κ , be κ+-c.c. or, more generally, be κ-proper, we now obtain this situa-
tion by choosing X not in the ground model, but in the forcing extension, where we
easily see that g is X -generic, and then applying critical facts about forcing exten-
sions with the approximation and cover properties (see [10]) to conclude that X is
actually in the ground model after all. This same new method also forms the basis
of our related application in [11] to obtain strong fragments of the Proper Forcing
Axiom (restricted to proper ℵ2- or ℵ3-preserving forcing) from the existence of an
unfoldable cardinal. That argument appeals to the Jensen Covering Theorem in a
context where the approximation and cover properties may fail. Our article [11] can
be viewed as following up on this article.

After developing some preliminary material in Section 2, we prove the Main The-
orem in Section 3. In Section 4, we prove that this degree of indestructibility is
optimal from this hypothesis, within the class of <κ-closed forcing. In Section 5, we
explore the issue of <κ-closed versus <κ-directed closed forcing. In Section 6, we
explain how to make all strongly unfoldable cardinals simultaneously indestructible,
as well as all partially strongly unfoldable cardinals, providing an exact equiconsis-
tency result for such universal indestructibility.

2 Preliminaries and Background

Let us review some preliminary matters concerning strong unfoldability. Like their
weaker cousins, the weakly compact cardinals, the unfoldable and strongly unfold-
able cardinals admit numerous equivalent characterizations in terms of various em-
bedding and extension properties. Villaveces [20] originally defined unfoldability
and strong unfoldability by a certain extension property, which he then proved equiv-
alent to the embedding characterization, which we take as the defining notion. (The
equivalence between the extension and embedding formulations stated in [20], how-
ever, appears to break down when θ is a limit ordinal with cofinality ω; so we take
the embedding definition as official.) In this article, it will be useful to have one very
weak formulation of strong unfoldability, Lemma 2.1, to be used as a sufficient crite-
rion when we want to verify that κ remains strongly unfoldable in the relevant forcing
extension, and another very strong formulation of strong unfoldability, Lemma 2.2,
to provide the most powerful embeddings in the ground model, with which we shall
begin our main argument.

We use the notation ZFC− to mean the axiomatization of set theory consisting of
the ZFC axioms except the Power Set axiom. For any regular uncountable cardinal δ,
the collection Hδ of sets hereditarily of size less than δ is a model of ZFC−. A κ-
model is a transitive set M of size κ with κ ∈ M |H ZFC− and M<κ

⊆ M . A
simple Löwenheim-Skolem argument shows that if κ<κ = κ , then any A ∈ Hκ+

can be placed into a κ-model M ≺ Hκ+ . The notation f ... A → B means that f
is a partial function with dom( f ) ⊆ A and ran( f ) ⊆ B. We use Cofδ λ to denote
the set of ordinals α < λ with cof(α) = δ, and Vα for the collection of sets with
Lévy rank less than α, where rank(x) = sup{ rank(y)+ 1 | y ∈ x }. We relativize
this notation to other models of set theory by writing V θ and V [G]θ for (Vθ )V and
(Vθ )V [G], respectively. A poset P is <κ-strategically closed if there is a strategy for
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the second player in the game of length κ allowing her to continue play, where the
players alternate play to build a descending sequence 〈pξ | ξ < κ〉 of conditions
in P, with the second player playing at limit stages. The poset P is ≤κ-strategically
closed if the second player has a winning strategy in the corresponding game of
length κ + 1.

Lemma 2.1 An inaccessible cardinal κ is θ -strongly unfoldable if and only if for
every A ⊆ κ there is a transitive set M |H ZFC− of size κ with κ, A ∈ M and
a transitive set N with an embedding j : M → N with critical point κ such that
θ ≤ j (κ) and Vθ ⊆ N.

Lemma 2.1 can be easily deduced from Definition 1.1 by observing that any κ-model
M ′ can be coded by a set A ⊆ κ , and so if there is j : M → N with A ∈ M |H ZFC−,
then also M ′

∈ M and j � M ′
: M ′

→ j (M ′) is elementary. Since Vκ∩M ′
= Vκ∩M

and θ ≤ j (κ), it follows that Vθ ∩ j (M ′) = Vθ ∩ N , and so this embedding witnesses
the desired degree of strong unfoldability.

Lemma 2.2 ([4], Lemma 5) An inaccessible cardinal κ with κ ≤ θ is θ+1-strongly
unfoldable if and only if for every κ-model M there is a transitive set N and an
embedding j : M → N with critical point κ such that θ < j (κ) and Ni θ ⊆ N and
|N | = iθ+1.

Lemma 2.2 was proved by adapting the Hauser method [12] from the indescribable
cardinal context. A similar observation was made in [19], although not in this local
form. The supercompactness-like nature of the embedding provided by Lemma 2.2
allows us to borrow techniques for strong unfoldability from the supercompact car-
dinals.

The Main Theorem will be proved using the lottery preparation of [8], which
works best when defined relative to a function f ... κ → κ with high growth behavior.
The specific desired property is that f should exhibit the Menas property for strong
unfoldability: for every θ one should be able to find embeddings as in Lemmas 2.1
and 2.2 for which f ∈ M and j ( f )(κ) ≥ θ . Hamkins [9] proved that such a function
can be added by Woodin’s fast function forcing, but Johnstone [14] observed that
there is no need for forcing, since every strongly unfoldable cardinal already has a
function with the Menas property.

Lemma 2.3 ([14]) Every strongly unfoldable cardinal has a function with the
Menas property. Indeed, there is a class function f ... ORD → ORD such that for
every strongly unfoldable cardinal κ , the function f � κ ...κ → κ is definable in every
κ-model and has the Menas property for κ .

The desired function is simply the failure-of-strong-unfoldability function, defined
for inaccessible δ so that f (δ) is the least θ such that δ is not θ -strongly unfoldable,
if there is any such θ . If κ is θ -strongly unfoldable and θ > κ , then there are
θ-strong unfoldability embeddings j : M → N such that κ is not θ -unfoldable in N .
Since <θ -strong unfoldability is witnessed by objects in Vθ ⊆ N , it follows that κ is
<θ -strongly unfoldable in N but not θ -strongly unfoldable, and so j ( f )(κ) = θ , as
desired.

The key new method of this article, allowing us to enlarge the κ-properness
argument of [14] to the class of κ+-preserving forcing here, involves methods from
[10], which we now discuss. Our typical situation will occur when V is a set forcing
extension of V .
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Definition 2.4 ([10]) Suppose that V ⊆ V is an extension of two transitive models
of set theory and that δ is a cardinal in V .

(1) The extension V ⊆ V satisfies the δ approximation property if whenever
A ⊆ V is a set in V and A ∩ a ∈ V for any a ∈ V of size less than δ in V ,
then A ∈ V .

(2) The extension V ⊆ V satisfies the δ cover property if whenever A ⊆ V is a
set of size less than δ in V , then there is a covering set B ∈ V with A ⊆ B
and |B|

V < δ.

We refer to the sets A ∩ a appearing in (1) as the δ-approximations to A, and so the
approximation property asserts that if all the approximations to a subset of V are in
V , then the set is in V . The following critical lemmas from [10] allow us to build the
κ-models for which our main construction will succeed.

Lemma 2.5 ([10], Lemma 15) Suppose that V ⊆ V satisfies the δ approximation
and cover properties. If X

<δ
⊆ X in V and X ≺ V θ in the language with a predicate

for V , so that 〈X , X,∈〉 ≺ 〈V θ , Vθ ,∈〉, where X = X ∩ V , then X ∈ V . Further, if
M is the Mostowski collapse of X, then the Mostowski collapse of X is the same as
M ∩ V .

The corresponding version of this lemma, using elementary substructures of Hθ in
place of Vθ , can be proved in exactly the same way, and we will later employ this
version of the lemma. Although it is often convenient in set theory to work with
Hθ and its elementary substructures, because they model ZFC−, the proof of The-
orem 2.7 below (in [10]) uses the Power Set axiom and the Vα hierarchy, and it is
not currently clear whether that proof can be adapted for ZFC− models. Therefore,
following [10] for the applications of the approximation and cover properties and
Theorem 2.7, we work instead with what we call the models of set theory, meaning
that they satisfy a sufficiently rich fixed finite fragment of ZFC, taken for definiteness
to be the 6100 fragment of ZFC. Transitive such models are easily obtained by the
Mostowski collapse of elementary substructures of a sufficiently rich Vθ .

Lemma 2.6 ([10], Lemma 16) Suppose that V ⊆ V satisfies the δ approximation
and cover properties and κ ≥ δ is an inaccessible cardinal in V . If A ⊆ κ is any set
in V , then there is a transitive model of set theory M of size κ in V such that A ∈ M,
M

<κ
⊆ M in V and M = M ∩ V ∈ V is a model of set theory.

Note that M may not necessarily have size κ in V , if κ+V is collapsed in V . The
following theorem is a special case of the Main Theorem of [10], useful for our
purposes here.

Theorem 2.7 Suppose that V ⊆ V satisfies the δ approximation and cover proper-
ties, for some regular δ < κ , and that M is a transitive model of set theory in V such
that M

<κ
⊆ M in V and M = M ∩ V is an element of V and a model of set theory

there. If j : M → N is a cofinal embedding with critical point κ , and N
δ

⊆ N in V ,
then both N =

⋃
j " M = N ∩ V and the restriction j � M : M → N are elements

of V .

By Lemmas 2.5 and 2.6, any subset A ⊆ κ can be placed into such a model M to
which the theorem applies. The corresponding restricted embedding j � M : M → N
can witness the θ -strong unfoldability of κ in V , because if Vθ ⊆ N , then



296 Joel David Hamkins and Thomas A. Johnstone

Vθ ⊆ N ∩ V = N . Note that strong unfoldability is indeed witnessed by cofi-
nal embeddings, since if j : M → N is any embedding, then chopping N off at
λ = sup j "ORDM leads to a cofinal embedding j : M → Nλ, which is elementary
by the Tarski-Vaught criterion for Nλ ≺ N . Also, if M<κ

⊆ M and N<κ
⊆ N ,

then the cofinality of λ is κ , and so N<κ
λ ⊆ Nλ. So the theorem applies to these

embeddings, and consequently, the corresponding extensions have no new strongly
unfoldable cardinals above δ.

Corollary 2.8 Suppose that V ⊆ V exhibits the δ approximation and cover prop-
erties. Then every strongly unfoldable cardinal above δ in V is strongly unfoldable
in V .

Extensions with the approximation and cover properties are very common in the large
cardinal literature and include all those by small forcing, the Silver iteration (succes-
sively adding Cohen sets), the canonical forcing of the GCH, the Laver preparation
and the lottery preparation. The following shows that any Easton support iteration
of progressively closed forcing will exhibit suitable approximation and cover prop-
erties.

Definition 2.9 ([10]) A forcing notion has a closure point at δ when it factors as
P ∗ Q̇, where P is nontrivial (in the sense that forcing with P necessarily adds a new
set), |P| ≤ δ and 1l P Q̇ is ≤δ strategically closed.

Lemma 2.10 ([10], Lemma 13) Forcing with a closure point at δ satisfies the δ+

approximation and cover properties.

Proof We give an alternative proof here, following Mitchell [18], since this is sim-
pler than the original argument of [10]. Suppose that V ⊆ V [g][G] is a forcing
extension by the forcing g ∗ G ⊆ P ∗ Q̇, where P is nontrivial, |P| ≤ δ, and P Q̇ is
≤δ-strategically closed. We aim to show that V ⊆ V [g][G] has the δ+ approxima-
tion and cover properties. The δ+ cover property is easy here, since it holds for each
step of the extension V ⊆ V [g] ⊆ V [g][G]. For the δ+-approximation property,
suppose that A ∈ V [g][G] has A ⊆ V , but A /∈ V . Let Ȧ be a P ∗ Q̇-name for A,
forced by 1l to have those properties. Since Ȧ is forced not to be in V , it follows that
for every condition (p, q̇) there is b ∈ V such that (p, q̇) does not decide whether
b̌ ∈ Ȧ. So there are (p0, q̇0) and (p1, q̇1) below (p, q̇) such that (p0, q̇0)  b̌ /∈ Ȧ
and (p1, q̇1)  b̌ ∈ Ȧ. Since P is nontrivial, we may assume without loss of gen-
erality that p0 and p1 are incompatible. Thus, by mixing, there is a name q̇ ′ such
that p0 forces q̇ ′

= q̇0 and p1 forces q̇ ′
= q̇1. Indeed, by further mixing we may

assume that 1l forces q̇ ′
≤ q̇. The point is that we could have used conditions (p0, q̇ ′)

and (p1, q̇ ′) with the same second coordinate q̇ ′ and which have 1l P q̇ ′
≤ q̇ . We

now simply iterate this. Fix a P-name τ for the strategy witnessing that 1l P Q̇

is ≤δ-strategically closed, and enumerate P = { pβ | β < δ }. We build a sequence
of P-names q̇β for elements of Q̇ such that α < β implies (1l, q̇β) ≤ (1l, q̇α), and
there are p0

β and p1
β below pβ and an element bβ such that (p0

β , q̇β)  b̌β /∈ Ȧ
and (p1

β , q̇β)  bβ ∈ Ȧ. Use the previous observation at successors, combined
with an application of the strategy τ so that the resulting sequence accords with the
strategy τ , allowing the construction to continue through limits. For any (pβ , ṫβ),
there are as above p0

β and p1
β below pβ , a name q̇β and an element bβ such that

(1l, q̇β) ≤ (1l, ṫβ) and (p0
β , q̇β)  bβ /∈ Ȧ and (p1

β , q̇β)  bβ ∈ Ȧ, as desired. Since
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1l forces that the q̇β are descending and conform with the strategy, there is q̇δ such
that (1l, q̇δ) ≤ (1l, q̇β) for all β < δ. But no condition (p, ṙ) stronger than (1, q̇δ) can
decide Ȧ on { bβ | β < δ }, since p = pβ for some β. So not all approximations to
A are in V . �

The iterations we mentioned previously exhibit numerous closure points, often be-
tween any two nontrivial stages of forcing. In general, any forcing that first adds a
Cohen real and then performs countably closed forcing will have a closure point at
ω and consequently exhibit the ω1 approximation and cover properties.

Our main construction will make use of the lottery preparation of [8], which we
briefly review here. If κ is a cardinal and f ... κ → κ , then the lottery preparation of
κ is the following Easton support forcing iteration P of length κ . Nontrivial forcing
is performed only at inaccessible cardinal stages γ ∈ dom( f ) such that f " γ ⊆ γ .
At such a stage γ , the forcing is the lottery sum in V Pγ of all posets Q ∈ H f (γ )+

such that for every β < γ there is a <β-strategically closed dense subset of Q. For
the purposes of this paper, it would be fine to use a simplified preparation, where
the stage γ lottery includes just the <γ -closed Q in H f (γ )+ . The lottery sum ⊕A
of a collection of posets A, also commonly called side-by-side forcing, is the poset
{ 〈Q, p〉 | p ∈ Q ∈ A }∪{1l}, ordered with 1l above everything and 〈Q, p〉 ≤ 〈Q′, p′

〉

when Q = Q′ and p ≤Q p′. The generic filter in effect selects a “winning” poset
from A and then forces with it. The thrust of [8] is that if j is an embedding with
critical point κ and j ( f )(κ) is large, then the lottery sum at stage κ in j (P) includes
all the desired posets, and so by working below a condition opting for the correct
poset in that lottery, one avoids the need for a Laver function. Since the lottery
preparation exhibits a closure point between any two successive nontrivial stages
of forcing, the resulting forcing extension V ⊆ V [G] exhibits the δ approximation
and cover property for numerous δ less than κ . This completes our review of the
preliminary and background material.

3 Indestructible Strong Unfoldability

We now proceed with the proof of our Main Theorem, restated here for convenience.

Main Theorem If κ is strongly unfoldable, then after suitable preparatory
forcing, the strong unfoldability of κ becomes indestructible by all <κ-closed
κ+-preserving set forcing.

Proof Suppose that κ is strongly unfoldable. Let f ...κ → κ be a function exhibiting
the strong unfoldability Menas property, such as the function defined in Lemma 2.3.
Let P be the lottery preparation of κ relative to f . Thus, P is the Easton support κ-
iteration of forcing, which at every inaccessible stage γ ∈ dom( f ), with f " γ ⊆ γ ,
forces with the lottery sum of all forcing notions in H f (γ )+ that for every β < γ are
<β-strategically closed. Suppose that G ⊆ P is V -generic and consider the model
V [G]. We shall argue that κ is strongly unfoldable in V [G] and the strong unfold-
ability of κ is indestructible over V [G] by all further <κ-closed κ+-preserving forc-
ing. Because this includes trivial forcing, the latter property implies the former, and
so it suffices to verify only that κ becomes indestructible. For this, suppose that Q

is such a <κ-closed κ+ preserving forcing in V [G] and that g ⊆ Q is V [G]-generic.
Fix a P-name Q̇, forced to be <κ-closed and κ+-preserving such that Q = Q̇G .
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We will show that κ is strongly unfoldable in V [G][g] by means of the embed-
ding property. Fix any ordinal θ ≥ κ , large enough so that Q̇ ∈ Hθ , and consider any
A ⊆ κ in V [G][g]. Standard factoring arguments show that κ remains inaccessible
in V [G] (this is proved explicitly in [8, Theorem 3.3]) and consequently also in
V [G][g]. Choose some large regular λ > iθ and consider H V [G][g]

λ = Hλ[G ∗ g].
Let 〈X , X,∈〉 ≺ 〈Hλ[G ∗ g], Hλ,∈〉 be an elementary substructure chosen in
V [G][g], with |X | = κ and X

<κ
⊆ X in V [G ∗ g], such that X contains all the ob-

jects in which we are interested: κ , P, Q̇, G, g, f , and A. Although the elementary
substructure X is in the extension V [G ∗ g] and the restriction X = X ∩ V seems
to be merely a subset of the ground model V , we make the critical observation,
using the version of Lemma 2.5 adapted to Hλ, Lemma 2.10, and the subsequent
observation that the lottery preparation admits numerous closure points below κ ,
that X is actually an element of the ground model V . It follows, of course, that the
Mostowski collapse of X is also an element of V . By elementarity, every element
of X has the form τG∗g for some P ∗ Q̇ name τ ∈ X , and so X = X [G][g]. Since
X = X ∩ V = X [G ∗ g] ∩ V , it follows that G ∗ g is X -generic. (To reiterate
the remarks of the introduction, this is the key technical advance; we have obtained
X -genericity here without any κ-properness hypothesis on Q by choosing X in
the forcing extension, where it was easy to derive X -genericity, and then using
Lemmas 2.5 and 2.10 to conclude that X ∈ V .) Continuing with the argument, let
π : X [G ∗ g] ∼= M[G ∗ π(g)] be the Mostowski collapse of X = X [G ∗ g]. Since
π � X : X ∼= M , it follows that M is the Mostowski collapse of X . Since P ⊆ X , it
follows that π is the identity on P and consequently on G. The poset Q, however,
may be larger than κ , so we let Q0 = π(Q) and g0 = π(g), which is the same as
π " g. Since G ∗ g was an X -generic filter, it follows that G ∗ g0 ⊆ P ∗ Q̇0 is an
M-generic filter. Since X

<κ
⊆ X in V [G ∗ g], it follows easily that X<κ

⊆ X in
V and consequently also M<κ

⊆ M in V . In summary, since the forcing Q was
κ+-preserving, what we have is a transitive set M of size κ in V with κ ∈ M and
M<κ

⊆ M |H ZFC−. Since κ is strongly unfoldable in V , there is by Lemma 2.2 a
(θ + 1)-strong unfoldability embedding j : M → N in V , with j ( f )(κ) > θ and
Ni θ ⊆ N and |N | = iθ+1.

We shall now lift the embedding j : M → N in two steps, first to the extension
j : M[G] → N [ j (G)], and then fully to j : M[G][g0] → N [ j (G)][ j (g0)]. This
final embedding, we shall argue, will witness the θ -strong unfoldability of κ with
respect to A in V [G][g]. To begin the first step, consider the forcing j (P), which is
the lottery preparation of j (κ) as computed in N relative to the function j ( f ). Since
Vκ ⊆ N and j ( f ) � κ = f , the forcing in j (P) up to stage κ is the same as P, the
forcing we carried out in V . In particular, since G ⊆ P = j (P)κ is V -generic for this
forcing, it is also N -generic, and so N [G] is a generic extension obtained by forcing
over the first κ many stages of j (P). Consider now the stage κ forcing in j (P).
This is the lottery sum of all sufficiently closed posets in N [G] of hereditary size at
most j ( f )(κ). Our assumptions on Q̇ and θ ensure that Q appears in this lottery.
Below a condition opting for Q̇ in the stage κ lottery, therefore, we may factor j (P)
as P ∗ Q̇ ∗ Ptail, where Ptail is the rest of the forcing, after stage κ up to j (κ). Since
g ⊆ Q is V [G]-generic, it is also N [G]-generic, and N [G][g] is a generic extension
arising from the first κ+1 many stages of forcing in j (P). Because j ( f )(κ) > θ and
nontrivial forcing occurs in j (P) only at inaccessible stages closed under j ( f ), the
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next nontrivial stage of forcing is beyond iθ , and consequently Ptail is ≤iθ -closed in
N [G][g].

Let us suppose for a moment that the GCH holds at iθ so that iθ+1 = i+

θ and
consequently |N | = i+

θ . Since Ni θ ⊆ N in V and P ∗ Q̇ is iθ -c.c., it follows
that N [G ∗ g]

i θ ⊆ N [G ∗ g] in V [G ∗ g]. The forcing Ptail, which is ≤iθ -closed
in N [G ∗ g], is therefore also ≤iθ -closed in V [G ∗ g]. By lining up the dense
subsets of Ptail in N [G ∗ g] into a i+

θ -sequence in V [G][g], we may construct by
diagonalization an N [G ∗ g]-generic filter Gtail ⊆ Ptail in V [G][g]. The combined
filter G ∗ g ∗ Gtail ⊆ P ∗ Q̇ ∗ Ptail is therefore N -generic for j (P), and we may lift the
embedding to j : M[G] → N [ j (G)] with j (G) = G ∗ g ∗ Gtail, completing the first
step of the lifting process.

For the second step, still under the GCH assumption at iθ , consider now
the forcing j (Q0) in N [ j (G)]. The usual closure arguments establish that
N [ j (G)]iθ ⊆ N [ j (G)] in V [G ∗ g]. These closure arguments also show that M[G]

is a κ-model in V [G] and consequently that M[G][g0] is a κ-model in V [G][g].
Since Q0 is <κ-closed in M[G], it follows by a density argument that the filter g0 is
a <κ-closed subset of Q0 in M[G][g0]. Moreover, the model V [G][g] agrees, but
also sees that the filter g0 has size κ . In V [G][g], therefore, there is a descending
κ-sequence of conditions 〈pα | α < κ〉 that is downward cofinal in g0 so that g0 is
the filter generated by this sequence. This sequence is not necessarily in M[G][g0],
since this model doesn’t necessarily agree that Q0 has size κ . Since N [ j (G)] is
closed under κ-sequences, we conclude that 〈 j (pα) | α < κ〉 ∈ N [ j (G)]. This is a
descending κ-sequence in j (Q0), which is < j (κ)-closed in N [ j (G)], and so there is
a master condition p∗

∈ j (Q0) that is below every element of j "g0. Because j (Q0)

is ≤iθ -closed in N [ j (G)] and N [ j (G)]iθ ⊆ N [ j (G)], it follows that j (Q0) is ≤iθ -
closed in V [G][g]. And since we have assumed that N [ j (G)] has size i+

θ , we may
again construct by diagonalization an N [ j (G)]-generic filter g∗

⊆ j (Q0) below the
master condition p∗. Because every element of j " g0 lies above p∗, it follows that
j " g0 ⊆ g∗, and so we may lift the embedding to j : M[G][g0] → N [ j (G)][ j (g0)]
with j (g0) = g∗, completing the second step.

Let us argue that this lifted embedding witnesses the (θ + 1)-strong unfold-
ability for A in V [G][g]. Because Niθ ⊆ N in V , it follows that Vθ+1 ⊆ N .
Because j (G) = G ∗ g ∗ Gtail, it follows that G and g are both in N [ j (G)], and so
(V [G][g])θ+1 = Vθ+1[G][g] ⊆ N [ j (G)]. Since κ ⊆ X , it follows that π(A) = A
and so A ∈ M[G][g0]. Thus, the lifted embedding j : M[G][g0] → N [ j (G)][ j (g0)]
is a (θ + 1)-strong unfoldability embedding for A in V [G][g]. Thus, under the GCH
assumption at iθ , we have verified that κ is (θ + 1)-strongly unfoldable in V [G][g],
as desired.

It remains to consider the case that the GCH fails at iθ . In this case, let H be
V [G][g]-generic for Add(i+

θ , 1), which naturally forces 2iθ = i+

θ . In V [G][g][H ],
therefore, we do have the GCH hypothesis at iθ , and we can carry out the con-
struction of the previous three paragraphs in V [G][g][H ]. The result after the two
steps of lifting is the embedding j : M[G][g0] → N [ j (G)][ j (g0)], which still has
A ∈ M[G][g0] and Vθ+1[G][g] ⊆ N [ j (G)]. Since the H forcing is ≤iθ -closed,
it adds no new subsets to Vθ [G][g], and so (Vθ+1)

V [G][g][H ]
= (Vθ+1)

V [G][g]
=

Vθ+1[G][g]. So the embedding j : M[G][g0] → N [ j (G)][ j (g0)] is a (θ + 1)-
strong unfoldability embedding in V [G][g][H ]. The final observation is that because
θ-strong unfoldability is witnessed by extender embeddings having size at most iθ ,
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the forcing H could not have added the θ -strong unfoldability extender arising from
j , and so κ is θ-strongly unfoldable in V [G][g], as desired. �

Since every unfoldable cardinal is strongly unfoldable in L and every strongly un-
foldable cardinal is also weakly compact and totally indescribable, we obtain the
following corollary.

Corollary 3.1 If there is a model of ZFC with an unfoldable cardinal, then
(1) there is a model of ZFC with a weakly compact cardinal κ that is indestruc-

tible by all <κ-closed κ+-preserving forcing, and
(2) there is a model of ZFC with a totally indescribable cardinal κ that is inde-

structible by all <κ-closed κ+-preserving forcing.

This provides a relatively low upper bound on the consistency strength of a weakly
compact cardinal with this degree of indestructibility. But the exact strength of this
situation remains open.

Question 3.2 What is the exact consistency strength of a weakly compact cardinal
κ that is indestructible by all <κ-closed κ+-preserving forcing?

The question is also open in the case of a weakly compact cardinal κ that is inde-
structible by all <κ-closed κ-proper forcing, or even only by all <κ-closed κ+-c.c.
forcing. The best upper bound currently known for any of these cases is the existence
of an unfoldable cardinal, provided by our Main Theorem.

Let us turn now to local versions of the Main Theorem. The attentive reader
will observe that our proof of the Main Theorem has actually established that if κ
is (θ + 1)-strongly unfoldable and 2iθ = i+

θ , then after the lottery preparation
relative to a function with the Menas property, the (θ + 1)-strong unfoldability of
κ becomes indestructible by all <κ-closed κ+-preserving forcing of size at most
iθ . This GCH assumption of 2iθ = i+

θ is relatively mild in the sense that it can be
forced by adding a subset to i+

θ while preserving Vθ+1 and consequently the (θ+1)-
strong unfoldability of κ . But actually, we can prove a better local result, which
omits both the GCH hypothesis and the restriction to successor ordinals by adapting
lifting techniques from the strong cardinal context rather than from the supercompact
cardinal context as we do above. Specifically,

Theorem 3.3 If κ is θ -strongly unfoldable, κ ≤ θ , then after the lottery preparation
of κ relative to a function with the Menas property, the θ -strong unfoldability of κ
becomes indestructible by all <κ-closed κ+-preserving forcing of rank less than θ .

Proof This theorem is obtained by combining the key method of our Main Theorem
above with the proof of [14, Theorem 42], which obtained the corresponding result
for <κ-closed κ-proper forcing. We sketch the argument. Suppose that G ⊆ P is
V -generic for the lottery preparation P of κ relative to a function f ... κ → κ with
the θ -strong unfoldability Menas property for κ . Suppose that g ⊆ Q is V -generic
for some <κ-closed κ+-preserving forcing Q of rank less than θ . We want to show
that κ remains θ-strongly unfoldable in V [G][g]. Fix any set A ⊆ κ , pick some
large regular λ > θ , and find X ≺ H V [G][g]

λ with X
<κ

⊆ X as in Lemma 2.5,
with { f,P, Q̇,G, g, κ, A} ⊆ X . It follows as before that X = X ∩ V is in V ,
that G ∗ g is X -generic for P ∗ Q̇, and that X = X [G][g]. If M is the Mostowski
collapse of X , then M = M[G][g0], where M is the Mostowski collapse of X and
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g0 ⊆ Q0 is the Mostowski collapse of g ⊆ Q. Now we make the key step, using
Lemma 41 of [15], to obtain a θ -strong unfoldability embedding j : M → N in V
with j ( f )(κ) < θ and Vθ ⊆ N and N = { j (h)(s) | h ∈ M, h : Vκ → M, s ∈ S },
where S = Vθ ∪ {θ, j � Q̇0}, and finally, crucially, j � Q̇0 ∈ N . Such an
embedding is a very useful hybrid between the strongness-like extender embed-
dings, since it is generated by the seeds in S, and the supercompactness-like
embeddings, since j � Q̇0 ∈ N . Let p be the condition opting for Q in the
stage κ lottery of j (P) so that p = j ( Ep)(s0) for some function Ep and s0 ∈ S.
Let Y = { j (h)(κ, s0, θ, j � Q̇0) | h ∈ M, h : κ → M } ≺ N be the seed hull of
〈κ, s0, θ, j � Q̇0〉, and consider Y [G][g] ≺ N [G][g]. Since Y<κ

⊆ Y in V and
P ⊆ Y is κ-c.c., it follows that Y [G]

<κ
⊆ Y [G] in V [G] and consequently that

Y [G][g]
<κ

⊆ Y [G][g] in V [G][g]. As Y [G][g] has size κ and the tail forcing Ptail,
the part of j (P) after stage κ , is ≤κ-closed, we may in V [G][g] construct a Y [G][g]-
generic G0

tail ⊆ Ptail. Since the next nontrivial stage of forcing in Ptail must be an
inaccessible closure point of j ( f ), it follows that Ptail is ≤iθ -closed in N [G][g]. It
follows, we claim, that the filter Gtail generated by G0

tail is actually N [G][g]-generic.
To see this, suppose that D ⊆ Ptail is any open dense subset of Ptail in N [G][g]. So
D = j ( ED)(s)G∗g for some sequence ED of names for open dense sets and some
s ∈ S. In Y [G][g], let D̄ be the intersection of all j ( ED)(t)G∗g for any t ∈ S for
which this gives an open dense subset of Ptail. The set D̄ is in Y [G][g], since it was
defined using only parameters in Y [G][g]. By the distributivity of the tail forcing,
D̄ is an open dense subset of Ptail in Y [G][g]. Consequently, G0

tail contains elements
from D̄ and hence from D, since D̄ ⊆ D. Thus, Gtail is N [G][g]-generic, as we
claimed. The combined filter G ∗ g ∗ Gtail is therefore N -generic for j (P) and we
may lift the embedding to j : M[G] → N [ j (G)] with j (G) = G ∗ g ∗ Gtail. Since
j � Q̇0 ∈ N and g ∈ N [ j (G)], we may build j " g0 in N [ j (G)]. Since N [ j (G)]
can see that g0 (and indeed all of M[G][g0]) has size κ , it can build a descending κ-
sequence cofinal in g0, and consequently a descending κ-sequence cofinal in j " g0.
Since j (Q0) is < j (κ)-closed, there is a master condition p∗

∈ j (Q0) below every
element of j " g0. By elementarity, since j � Q̇0 ∈ Y , we may find such a condition
p∗ in Y [ j (G)], and consequently, we may again construct a Y [ j (G)]-generic filter
g∗

⊆ j (Q0) containing p∗. It follows again by the distributivity of j (Q0) that
the filter generated by g∗ is N [ j (G)]-generic. Since j " g0 ⊆ g∗, we may lift
the embedding to j : M[G][g0] → N [ j (G)][ j (g0)], where j (g0) = g∗. Since
Vθ ⊆ N , it follows that Vθ [G][g] ⊆ N [ j (G)], and so this is a θ -strong unfoldability
embedding. Since A ∈ X , it follows that A ∈ M = M[G][g0]. So we have verified
the θ -strong unfoldability of κ via Lemma 2.1. �

The following corollary is an immediate consequence of Theorem 3.3 using the fact
that κ is 5m+1

1 -indescribable if and only if it is (κ + m)-strongly unfoldable and
totally indescribable if and only if it is (κ + m)-strongly unfoldable for every m < ω
(see [4] or [15]).

Corollary 3.4

(1) If κ is 5m+1
1 -indescribable for some natural number m, then after the lottery

preparation of κ relative to a function with the Menas property, the 5m+1
1 -

indescribability of κ becomes indestructible by all <κ-closed, κ+-preserving
forcing of rank less than κ + m.
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(2) If κ is totally indescribable, then after the lottery preparation of κ relative
to a function with the Menas property, the total indescribability of κ is inde-
structible by all <κ-closed, κ+-preserving forcing of size less than iκ+ω.

We will argue in Section 4 that the degree of indestructibility provided by the Main
Theorem, within the class of <κ-closed forcing, is optimal for its hypothesis, because
having even the weak compactness of κ survive some <κ-closed forcing collapsing
κ+ has a far greater large cardinal consistency strength than unfoldability, implying
the relative consistency of the failure of �κ . Nevertheless, we now show that if one
begins with a much stronger hypothesis, such as a supercompact cardinal κ , then a
greater degree of indestructibility is possible, dropping the κ+-preserving require-
ment.

Theorem 3.5 If κ is supercompact, then after suitable preparatory forcing, the
strong unfoldability of κ becomes indestructible by all <κ-closed forcing (whether
or not this forcing collapses κ+).

Proof We follow the proof of the Main Theorem, but in the event that the addi-
tional forcing collapses κ+, we make use of the stronger hypothesis we have made
on κ in V . Suppose that κ is supercompact in V . Clearly, κ is also strongly un-
foldable in V . Let f ... κ → κ be any function with the strong unfoldability Menas
property; by pushing it somewhat higher, if necessary, we may also assume that f
has the supercompactness Menas property as well. Let P be the lottery preparation
of κ relative to f , and suppose that G ⊆ P is V -generic. The proof of the Main
Theorem shows that κ remains strongly unfoldable in V [G] and the strong unfold-
ability of κ is indestructible by further <κ-closed κ+-preserving forcing over V [G].
In fact, [8, Corollary 4.6] shows that κ remains supercompact in V [G] and the su-
percompactness of κ becomes indestructible over V [G] by all <κ-directed closed
forcing. We want to show that the strong unfoldability of κ is indestructible over
V [G] by <κ-closed forcing Q, which may happen to collapse κ+ and perhaps other
cardinals. Suppose g ⊆ Q is V [G]-generic, and as in the Main Theorem, suppose
θ is large enough above κ so that Q̇ ∈ Hθ , where Q̇ is a P-name for Q, forced to
be <κ-closed. Fix any A ⊆ κ in V [G][g]. Choose any regular λ > θ, κ and let
X ≺ H V [G][g]

λ be an elementary substructure in V [G][g] of size κ in V [G][g] in
a language with a predicate for V so that 〈X , X,∈〉 ≺ 〈H V [G][g]

λ , H V
λ ,∈〉, where

X = X ∩ V , and such that X
<κ

⊆ X in V [G][g] and P, Q̇,G, g, A, f, κ ∈ X .
The Mostowski collapse of X = X [G][g] has the form M[G][g0], where M is the
Mostowski collapse of X . Since the combined forcing P ∗ Q̇ has closure points be-
low κ , we know by Lemmas 2.5 and 2.10 that X and hence M is in V . But unlike
the situation in the Main Theorem, we don’t necessarily know here that X has size κ
in V , since κ+ may have been collapsed, although we do know that X has size less
than θ in V , since it has size κ in V [G][g] and θ remains a cardinal there. Now is
precisely where we shall make use of our greater assumption on κ in V . Since κ was
supercompact in V , there is a iθ -supercompactness embedding j : V → N having
critical point κ and Niθ ⊆ N in V , with j ( f )(κ) > θ . Consider the elementary
embedding j � M : M → j (M) obtained by restricting to M . Since M<κ

⊆ M in
V , it follows that j (M)< j (κ)

⊆ j (M) in N , and therefore j (M)iθ ⊆ j (M) in V .
In particular, Vθ+1 ⊆ j (M). In V , we may construct Y ≺ j (M) with ran( j) ⊆ Y
and Y iθ ⊆ Y and of size |Y | = 2iθ . If π : Y ∼= N0 is the Mostowski collapse,
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then the induced factor embedding j0 = π ◦ j : M → N0 has critical point κ
with Niθ

0 ⊆ N0 and |N0| = 2iθ . In particular, j0 ∈ N0. This is something like
a (θ + 1)-unfoldability embedding, except that the domain M may have size larger
than κ , although it does have size κ in V [G][g]. The point now is that the proof of
the Main Theorem can simply proceed with this embedding j0, since the argument
never used that the domain had size κ in V except to get the embedding initially.
So first we consider the case when the GCH holds at iθ . We lift the embedding in
the first step to j0 : M[G] → N0[ j0(G)], where j0(G) = G ∗ g ∗ Gtail, using the
forcing g ⊆ Q in the lottery at stage κ in j (P) and constructing Gtail by diagonaliza-
tion against the i+

θ enumeration of the dense sets in N0[G][g]. Using the fact that
j0 ∈ N0 and g ∈ N0[ j0(G)], we can build j0 " g0, and since N0[G][g] knows that
g0 has size κ , as in the Main Theorem, we build a descending κ-sequence cofinal in
j0 " g0 and appeal to the fact that j0(Q0) is < j0(κ)-closed to obtain a master condi-
tion p∗

∈ j (Q0) below every element of j0 " g0. Another diagonalization argument
builds an N0[ j0(G)]-generic filter g∗

⊆ j0(Q0) containing p∗, and we may there-
fore lift the embedding in V [G][g] to j0 : M[G][g0] → N0[ j0(G)][ j0(g0)], where
j0(g0) = g∗. This lifted embedding witnesses the (θ + 1)-strongness of κ for A in
V [G][g], as desired. As in the Main Theorem, if the GCH happens to fail at iθ in V ,
then we may simply force it over V [G][g], use the previous argument to show that
κ is θ-strongly unfoldable in the resulting extension, and then argue that the extra
forcing could not have created the θ -strong unfoldability extender embeddings, so
again κ is θ -strongly unfoldable in V [G][g], as desired. �

The Laver preparation of a supercompact cardinal κ can be easily modified, by al-
lowing <γ -closed forcing at each stage γ rather than merely <γ -directed closed
forcing, in order to attain the indestructibility identified in Theorem 3.5 (in addi-
tion to the supercompactness indestructibility by <κ-directed closed forcing). Our
proof of Theorem 5.2 will show, however, that the unmodified Laver preparation, as
defined in [17], definitely does not create this degree of indestructibility.

4 The Degree of Indestructibility Is Optimal from Our Hypothesis

We now briefly explain the sense in which the indestructibility result of the Main
Theorem is optimal. For this, we make use of Jensen’s principle �κ , which asserts of
an uncountable cardinal κ that there is a sequence 〈Cξ | ξ < κ+, ξ ∈ Lim〉 such that
for any limit ordinal ξ < κ+, the set Cξ is a closed unbounded subset of ξ , having
order type less than κ if cof(ξ) < κ and such that Cβ = Cξ ∩β whenever β is a limit
point of Cξ . It follows that if β < κ+ has cofinality κ , then Cβ has order type exactly
κ . The significance of the following theorem flows principally from the fact that the
failure of �κ when κ is weakly compact is a very strong hypothesis, known to imply
ADL(R), for example, which has the strength of infinitely many Woodin cardinals,
far above the existence of an unfoldable cardinal in the large cardinal hierarchy.

Theorem 4.1 If a cardinal κ is weakly compact in a <κ-closed forcing extension
V [G] collapsing κ+V , then �κ fails in V .

Proof This theorem is widely known, but we outline the proof. We begin with
Jensen’s fact that �κ implies that there is a stationary nonreflecting subset S ⊆ κ+

such that S ⊆ Cofω κ+. To see this, suppose EC = 〈Cξ | ξ < κ+, ξ ∈ Lim〉 is a �κ

sequence. We define the partial function F ... κ+
→ κ+ on the limit ordinals below
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κ+ so that F(ξ) equals the order type of Cξ . By Fodor’s lemma there is a stationary
subset S of κ+ with S ⊆ Cofω κ+ on which F is constant. No initial segment S ∩ β
can be stationary, for any β < κ+ of uncountable cofinality, because the restriction
of F to the limit points of Cβ is injective, and the club Cβ can thus have at most one
of its limit points in S. The set S ⊆ Cofω κ+ is therefore a stationary nonreflecting
subset of κ+.

Next, we argue that S remains stationary and nonreflecting in the forcing ex-
tension V [G], obtained by <κ-closed κ+-collapsing forcing G ⊆ P. The set S is
nonreflecting in V [G], of course, since the initial segments of S were nonstationary
in V and consequently remain nonstationary in V [G]. To see that S remains sta-
tionary in V [G], suppose that Ċ is a P-name in V forced by the condition p to be
club in κ+V . Since S is stationary in V , there exists in V an elementary substruc-
ture X ≺ Vθ of size κ , for some very large regular θ , with γ = X ∩ κ+V

∈ S and
κ, S, p,P, Ċ ∈ X . Since γ has cofinality ω, we may construct a countable Y ≺ X
such that sup(Y ∩ κ+V ) = γ and κ, S, p,P, Ċ ∈ Y . Thus also Y ≺ Vθ . Since P is
countably closed, a simple descending sequence argument produces a condition p∗

inside every open dense subset of P in Y . Since p ∈ Y forces that Ċ is unbounded in
κ+V , the condition p∗ will force that Ċ is unbounded in γ , and consequently force
that γ is in Ċ . Since γ ∈ S, we have therefore found a condition below p forcing
that Ċ ∩ Š is nonempty, and so S remains stationary in V [G], as desired.

Suppose now toward contradiction that κ is weakly compact in V [G]. Since P is
<κ-closed and collapses κ+, it follows that the cofinality of κ+V in V [G] is κ , so
there is a club set C ⊆ κ+V of order type exactly κ . Since κ+V now has size κ , we
may find in V [G] a κ-model M with S,C ∈ M such that M agrees that S is stationary
and nonreflecting, and a weak compactness embedding j : M → N having critical
point κ . We may assume by the Hauser [12] embedding characterization that M and
j are elements of N and that they have size κ there. Since j (C) has order type j (κ),
it follows that δ = sup j "κ+V < j (κ+V ). Observe that j "C is a closed unbounded
subset of δ in N , since C has order type κ and j has critical point κ and M is a κ-
model in V [G]. If D ⊆ j "C is any smaller club set in N , then D = j "C0 for some
smaller club C0 ⊆ C in N using the fact that j ∈ N . Since S is stationary in V [G],
it is stationary in N , and so S ∩ C0 is not empty. It follows that j "S ∩ j "C0 is also
not empty, and so j (S) ∩ D is not empty. This shows that j (S) ∩ δ, a proper initial
segment of j (S), is stationary in N , contradicting the fact obtained by elementarity
that j (S) is stationary and nonreflecting in N . �

We note that by Kunen’s theorem, if as in Theorem 4.1 the cardinal κ is weakly
compact in a <κ-closed extension V [G], then it is weakly compact in V (see also the
proof of Theorem 5.1). Using Theorem 4.1, we now deduce that within the class of
<κ-closed forcing, the conclusion of the Main Theorem is optimal.

Corollary 4.2 Using the same hypothesis as in the Main Theorem, if consistent,
one cannot provably improve the conclusion to indestructibility by any strictly larger
class of <κ-closed forcing.

The point is that any such improvement would lead to the situation of Theorem 4.1
and consequently to the failure of �κ when κ is weakly compact, a conclusion hav-
ing a much stronger consistency strength than the hypothesis, which would violate
the Incompleteness Theorem. Indeed, what Theorem 4.1 shows is that one cannot
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improve the Main Theorem in this way from any consistent large cardinal hypoth-
esis below the existence of infinitely many Woodin cardinals. From the hypothesis
that κ is supercompact, however, we have already seen in Theorem 3.5 that one can
improve the conclusion to provide indestructibility by all <κ-closed forcing.

The hypotheses on the forcing in Theorem 4.1 can be considerably weakened; the
proof shows that it is sufficient, for example, that P preserves stationary subsets of
Cofω κ+V and forces cof(κ+V ) = κ , a hypothesis true of any proper, <κ-distributive
forcing collapsing κ+. The conclusion of Theorem 4.1 has reportedly been improved
(see Jensen, Schimmerling, Schindler, Steel [13]) to the fact that if κ is weakly com-
pact after collapsing κ+, then there is nondomestic pre-mouse, which implies the
consistency of AD and even ADR.

Let us now turn to the possibility of weakening the <κ-closed requirement in the
Main Theorem. We begin by showing that it cannot be weakened to <κ-strategically
closed forcing.

Theorem 4.3 It is not possible to weaken “<κ-closed” to “<κ-strategically closed”
in the Main Theorem, because for any uncountable, regular cardinal κ with 2<κ = κ ,
there is a <κ-strategically closed cardinal-preserving notion of forcing that destroys
the weak compactness of κ .

Proof Suppose κ is an uncountable regular cardinal with 2<κ = κ . The standard
forcing P to add a κ-Souslin tree by initial segment is the desired forcing notion.
Because weakly compact cardinals have the tree property, they cannot admit such a
Souslin tree. Conditions in P are the empty tree 1l and subtrees p of 2<κ such that

(1) ht(p) = λ+ 1 for some limit ordinal λ < κ ,
(2) each level of p has size less than κ ,
(3) p has binary splitting at each level except its top level, and
(4) every s ∈ p is extended by some t ⊇ s which lies in the top level of p.

For conditions p, q ∈ P, we have that p ≤ q exactly if p end-extends the tree
q. It is well known that P preserves all cardinals and adds a κ-Souslin tree. Here,
we show that P is <κ-strategically closed. Note that not every descending chain
〈pξ : ξ < ω1〉 in P has a lower bound in P, since the trees pξ may even be converging
to an Aronszajn tree p =

⋃
ξ pξ with no possibility of extending further. Thus,

P is not ≤ω1-closed. But it is <κ-strategically closed, because as the sequence of
conditions 〈pξ | ξ < κ〉 is revealed during play, Player II can assign to each node s
in pξ a branch through pξ which she promises to extend in subsequent play. Player I
is required by condition (4) to extend these branches at successor stages of play, and
at limit stages of play, Player II can play the unions of her promised branches as the
desired limit tree. So Player II has a winning strategy allowing her to continue play
indefinitely up to κ . �

We conclude this section by explaining another sense in which the indestructibility
provided by the Main Theorem, even in the case of indestructible weak compact-
ness or indescribability, is optimal. Namely, if one attains such indestructibility via
preparatory forcing that resembles the Laver or lottery preparations—an Easton sup-
port iteration of progressively closed forcing—then such an extension will have nu-
merous closure points below κ and consequently by Lemma 2.10 will exhibit the δ
approximation and cover properties. The following theorem then shows that κ must



306 Joel David Hamkins and Thomas A. Johnstone

have been either strongly unfoldable or supercompact in the ground model, depend-
ing on whether the degree of indestructibility allows for κ+ to be collapsed or not.
This conforms exactly with the hypotheses of the Main Theorem and of Theorem 3.5.
We conclude that for the method of proof employed, consequently, the hypotheses of
the Main Theorem and of Theorem 3.5 are optimal. Recall that κ is (κ + 1)-strongly
unfoldable if and only if it is 52

1-indescribable.

Theorem 4.4 Suppose that κ is a cardinal in a forcing extension V [G] having a
closure point below κ . Then

(1) if the (κ + 2)-strong unfoldability of κ is indestructible over V [G] by all
forcing of the form Add(κ, θ), then κ was strongly unfoldable in V ;

(2) if the (κ + 1)-strong unfoldability of κ is indestructible over V by all forcing
of the form Add(κ, θ), then κ is strongly unfoldable in L;

(3) if the weak compactness of κ is indestructible over V [G] by all forcing of the
form Coll(κ, θ), then κ was supercompact in V .

Proof For statement (1), suppose A ⊆ κ in V and fix any ordinal θ . Force
over V [G] to add a V [G]-generic filter H ⊆ Add(κ,iV

θ ), and suppose that κ
remains (κ + 2)-strongly unfoldable in V [G][H ]. Notice that the combined forcing
V ⊆ V [G ∗ H ] still admits the same closure point. By Lemma 2.6, we may find a
κ-model M in V [G][H ] for which M = M ∩ V is an element of V and A ∈ M . By
(κ + 2)-strong unfoldability, there is an elementary embedding j : M → N with
critical point κ in V [G][H ], having N

iκ+1
⊆ N in V [G][H ]. In V [G][H ], since

iκ+1 = 2κ ≥ iV
θ and V V

θ has size iV
θ , it follows by coding with subsets of κ that

V V
θ ⊆ N . The embedding j is not cofinal in N , but if we let N 0 = Nλ, where
λ = sup j " M ∩ ORD, then j : M → N 0 remains elementary, and V V

θ ⊆ N 0, and
also N

<κ
0 ⊆ N 0 in V [G][H ]. By Theorem 2.7, it follows that j � M : M → N0,

where N0 =
⋃

j " M = N 0 ∩ V is an element of V . Thus, the restriction
j � M : M → N0 with V V

θ ⊆ N0 witnesses θ-strong unfoldability for A in V ,
as desired (note: in the case that V [G] collapses κ+V , then M may have size κ+V

or more in V , but this is no obstacle, since we may simply restrict j further to a
κ-model inside M containing A). The same argument works with all subsets of Vθ ,
and so this is actually a (θ + 1)-strong unfoldability embedding.

For statement (2), suppose that θ is any cardinal and that κ remains (κ + 1)-
strongly unfoldable in V [H ], a forcing extension obtained by forcing with H ⊆

Add(κ, θ). Thus, 2κ ≥ θ in V [H ], and consequently the (κ+1)-strong unfoldability
embeddings j : M → N that exist in V [G] have P(κ)V [H ]

⊆ N and consequently
j (κ) > θ . Thus, κ is θ -unfoldable in V [H ] and consequently θ -unfoldable in L .
Since θ was arbitrary, it follows that κ is unfoldable in L , and hence also strongly
unfoldable there, as desired. Statement (3) is essentially the Main Theorem of [2],
and we omit the proof. �

The more specific facts are that if after closure point forcing the weak compactness
of κ becomes indestructible by Coll(κ, 2θ

<κ
), then κ is θ -supercompact in V (see [2,

Theorem 3]). Similarly, the argument above shows that if after closure point forcing
the (κ + 2)-strong unfoldability of κ becomes indestructible by Add(κ,iθ ), then κ
is (θ + 1)-strongly unfoldable in V . This is a converse of sorts to Theorem 3.3 and
Corollary 3.4 and shows that the size limitations appearing in those results cannot be
omitted without a totally different proof method, lacking closure points.
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5 Directed Closed Versus Closed Forcing

We have called attention to the fact that our theorem concerns <κ-closed forcing as
opposed to <κ-directed closed forcing. Let us now discuss this issue in more de-
tail. Laver’s landmark theorem [17] showed that any supercompact cardinal κ can
be made indestructible by further <κ-directed closed forcing, and this result was
subsequently generalized to a number of other cardinals. In the supercompactness
argument, one uses the directed closure of the forcing when constructing the mas-
ter condition in the final step of the lifting argument. Although this use of directed
closure can be weakened in some ways, it cannot be weakened to provide inde-
structibility by all <κ-closed forcing, because such a degree of indestructibility is
impossible for supercompact or even measurable cardinals. It was observed in [16]
that the class of <κ-closed forcing includes the forcing to add a slim κ-Kurepa tree
(the forcing is <κ-closed and κ+-c.c.), which necessarily destroys measurability and
more. Indeed, [16] shows that no amount of <θ -closure, for arbitrarily large θ , is suf-
ficient to overcome the lack of directed closure, and there are such posets destroying
the supercompactness of κ . Gitman, Reitz, and Johnstone had observed that, with a
suitable preparation, the particular forcing to add a slim Kurepa tree is not a problem
for weakly compact, strongly unfoldable and even strongly Ramsey cardinals (see
[5, Theorem 2.56]). For strong unfoldability this fact is of course generalized by
the main theorem of [14; 15] and further generalized by the Main Theorem of this
article.

In the case of weak compactness, it turns out by Theorem 5.1 that indestruc-
tibility by <κ-directed closed separative forcing is equivalent to indestructibility by
<κ-closed separative forcing. This is special for weak compactness and is primarily
a consequence of the fact that weak compactness is downward absolute through <κ-
closed forcing. Theorem 5.2 will show, in an extreme way, that the corresponding
fact is not true for strong unfoldability.

Theorem 5.1 The following are equivalent:

(1) The weak compactness of κ is indestructible by <κ-closed separative forcing;
(2) The weak compactness of κ is indestructible by <κ-directed closed separative

forcing;
(3) The weak compactness of κ is indestructible by all forcing of the form

Coll(κ, θ).

Proof (Thanks to James Cummings for this suggestion and a helpful discussion.)
Clearly (1) implies (2) and (2) implies (3). So suppose that the weak compactness of
κ is indestructible by the collapse forcing Coll(κ, θ). The point will be that any <κ-
closed separative forcing is absorbed by collapse forcing Coll(κ, θ) for sufficiently
large θ , and this collapse forcing is <κ-directed closed and separative. Specifically,
suppose that Q is any <κ-closed separative forcing and G ⊆ Q is any V -generic
filter. Consider the two-step iterated forcing Q ∗ Coll(κ, θ), where θ = |Q|

<κ .
This forcing is <κ-closed and separative, necessarily collapses θ to κ , and has size
θ = θ<κ . It is a well-known result that all such posets are forcing equivalent to
Coll(κ, θ). This result is proved by building a dense copy of the tree θ<κ inside the
poset via an argument that breaks down if the poset is not <κ-closed, or if it is not
separative. If H ⊆ Coll(κ, θ) is any V [G]-generic filter, we may thus view V [G][H ]

as one-step forcing extension of V , obtained by simply forcing with Coll(κ, θ) over
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V . Since Coll(κ, θ) is <κ-directed closed, we therefore know that κ remains weakly
compact in V [G][H ]. We complete the proof by proving that the weak compactness
of κ in V [G][H ] is downward absolute through the <κ-closed forcing to V [G]. Cer-
tainly, κ is inaccessible in V [G]. Suppose that T is a κ-tree in V [G]. By the tree
property in V [G][H ], there is a κ-branch through T in V [G][H ]. But since the forc-
ing from V [G] to V [G][H ] was <κ-closed, we can in V [G] build a pseudogeneric
sequence of conditions that decide more and more of this branch, thereby produc-
ing a branch through T in V [G]. Thus, κ is inaccessible and has the tree property
in V [G] and is consequently weakly compact there. Thus, Q preserved the weak
compactness of κ , as desired. �

Unfortunately, the fact expressed in Theorem 5.1 does not generalize to strong un-
foldability. The key element of the proof of Theorem 5.1 is the fact that weak com-
pactness is downward absolute, via the tree property, through <κ-closed forcing.
This is simply not true of strong unfoldability. The easiest way to see this is to carry
out the Easton support iteration of length κ , adding a subset to γ at every inacces-
sible cardinal γ < κ (but do nothing at stage κ). If G is a V -generic filter for this
iteration, then κ will not be (κ+1)-strongly unfoldable in V [G], essentially because
the unfoldability embeddings j : M[G] → N [ j (G)] would have to have done forc-
ing at stage κ in j (G), and by strong unfoldability, the N [G]-generic that would be
used would have to be actually V [G]-generic, since by Theorem 2.7 we would have
Vκ+1 ⊆ N ⊆ V , contradicting the assumption that the embedding was in V [G].
Nevertheless, forcing over V [G] to add a V [G]-generic subset g ⊆ κ will now res-
urrect the strong unfoldability of κ by the usual lifting arguments. Thus, κ is strongly
unfoldable in V [G][g], but not in V [G], and so there is no general downward abso-
luteness of strong unfoldability even through the forcing Add(κ, 1). This argument
can be modified to use Add(κ+, 1) or Add(κ++, 1) or others, producing a model V ,
in which κ is not strongly unfoldable, but becomes strongly unfoldable by ≤κ-closed
or ≤κ+-closed forcing, respectively.

Indeed, the model provided by Theorem 5.2 is an extreme opposite case, where
the strong unfoldability of κ is fully indestructible by <κ-directed closed forcing, but
definitely destroyed by any <κ-closed forcing not forcing equivalent to <κ-directed
closed forcing. This contrasts sharply with Theorem 5.1 and shows that the improve-
ment from <κ-directed closed to <κ-closed forcing, introduced by Johnstone in [14],
is a genuine improvement.

Theorem 5.2 If κ is strongly unfoldable in V , then there is a forcing extension
V [G] such that

(1) the strong unfoldability of κ is indestructible over V [G] by all <κ-directed
closed κ+-preserving forcing, but

(2) the strong unfoldability of κ is destroyed over V [G] by all <κ-closed forcing
that is not forcing equivalent below a condition to <κ-directed closed forcing.

If κ is supercompact in V , then there is a forcing extension V [G] such that

(3) the supercompactness of κ is indestructible over V [G] by all <κ-directed
closed forcing, but

(4) the strong unfoldability of κ is destroyed over V [G] by all <κ-closed forcing
that is not forcing equivalent below a condition to <κ-directed closed forcing.
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Proof This argument follows the main idea and theme of [6]. Suppose that κ is
strongly unfoldable. Let f be the failure-of-strong unfoldability function as defined
after Lemma 2.3, which has a particularly strong form of the Menas property. Let
P be the modified lottery preparation, for which at every inaccessible stage γ hav-
ing f " γ ⊆ γ , we force with the lottery sum of all <γ-directed closed forcing
Q ∈ H f (γ )+ . That is, we limit the lottery preparation to use only directed closed as
opposed to closed forcing. Suppose that G ⊆ P is V -generic for κ . It is straightfor-
ward to follow through the proof of the Main Theorem and check that this modifica-
tion does not cause any problems in verifying that κ is strongly unfoldable in V [G]

and that the strong unfoldability of κ is indestructible by further <κ-directed closed
κ+-preserving forcing over V [G]. So (1) holds. Similarly, we may follow through
the proof of Theorem 3.5 and check that if κ is initially supercompact, then in V [G]

the supercompactness of κ becomes indestructible by all <κ-directed closed forcing.
So (3) holds as well.

We now prove (2) and (4) at the same time. Suppose that Q is <κ-closed forcing
in V [G] and κ remains strongly unfoldable in V [G][H ], where H ⊆ Q is V [G]-
generic. Choose θ > κ large enough so that Q ∈ V [G]θ , and consider in V [G][H ]

a (θ + 1)-strong unfoldability embedding j : M[G][H0] → N [ j (G)][ j (H0)],
where the κ-model M[G][H0] arises as the Mostowski collapse of X = X [G][H ]

as in Lemma 2.5 and the Main Theorem. (As in the Main Theorem, H0 ⊆ Q0
is an M[G]-generic filter, because it is the pointwise image under the collapse
of the X [G]-generic filter H ⊆ Q.) Without loss of generality, we may assume
that κ is not (θ + 1)-strongly unfoldable in N [ j (G)][ j[(H0)], that j is cofinal,
and that the target model N [ j (G)][ j[(H0)] is closed under <κ-sequences. It fol-
lows that j ( f )(κ) = θ + 1, which is the strong form of the Menas property
we mentioned. The N -generic filter j (G) selected some poset Q1 in the stage κ
lottery of j (P) with hereditary size at most the size of j ( f )(κ) = θ + 1. The
filter j (G) also added an N [G]-generic filter H1 ⊆ Q1. Without loss of gen-
erality, let us thus assume that Q1 is a subset of θ . We may factor the forcing
j (P) below a condition in j (G) as P ∗ Q1 ∗ Ptail, where Ptail is the forcing after
stage κ up to j (κ). The generic filter j (G) similarly factors as G ∗ H1 ∗ Gtail.
Since H ∈ V [G][H ]θ , it follows that H ∈ N [ j (G)]. By the main result of [10]
as in Theorem 2.7, we know that the restriction j : M → N is in V and that
N = N [ j (G)][ j (H0)] ∩ V . Thus, Vθ+1 ⊆ N and V [G]θ+1 = N [G]θ+1. It
follows that V [G] and N [G] have all the same subsets of Q1 and so H1 ⊆ Q1
is fully V [G]-generic. Since j ( f )(κ) = θ + 1, it follows that the next stage of
forcing after stage κ in j (P) is beyond θ . Consequently, the forcing Gtail ⊆ Ptail is
highly closed in N [G][H1], and so N [G][H1]θ+1 = N [ j (G)]θ+1 = V [G][H ]θ+1.
In particular, H ∈ N [G][H1] ⊆ V [G][H1] ⊆ V [G][H ], and consequently
V [G][H1] = V [G][H ]. Since the respective forcing to add H ⊆ Q and H1 ⊆ Q1
over V [G] gave rise to the same forcing extension, it follows that Q and Q1 are forc-
ing equivalent below respective conditions h ∈ H and h1 ∈ H1. That is, forcing with
Q � h is forcing equivalent to Q1 � h1. Since Q1 was allowed in the stage κ lottery
of j (P), it was <κ-directed closed in N [G]. Since N [G] has all the same subsets
of Q1 as V [G], it follows that both Q1 and its restriction Q1 � h1 are <κ-directed
closed in V [G]. So below a condition, Q is forcing equivalent to <κ-directed closed
forcing, as claimed in (2) and (4). �
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Our expectation is that the method of the previous theorem would generalize to a
full “As you like it” style theorem in the sense of [6], attaining indestructibility and
destructibility of strong unfoldability by any locally definable precise class of <κ-
closed κ+-preserving forcing notions (e.g., the ones that collapse κ++, or the ones
that don’t, etc.).

6 Global and Universal Indestructiblity

We begin with global indestructibility, where all strongly unfoldable cardinals be-
come simultaneously indestructible.

Theorem 6.1 If V satisfies ZFC, then there is a class forcing extension V [G]

satisfying ZFC such that
(1) every strongly unfoldable cardinal in V remains strongly unfoldable in V [G],
(2) every strongly unfoldable cardinal κ in V [G] is indestructible by <κ-closed,

κ+-preserving set forcing,
(3) no new strongly unfoldable cardinals are created.

Proof Let f ... ORD → ORD be the global Menas function for strong unfoldability
provided by Lemma 2.3. Let P be the (possibly proper class) lottery preparation
forcing relative to f , and suppose that G ⊆ P is V -generic. Since the forcing in P

becomes increasingly closed, the usual arguments establish that V [G] |H ZFC, even
when P is a proper class. If κ is strongly unfoldable in V , then the forcing Pκ up
to κ is precisely the lottery preparation of κ relative to f � κ , which has the strong
unfoldability Menas property for κ . The Main Theorem therefore establishes that κ
remains strongly unfoldable in V [Gκ ] and becomes indestructible there by any fur-
ther <κ-closed κ+-preserving forcing. In particular, since the forcing at stage κ itself
is trivial, as strongly unfoldable cardinals are not in the domain of f , the cardinal κ
remains strongly unfoldable after further forcing with the forcing Gκ,θ ⊆ Pκ,θ for
the stages from κ up to any larger ordinal θ . That is, κ remains strongly unfoldable
in every V [Gθ ]. Since the subsequent forcing Gθ,∞ ⊆ Pθ,∞ is <θ-closed, it doesn’t
destroy unfoldability down low, and so by taking θ arbitrarily large we conclude that
κ remains strongly unfoldable in V [G], establishing (1). For (2), suppose that Q is
any <κ-closed κ+-preserving forcing in V [G] and that H ⊆ Q is a V [G]-generic
filter. Since Q is a set, we know Q ∈ V [Gθ ] for some large enough θ . We may
therefore factor P ∗ Q as Pκ ∗ (Pκ,θ ∗ Q) ∗ Pθ,∞. The middle forcing Pκ,θ ∗ Q

is <κ-closed and κ+-preserving over V [Gκ ], and so it preserves the strong unfold-
ability of κ because κ was indestructible in V [Gκ ]. The tail forcing Pθ,∞ is highly
distributive (but no longer closed if Q is nontrivial), and so does not affect the strong
unfoldability of κ down low. Once again, by taking θ arbitrarily large, we see that
κ remains strongly unfoldable in V [G][H ], establishing the desired indestructibility
as in (2), but only for those strongly unfoldable cardinals in V [G] that were also
strongly unfoldable in V . But, since the lottery preparation P admits a closure point
between any two nontrivial stages of forcing, if we simply insist that nontrivial forc-
ing occurs at stage ω, or at the least inaccessible cardinal, then by Corollary 2.8, the
forcing P has created no new strongly unfoldable cardinals, thereby completing the
argument for (2) and also establishing (3). �

In contrast, we turn now to universal indestructibility, for which any degree of strong
unfoldability exhibited by any cardinal is made indestructible. The difference is
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whether or not the cardinals that are only partially strongly unfoldable, such as the
weakly compact and indescribable cardinals, are also indestructible. Specifically, we
say that there is universal indestructibility for strong unfoldability if whenever any
cardinal κ is θ -strongly unfoldable, then it remains θ -strongly unfoldable after any
<κ-closed κ+-preserving forcing. (From a stronger hypothesis in the ground model,
we will also be able to omit the limitation to κ+-preserving forcing.) The universal
indestructibility theme was introduced by Apter and Hamkins [1], who treated the
case of universal indestructibility for supercompactness and partial supercompact-
ness. In order to do so, they introduced the method of trial-by-fire forcing, which we
adapt here to the case of strong unfoldability. The results here are parallel to [1] via
an analogy between strong unfoldability and supercompactness, beginning with the
following basic limitation.

Theorem 6.2 Universal indestructibility for strong unfoldability is inconsistent
with the existence of two strongly unfoldable cardinals, and even with a cardinal
κ that is (δ + 1)-strongly unfoldable for a weakly compact cardinal δ above κ .

Proof This is the strong unfoldability analogue of [1, Theorem 10]. Suppose that
universal indestructibility for strong unfoldability holds, but κ is (δ + 1)-strongly
unfoldable for some weakly compact cardinal δ above κ . Force to add a V -generic
subset A ⊆ κ using Add(κ, 1). By assumption, κ remains (δ+1)-strongly unfoldable
in V [A]. Also, since this is small forcing relative to δ, we know δ remains weakly
compact in V [A]. But also, because this is small forcing, the Main Theorem of [7]
shows that the weak compactness of δ is now destructible in V [A]; further forcing
with Add(δ, 1)V [A] will destroy the weak compactness of δ. Let M be any κ-model
in V [A], and fix j : M → N a (δ + 1)-strong unfoldability embedding. Since
V [A]δ+1 ⊆ N , the model N agrees that δ is weakly compact and that adding a subset
to δ will destroy the weak compactness of δ. This means that N thinks that there is
a destructible weakly compact cardinal below j (κ), namely, δ, and consequently by
elementarity there will be such a destructible weakly compact cardinal γ below κ in
M . Since M and V agree on Vκ , this means that γ was a destructible weakly compact
cardinal in V , violating our assumption that universal indestructibility holds. �

The argument shows that if the strong unfoldability of κ is indestructible by
Add(κ, 1) and all weakly compact cardinals γ < κ are indestructible by Add(γ, 1),
then there are no weakly compact cardinals above κ . So if we aim to produce a
model of universal indestructibility for strong unfoldability, then the most we can
hope for is one strongly unfoldable cardinal, with essentially no large cardinals
above it. Furthermore, our method will require us, we claim, to begin with many
strongly unfoldable cardinals in the ground model. The reason is that in order to
force universal indestructibility for strong unfoldability, we will of course carry out
a kind of universal preparatory forcing, which will have numerous closure points.
It follows by Theorem 4.4 that any cardinals that survive this preparation with any
nontrivial degree of strong unfoldability intact will have begun as fully strongly
unfoldable cardinals in the ground model. That is, Theorem 4.4 shows that if γ
is (γ + 2)-strongly unfoldable in our final model V [G] and indestructible by all
Add(γ, θ), then it must have been strongly unfoldable in V . Since we aim to pro-
duce universal indestructibility with one strongly unfoldable cardinal, there will be
many such indestructible (γ + 2)-strongly unfoldable cardinals γ lower down, and
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we must consequently begin with many strongly unfoldable cardinals in V . This
phenomenon exactly parallels the situation in [1] with supercompactness.

The hypothesis we use is a strong unfoldability analogue of the Mitchell rank,
inspired by the similar hypothesis in the case of supercompactness and strongness
introduced by Sargsyan (see [3]) to improve on that in [1]. This definition proceeds
inductively on α, simultaneously in all transitive ZFC− models containing the cardi-
nal κ and the ordinal α.

Definition 6.3 An inaccessible cardinal κ is strongly unfoldable of degree α, for
an ordinal α, if for every ordinal θ it is θ -strongly unfoldable of degree α, meaning
that for every A ⊆ κ there is a transitive set M |H ZFC− of size κ with κ, A ∈ M
and a transitive set N with α ∈ N and an embedding j : M → N having critical
point κ with j (κ) > max{θ, α} and Vθ ⊆ N such that κ is strongly unfoldable in N
of every degree β < α. We say that κ is <θ -strongly unfoldable of degree α, if κ is
θ ′-strongly unfoldable of degree α for every θ ′ < θ .

By using an induced factor embedding, if necessary, we may assume that the wit-
nessing embedding j : M → N in Definition 6.3 has hereditary size max{iθ , α, κ}.
It follows that whenever κ, α < θ and κ is <θ -strongly unfoldable of degree α, then
any transitive set containing Vθ ∪ {θ} will see this. Moreover, induction on α shows
that if N is any transitive set such that κ is θ -strongly unfoldable of degree α in N
and P(κ) ∪ Vθ ⊆ N , then κ really is θ -strongly unfoldable of degree α. Note that κ
is θ -strongly unfoldable of degree 0 if and only if it is θ -strongly unfoldable. Thus,
a cardinal κ is κ-strongly unfoldable of degree 0 exactly if it is weakly compact, and
κ is strongly unfoldable of degree 0 exactly if it is strongly unfoldable. If κ is θ -
strongly unfoldable of degree α, then it is also θ -strongly unfoldable of every degree
α′ less than α. Lastly, note that we could have equivalently replaced in Definition 6.3
the requirement that κ is inaccessible by merely requiring that κ is a beth fixed point,
since even if θ = α = 0 it is not difficult to show that the embedding property itself
already implies that κ is an uncountable regular cardinal; combined with iκ = κ it
thus follows that κ is inaccessible.

An inaccessible cardinal κ is 62-reflecting if Vκ ≺62 V . Since the 62 statements
of set theory are characterized up to equivalence as those of the form “∃α Vα |H ψ ,”
for any first-order assertion ψ (not necessarily62), it follows that any such ψ true in
any Vα , with parameters from Vκ , is true in some Vα for α < κ . A standard reflection
argument, just like that for strong cardinals, shows that every strongly unfoldable
cardinal is 62-reflecting.

Lemma 6.4 Suppose that κ is 62-reflecting and γ < κ .

(1) If γ is θ -strongly unfoldable of every degree β < κ , then γ is θ -strongly
unfoldable of every degree β ∈ ORD.

(2) If γ is <κ-strongly unfoldable of degree α, then γ is strongly unfoldable of
degree α.

Consequently, if γ is <κ-strongly unfoldable of degree β for every β < κ , then γ is
strongly unfoldable of degree β for all β ∈ ORD.

Proof The question whether γ is θ -strongly unfoldable of degree β can be answered
in Vα , for any α above θ , γ and β. Consequently, any failure of this for either θ or β
above κ reflects below κ by 62-reflection. �
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Lemma 6.5 The following are equivalent, for any weakly compact cardinal κ and
any ordinals α, θ .

(1) The cardinal κ is θ -strongly unfoldable of degree α.

(2) For every κ-model M in which κ is 62-reflecting, there is a transitive
set N and an embedding j : M → N having critical point κ , with
j (κ) > max{θ, α} and Vθ ⊆ N such that κ is strongly unfoldable in N
of every degree β < α.

(3) For every A ∈ Hκ+ there is a κ-model M with A ∈ M, a transitive set N , and
an embedding j : M → N having critical point κ , with j (κ) > max{θ, α}

and Vθ ⊆ N such that κ is strongly unfoldable in N of every degree β < α.

Proof (1 implies 2) Fix any κ-model M in which κ is 62-reflecting. Code M
with a set A ⊆ κ and fix by (1) a transitive set M |H ZFC− with κ, A ∈ M and
an embedding j : M → N having critical point κ , with θ, α < j (κ) and Vθ ⊆ N
such that κ is strongly unfoldable in N of every degree β < α. In particular, N
thinks that κ is < j (κ)-strongly unfoldable of every degree β < α. We claim that
j � M : M → j (M) will witness (2). Since M is a κ-model in M , it follows by
elementarity that j (M)< j (κ)

⊆ j (M) in N , and consequently j (M) and N agree up
to rank j (κ). Since α < j (κ), it follows that j (M) agrees that κ is < j (κ)-strongly
unfoldable of every degree β < α, since this is verifiable in N j (κ) = j (M) j (κ).
Since j (κ) is 62-reflecting in j (M), it follows by Lemma 6.4 that κ is strongly
unfoldable in j (M) of every degree β < α, and so j � M witnesses (2).

(2 implies 3) Fix any A ∈ Hκ+ , and suppose that A′
⊆ κ codes the set A. It

is easy to find a κ-model M such that A′
∈ M . Since κ is weakly compact, there

is an embedding j : M → N with critical point κ . By using an induced factor
embedding, if necessary, we may assume that N is a κ-model also. The rank initial
segment M = N j (κ) is thus a κ-model with A′

∈ M and Vκ ≺ M . It follows that
A ∈ M and that κ is 62-reflecting in M . Statement (2) now provides the desired
embedding.

(3 implies 1) Immediate. �

Assertion (2) can be strengthened without loss of generality to assert also that
j : M → N is a Hauser embedding, meaning that M, j ∈ N and, moreover, have
size κ in N . This is because the Hauser argument (see [4, Lemma 5]) shows that
the restricted embedding j � M of the proof necessarily has this Hauser property.
Assertion (3) can be strengthened to assert that M is a κ-model in which κ is 62-
reflecting, since this is what the argument provides, and also that the embedding j
has the Hauser property.

Just as unfoldability and strong unfoldability are absolute to L , we now show this
for the higher degree analogues.

Theorem 6.6 If κ is strongly unfoldable of degree α, then it is strongly unfoldable
of degree α in L.

Proof The argument proceeds by induction on α, simultaneously in all transitive
models of set theory containing κ and α. (That is, we prove that for any transitive
model W |H ZFC, if κ is θ -strongly unfoldable of degree α in W , then it is θ -
strongly unfoldable of degree α in LW .) Suppose that κ is θ -strongly unfoldable
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of degree α in V and that A ⊆ κ is in L . Since κ is weakly compact in L , we
may find as in the proof of Lemma 6.5 in L a κ-model M such that A ∈ M and κ
is 62-reflecting in M . Since M has size κ in L , we may find an ordinal α < κ+

such that Lα sees that M has size κ . By Lemma 6.5, there is a κ-model M with
Lα ∈ M , a transitive set N , and an embedding j : M → N having critical point
κ , with max{α, θ} < j (κ) and Vθ ⊆ N , such that κ is strongly unfoldable in N of
every degree β < α. It follows that M ∈ M , and, moreover, that M ∈ L M and
of size κ there. Consider the map j � M : M → j (M). As M<κ

∩ L ⊆ M , it
follows by elementarity that j (M) is highly closed under sequences existing in L N

and, therefore, that (Vθ )L
= (Vθ )L N

⊆ j (M). By elementarity, j (M) ∈ L N and
hence is in L . Since M knows that M has size κ in L , there is a relation E ⊆ κ × κ

with E ∈ L M such that 〈κ, E〉 ∼= 〈M,∈〉. It follows that if x ∈ M is coded by ζ with
respect to E , then j (x) is coded by j (ζ ) = ζ with respect to j (E). Thus, j � M
is constructible from E and j (E), which are both in L , and consequently j � M is
in L . By induction, since κ is strongly unfoldable in N of every degree β < α, it
follows that κ is strongly unfoldable in L N of every degree β < α. In particular, κ
is < j (κ)-strongly unfoldable in L N of every degree β < α. Since L N agrees with
j (M) up to j (κ), we conclude that κ is < j (κ)-strongly unfoldable of every degree
β < α in j (M). Since j (κ) is 62-reflecting in j (M), it follows by Lemma 6.4
that κ is fully strongly unfoldable in j (M) of every degree β < α. In conclusion,
j � M : M → j (M) witnesses the desired property in L . �

The argument establishes that if κ is θ -strongly unfoldable of degree α, then κ is
θ-strongly unfoldable of degree α in L . If α = 0, this simply asserts that θ -strong
unfoldability is downward absolute to L . We now provide a natural upper bound for
the consistency strength of being strongly unfoldable of every ordinal degree.

Theorem 6.7 If 0] exists, then every Silver indiscernible is strongly unfoldable in
L of every ordinal degree α, and a limit of such cardinals, and so on.

Proof Suppose that 0] exists and that κ is a Silver indiscernible of L . We will prove
that κ is strongly unfoldable in L of every ordinal degree α. Classical arguments
show that κ is 62-reflecting (and much more) in L . Fix α and any ordinal θ . Let
j : L → L be an elementary embedding with critical point κ and j (κ) > max{θ, α}.
For any A ⊆ κ in L , we may find in L a κ-model M0 with A ∈ M0 such that κ is
62-reflecting in M0. Let j0 = j � M0 : M0 → j (M0). Since j (κ) is inaccessible
in L , it follows that LiL

θ
⊆ j (M0) and that (Vθ )L

⊆ j (M0). By induction, κ is
strongly unfoldable in L of every degree β < α. Since j (M0) and L agree up to
j (κ), it follows that κ is < j (κ)-strongly unfoldable in j (M0) of every degree β < α.
By elementarity, j (κ) is 62-reflecting in j (M0), and so by Lemma 6.4 it follows
that κ is strongly unfoldable in j (M0) of every degree β < α. Finally, since M0
has size κ in L , there is a relation E ⊆ κ × κ in L such that 〈κ, E〉 ∼= 〈M0,∈〉.
As in Theorem 6.6, the map j0 = j � M0 is constructible from E and j (E) and
consequently is in L . In conclusion, the map j0 : M0 → j (M0) witnesses for A
that κ is θ-strongly unfoldable in L of degree α, as desired. The usual reflection
arguments now show that κ must also be a limit of such cardinals, and a limit of
limits of such cardinals, and so on. �
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In particular, every measurable cardinal is strongly unfoldable in L of every ordinal
degree α. For another upper bound, recall that a cardinal κ is subtle if for any closed
unbounded set C ⊆ κ and any sequence 〈Aα | α ∈ C〉 with Aα ⊆ α, there is a pair
of ordinals α < β in C with Aα = Aβ ∩ α. It is not difficult to see that every subtle
cardinal is necessarily an uncountable regular strong limit cardinal, and consequently
inaccessible.

Theorem 6.8 If κ is subtle, then the set of cardinals γ below κ that are strongly
unfoldable in Vκ of every ordinal degree below κ is stationary. In particular, Vκ is
a model of set theory having a stationary proper class of cardinals that are strongly
unfoldable of every ordinal degree.

Proof Suppose that κ is subtle and the set of cardinals below κ that are strongly
unfoldable in Vκ of every ordinal degree below κ is not stationary. Then there is a
closed unbounded set C ⊆ κ containing no such cardinals. Since κ is inaccessible,
we may assume that all elements of C are beth fixed points and that Vγ ≺ Vκ for
every γ ∈ C . If γ ∈ C , then there is a minimal βγ < κ for which there is a minimal
θγ < κ such that γ is not θγ -strongly unfoldable in Vκ of degree βγ. Since we can
equivalently replace inaccessibility by being a beth fixed point in Definition 6.3 (see
there and the remarks after it), this means that there exists some Aγ ⊆ γ having no
transitive set M |H ZFC− of size γ with γ, Aγ ∈ M with a corresponding embedding
j : M → N with cp( j) = γ , Vθγ ⊆ N , j (γ ) > θγ , βγ and N |H γ is strongly
unfoldable of every degree below βγ. By thinning the club C , we may assume that
θγ and βγ are both less than the next element of C .

A simple Löwenheim-Skolem argument in Vκ thus shows that we may find for
each γ ∈ C a transitive set, call it Mγ , such that Mγ |H ZFC− of size γ with
γ, Aγ ∈ Mγ and Vγ ⊆ Mγ such that Mγ ≺ Vκ . Note that we cannot insist that Mγ

is a γ -model, since elements of C need not satisfy γ <γ = γ. Since Mγ has size γ , we
may code it with a relation Eγ on γ , so that 〈γ, Eγ 〉 ∼= 〈Mγ ,∈〉. The isomorphism
πγ witnessing this is exactly the Mostowski collapse of 〈γ, Eγ 〉. We may assume
that πγ (0) = γ. Let Dγ be a subset of γ coding, in some canonical way, the relation
Eγ , the elementary diagram of 〈γ, Eγ 〉 and the map π−1

γ � γ , which maps γ into γ.
Since κ is subtle, there must be a pair γ < δ in C with Dγ = Dδ∩γ . Define a map

j : Mγ → Mδ by j = πδ ◦ π−1
γ . Observe that j (γ ) = πδ(π

−1
γ (γ )) = πδ(0) = δ.

Also, if α < γ , then because Dγ and Dδ agree up to γ , it follows that π−1
γ � γ =

π−1
δ � γ , and so j (α) = α. Thus, the critical point of j is γ . The map j is

elementary, because if Mγ |H ϕ[x] where x = πγ (α), then ϕ(α) is in the elementary
diagram of 〈γ, Eγ 〉, and so it is also in the elementary diagram of 〈δ, Eδ〉, which
means Mδ |H ϕ[ j (x)]. Note that since γ and δ are both in C , we know that δ is
larger than θγ and βγ. It follows that Vθγ ⊆ Vδ ⊆ Mδ . Since Mδ ≺ Vκ , it follows
that Mδ agrees that βγ is least such that γ is not strongly unfoldable of degree βγ. In
particular, γ is strongly unfoldable in Mδ for every degree below βγ. The embedding
j : Mγ → Mδ therefore contradicts our choice of βγ , θγ and Aγ. So the theorem is
proved. �

Next, our Main Theorem in this section provides the exact consistency strength of
universal indestructibility for strong unfoldability.

Theorem 6.9 The following theories are equiconsistent over ZFC:
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(1) There is a strongly unfoldable cardinal and universal indestructibility holds
for strong unfoldability.

(2) There is a cardinal that is strongly unfoldable of every ordinal degree.

We prove each direction separately.

Lemma 6.10 Suppose there is universal indestructibility for strong unfoldability.
Then every strongly unfoldable cardinal in V is strongly unfoldable in L of every
ordinal degree. More specifically, if κ is any (κ+1+α)-strongly unfoldable cardinal,
then κ is strongly unfoldable in L of degree α.

Proof We prove the lemma by induction on α, simultaneously in all transitive ZFC−

models containing κ and α. (That is, we prove that in any transitive W |H ZFC−

with universal indestructibility, if κ is (κ + 1 + α)-strongly unfoldable in W , then it
is strongly unfoldable in LW of degree α.) Suppose that there is universal indestruc-
tibility for strong unfoldability in V and that κ is (κ + 1 + α)-strongly unfoldable
for some ordinal α. Fix any A ⊆ κ in L and any ordinal θ above κ and α. Since κ
is weakly compact in L , we may find as in the proof of Lemma 6.5 in L a κ-model
M such that A ∈ M and κ is 62-reflecting in M . Let θ∗

= iL
θ and suppose that

G ⊆ Add(κ, θ∗) is V -generic for the forcing to add θ∗ many subsets to κ . By uni-
versal indestructibility, κ remains (κ+1+α)-strongly unfoldable in V [G]. In V [G],
find a κ-model M with M ∈ L M of size κ there and an embedding j : M → N with
V [G]κ+1+α ⊆ N . Since P(κ)V [G] has size at least the size of the ordinal θ∗, it
follows that j (κ) > θ∗ and consequently (Vθ )L

⊆ N . The restricted embedding
j � M : M → j (M) satisfies (Vθ )L

⊆ j (M) and exists in L , just as in Theorem 6.6.
Since the set A and the ordinal θ were chosen arbitrarily, this proves the lemma for
the case α = 0. (Alternatively, we could have used Theorem 6.6 directly to see that
the lemma holds for the case α = 0.) For the general case, note that κ is <(κ+1+α)-
strongly unfoldable in N , since each instance is witnessed by embeddings coded in
Vκ+1+α . Since universal indestructibility holds in V , it also holds in Vκ = Mκ , and
consequently in j (Mκ) = N j (κ). By induction, therefore, κ is strongly unfoldable
in L N j (κ) of every degree β < α. Since j (M) agrees with L N up to j (κ), it follows
that κ is < j (κ)-strongly unfoldable in j (M) of every degree β < α. Since j (κ)
is 62-reflecting in j (M), this implies by Lemma 6.4 that κ is strongly unfoldable
in j (M) of every degree β < α. The restricted embedding j � M exists in L and
witnesses there for the set A that κ is θ-strongly unfoldable of degree α. Since A and
θ were chosen arbitrarily, this shows that κ is strongly unfoldable of degree α in L ,
as desired. �

This establishes the forward direction of Theorem 6.9. We turn now to the converse
direction.

Lemma 6.11 If κ is strongly unfoldable of every ordinal degree, then there is a
(possibly proper class) model of ZFC having a strongly unfoldable cardinal and
universal indestructibility for strong unfoldability.

Proof Suppose κ is strongly unfoldable of every ordinal degree. We will perform
the trial-by-fire forcing for strong unfoldability, adapting [1]. This is the Easton
support iteration Pκ of length at most κ , which at each stage γ attempts to destroy as
much of the strong unfoldability of γ as is possible. We will have nontrivial forcing
at stage γ only when γ is at least weakly compact in V [Gγ ]. If it happens at stage
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γ that γ is strongly unfoldable in V [Gγ ] and indestructible by all <γ -closed γ+-
preserving forcing, then we declare success and output V [Gγ ] as our final model.
Similarly, if there is some ordinal λ > γ such that Vλ[Gγ ] |H ZFC and in this model
γ is strongly unfoldable and indestructible, then we also declare success and output
Vλ[Gγ ] as our final model. If we have not declared success at stage γ , then there
is some least θ ≥ γ , necessarily below the next inaccessible cardinal (and therefore
also below κ), for which there is some <γ -closed γ+-preserving forcing Q in V [Gγ ],
such that after forcing with Q the cardinal γ is not θ-strongly unfoldable. We may
furthermore assume, by further collapsing of cardinals to (iθ )+, that Q is tidy in the
sense that after forcing with Q there are also no inaccessible cardinals in the half-
open interval (θ, |Q|

V [Gγ ]
]. (This will ensure that the next stage of nontrivial forcing

is beyond |Q|
V [Gγ ] and that all the relevant cardinals in the final extension are treated

as a stage of forcing.) Since κ is 62-reflecting, it follows that if there is any such
Q, then there is such a Q of rank less than κ . The stage γ forcing is the lottery sum
of all such <γ -closed γ+-preserving tidy posets Q, of minimal rank, that work with
this minimal θ . It follows inductively that Pγ for γ < κ is small relative to κ and
therefore preserves the strong unfoldability of κ . The key trial-by-fire observation
of [1] is that survivors of the firestorm are certifiably fireproof. That is, because
the stage γ forcing destroys as much of the strong unfoldability of γ as possible,
any surviving degree of strong unfoldability could only have survived because it was
indestructible. More specifically, by the minimality of θ , in the case when γ < θ ,
then we know that γ is <θ -strongly unfoldable in V [Gγ ], and this degree of strong
unfoldability is indestructible over V [Gγ ] by any further <γ -closed γ+-preserving
forcing, since otherwise we would have destroyed it at stage γ . Since the rest of the
forcing after stage γ is ≤γ -closed, the <θ -strong unfoldability of γ is thus preserved
to the final output model, and it is also indestructible there. Moreover, the next stage
of forcing after γ occurs at an inaccessible cardinal above θ , and therefore the rest
of the forcing after stage γ is ≤iθ -closed and consequently does not turn on the θ -
strong unfoldability of γ. In the case when γ ≥ θ , the forcing at stage γ destroys the
weak compactness of γ, and the rest of the forcing after stage γ is sufficiently closed
so that γ remains not weakly compact. It follows that if we ever declare success, then
the output model will satisfy universal indestructibility for strong unfoldability. In
this way, the trial-by-fire iteration systematically ensures universal indestructibility
as it proceeds. What remains, of course, is for us to prove that something does in fact
survive the iteration, and that we do eventually declare success.

Claim If κ is strongly unfoldable of degree α, then the trial-by-fire forcing Pκ
either declares success by stage κ or forces that κ is (κ +α)-strongly unfoldable and
indestructible by all <κ-closed, κ+-preserving forcing.

Proof We prove the claim by induction on α, simultaneously for all models of
ZFC− containing κ and α. Suppose that κ is strongly unfoldable of degree α and
that Pκ did not declare success at or before stage κ . It follows by induction that α
is less than the next inaccessible cardinal above κ , if any, since otherwise we would
have declared success. Suppose G ⊆ Pκ is V -generic for the trial-by-fire iteration
up to stage κ . The usual Easton support arguments show that Pκ is κ-c.c. and κ
is inaccessible in V [G]. In fact, it follows from the induction hypothesis that κ is
indestructibly (κ + β)-strongly unfoldable in V [G] for all β < α. We now show
that κ is (κ + α)-strongly unfoldable and indestructible in V [G]. If not, there is
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a <κ-closed, κ+-preserving tidy poset Q ∈ V [G], of minimal rank, destroying the
(κ + α)-strong unfoldability of κ . Note that forcing with Q over V [G] destroys as
much of the strong unfoldability of κ as is possible. Let g ⊆ Q be V [G]-generic
and A ⊆ κ any subset of κ in V [G][g]. Fix names Q̇ and Ȧ in V and choose some
large λ > κ + α and some X ≺ Vλ[G][g] of size κ with X

<κ
⊆ X in V [G][g] and

Pκ ∗ Q̇,G ∗ g, κ, α, Ȧ all in X . Necessarily, X = X [G][g], where X = X ∩ V . As
in the Main Theorem, we make the key observation by Lemma 2.5 that X ∈ V , that
X has size κ in V , and that the filter G ∗ g is X -generic for Pκ ∗ Q̇. Moreover, if
π : X [G][g] → M is the Mostowski collapse of X , then π is the identity on Pκ and
thus on G. If we let Q0 = π(Q) and g0 = π(g) = π"g, it follows that π(A) = A is
an element of M = M[G][g0] where M is the Mostowski collapse of X and G ∗g0 is
M-generic for Pκ ∗ Q0. Since X has size κ in V and is sufficiently closed, it follows
that M is a κ-model in V .

Fix any ordinal θ > iκ+α large enough so that Q̇ ∈ Vθ . Since κ is strongly
unfoldable of degree α in V , there is an embedding j : M → N with critical point
κ , having θ < j (κ) and Vθ+1 ⊆ N such that κ is strongly unfoldable in N of every
degree β < α. By the proof of Lemma 2.2 modified to our context, we may assume
without loss of generality that Niθ ⊆ N . As in the Main Theorem, we shall lift the
embedding j : M → N in two steps, first to the extension j : M[G] → N [ j (G)],
and then fully to j : M[G][g0] → N [ j (G)][ j (g0)]. This final embedding, we shall
argue, will witness the (κ+α)-strong unfoldability of κ with respect to A in V [G][g].

Since we have not declared success in V by stage κ , it follows that we do not
declare success in N before stage j (κ). The key step of this argument is now
that because κ is strongly unfoldable in N of every degree β < α, it follows
by induction that κ is indestructibly (κ + β)-strongly unfoldable in N [G] for all
β < α. And furthermore, since N [G] agrees with V [G] beyond θ , it sees that Q

destroys the (κ + α)-strong unfoldability of κ . Thus, N [G] agrees that Q destroys
as much of the strong unfoldability of κ as is possible. Since Q also has minimal
rank and remains tidy, <κ-closed and κ+-preserving in N [G], it follows that Q

appears in the stage κ lottery of the trial-by-fire iteration j (Pκ). Below a condition
opting for Q in this lottery, we may factor j (Pκ) as Pκ ∗ Q ∗ Ptail, where Ptail

is the forcing beyond stage κ up to j (κ). Force to add a V [G][g]-generic filter
Gtail ⊆ Ptail, and lift the embedding to j : M[G] → N [ j (G)] in V [G][g][Gtail],
where j (G) = G ∗ g ∗ Gtail. Since Pκ is κ-c.c. and Q is <κ-closed, it follows that
M[G][g0]

<κ
⊆ M[G][g0] in V [G][g]. Consequently, as in the Main Theorem,

V [G][g] agrees with M[G][g0] when it thinks that g0 is a <κ-closed subset of
Q0. Since g0 has size κ in V [G][g] and is directed, there is again in V [G][g] a
descending, cofinal κ-sequence of conditions generating g0. Consequently, since
N [ j (G)] is closed under κ-sequences in V [G][g][Gtail] and j (Q0) is < j (κ)-closed
there, we can find a master condition p∗

∈ j (Q0) which lies below every element
of j " g0. Force to add a V [G][g][Gtail]-generic filter g∗

⊆ j (Q0) containing
the condition p∗, and lift the embedding to j : M[G][g0] → N [ j (G)][ j (g0)] in
V [G][g][Gtail][g∗

], where j (g0) = g∗. Note that V [G][g]θ = Vθ [G][g] ⊆ N [G][g].
Let δ = (iκ+α)V [G][g]

= (iκ+α)N [G][g] and let j0 : M[G][g0] → N0 be the in-
duced extender embedding in V [G][g][Gtail][g∗

] with V V [G][g]

κ+α ⊆ N0, of hereditary
size δ. Since δ < θ and there are no inaccessible cardinals in the interval (κ, κ + α],
the next nontrivial stage of forcing in Ptail lies beyond δ. Consequently, Ptail ∗ j (Q0)
is ≤δ-closed in N [ j (G)] and hence also in V [G][g][Gtail]. Thus, the extra forcing
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with Ptail ∗ j (Q0) could not have added the extender embedding j0, which must
therefore already exist in V [G][g], where it witnesses the (κ+α)-strong unfoldabil-
ity of κ for A. Thus, κ is (κ + α)-strongly unfoldable in V [G][g], contrary to our
assumption, and the claim is proved. �

We now complete the proof of Lemma 6.11, which establishes the reverse direction
of Theorem 6.9. If κ is strongly unfoldable of every degree α, then by the claim
we have either declared success before stage κ , or else κ becomes indestructibly
strongly unfoldable in V [Gκ ], in which case we declare success at stage κ . In any
case, therefore, we have produced the desired model. �

We conclude the paper by remarking that if one wants to obtain universal indestruc-
tibility for strong unfoldability without the limitation to γ+-preserving forcing, then
one should carry out the corresponding trial-by-fire iteration, which at each stage γ
performs the lottery sum of all <γ -closed forcing (not necessarily preserving γ+),
of minimal rank, destroying as much as possible of the strong unfoldability of γ. If κ
is supercompact of every ordinal degree (using the natural analogue of our notion),
then this iteration will declare success at or before stage κ .
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