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Past Probabilities

Sven Ove Hansson

Abstract The probability that a fair coin tossed yesterday landed heads is either
0 or 1, but the probability that it would land heads was 0.5. In order to account
for the latter type of probabilities, past probabilities, a temporal restriction op-
erator is introduced and axiomatically characterized. It is used to construct a
representation of conditional past probabilities. The logic of past probabilities
turns out to be strictly weaker than the logic of standard probabilities.

1 Introduction

Yesterday I tossed a coin that I believe for good reasons to be fair. Consider the
following two statements about that occurrence:

(1) The probability that the coin landed heads is 1.
(2) The probability that the coin would land heads was 0.5.

We have no difficulty in accepting both these statements as true. The first refers to the
probability that a particular event happened. It is either 0 or 1. In contrast, the second
refers to the probability that a particular event would happen. As was observed by
Blackburn, these are two distinctly different types of probabilities. “We can say
that the probability of an event was high at some time previous to its occurrence or
failure to occur, and this is not to say that it is now probable that it did happen”
(Blackburn [1], p. 102). I will use the term past probabilities for probabilities of the
type exemplified in (2) and present probabilities for those exemplified in (1). (Both
statements refer to an event in the past, but only in the second statement does the
probability belong to the past.) The distinction is closely parallel to that between the
subjunctive and indicative moods, as used in the philosophical analysis of conditional
sentences.
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According to some authors, notably Toulmin [17] and Swinburne [16], what I
have called past probabilities are past only in the sense that the probability assign-
ment was made on (the basis of the information available on) some previous occa-
sion, not in the sense of referring to what obtained in the world at that particular point
in time. However, such a reductive account cannot do justice to all the references
that we make to probabilities in the past. We often speak of past probabilities that
are independent of any belief states at the point in time in question. In discussions
about prehuman evolution, probabilistic statements are made about events, such as
mutations and the development of a new species, that took place before anyone was
present who could have beliefs about these probabilities. More mundanely, as noted
by Blackburn, if we learn that a racehorse had the flu then this may change our view
about the probability that it would win a race. “It is his catching flu that ruins his
chances, not our discovery of it” (Blackburn [1], p. 104). That discovery corrects our
estimate of the chances, rather than changing the chances.

Furthermore, the reductive account makes it difficult to account for the common
understanding, expressed already by Aristotle (Rhetoric, 1402a, 10–15), that im-
probable events sometimes do happen. It makes sense to tell someone who won
the first prize in the national lottery that this was a highly improbable occurrence.
The retort: “No, the probability of her winning was clearly 1, since it happened”
would scarcely be taken seriously. Admittedly, such an answer would be appropriate
on the assumption that we live in a completely predetermined (“Laplacean”) world
(Cooper [3], p. 230). However, such a world view is neither supported by science
nor by everyday intuitions. Therefore, although the exploration of its philosophi-
cal implications may be useful, it should not be given preeminence in philosophical
accounts of the notion of probability. In an account of probabilities that connects ad-
equately with the probability assignments that we actually make, probabilities other
than 0 and 1 must be assignable to physical events themselves, as distinct from our
beliefs about these events.

However, although some probability assignments refer to the physical events
themselves, it does not follow that this is true of all probability assignments. As
Keynes pointed out very clearly, our ordinary concept of probability includes both
probabilities that reflect our own ignorance and probabilities that reflect tendencies
inherent in mind-independent matter (Keynes [11], p. 281). In the terminology of
Lewis [12], our notion of probability covers both chance and credence. (Cf. also
Carnap [2].) Usually, we do not distinguish between the two types of probabilities,
and this for good reason: since we do not have direct access to physical chance, the
probability statements that refer to it always express our subjective estimates of it.
In this way, objective chance is embedded in our subjective probability assignments
(Hansson [7]). Ordinary probability statements, as they are made both in science and
in other walks of life, are therefore unified in the sense that they include, in one and
the same representation, both subjective and objective probabilities.

In spite of the subjective qualities of our unified probabilities, we tend to modify
them to make them reflect objective chances as closely as possible. This is primar-
ily done by comparing them to actual frequencies. This process is applied also to
single-event probabilities. For our subjective estimates of single-event probabilities
to be calibrated with actual frequencies, about 5% of the events assigned the prob-
ability 0.05 should actually occur, and similarly for events with other probability
assignments. (This notion of calibration has been developed in psychology for other
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purposes; see Lichtenstein et al. [13].) Therefore, contrary to what is often believed
(Eagle [4], p. 401), our single-event probabilities are underminable in the sense that
some future histories would be incompatible with them.

Another important consequence of the embeddedness of objective probabilities
in subjective probabilities is that our estimates of past probabilities are influence-
able by information about what happened after the events in question. My beliefs
about the chance of a six when a particular die was tossed yesterday morning may
legitimately be changed when I learn that a thousand tosses with that same die were
made yesterday evening, showing beyond reasonable doubt that the die is biased.
Humphreys ([10], p. 670) was right in pointing out that future events leave propen-
sities of prior events unchanged, but the propensities are inaccessible to us. All we
have are our estimates of them, and these estimates can be legitimately influenced by
information about what happened later (Hansson [9]).

It is the purpose of the present contribution to provide a formal explication of past
probabilities. In Section 2, an operator for temporal restriction of information will
be introduced in order to account for the distinction between past and present prob-
abilities. In Section 3, the temporal restriction operator is used in the construction
of a representation of conditional past probabilities. All proofs of formal results are
deferred to an Appendix.

2 The Temporal Restriction Operator

An important clue to the formal representation of past probabilities can be taken
from David Lewis. When discussing the probability that a certain coin would yield
heads when tossed on a particular previous occasion, we do not take into account
all the information that we have today about that coin. In particular, we do not
directly use the information (if we have it) about the outcome of that particular toss.
However, we may use all the information that we have about the characteristics and
behavior of that coin before the toss, as well as other information about particular
facts before that point in time. We may also use the information we have about
(probabilistic and other) laws. The information we may use is called “admissible” by
Lewis ([12], p. 272). (Cf. Hall [5], p. 506 and [6], p. 99.) In order to operationalize
this notion, it will be useful to introduce a temporal restriction operator. But first of
all, a (fairly standard) logical framework is needed for the formal developments.

Definition 2.1 L is a language that is closed under truth-functional operations. >

is an arbitrary tautology and ⊥ an arbitrary contradiction. Cn is a consequence op-
erator operating on L. Cn satisfies the standard properties: inclusion (A ⊆ Cn(A)),
monotony (if A ⊆ B, then Cn(A) ⊆ Cn(B)), and iteration (Cn(A) = Cn(Cn(A))).
Furthermore, Cn is supraclassical (if p follows from A by classical truth-functional
logic, then p ∈ Cn(A)), and satisfies the deduction property (q ∈ Cn(A ∪ {p}) if
and only if (p → q) ∈ Cn(A)). A ` p is an alternative notation for p ∈ Cn(A).
Cn(∅) is the set of tautologies. For any set A such that Cn(A) = Cn(A′) for some
finite A′, &A is a sentence such that Cn(A) = Cn({&A}). The set W (the pos-
sible worlds) is the set of maximal Cn-consistent subsets of L. For any X ⊆ L,
[X ] = {w ∈ W|X ⊆ W}. For any x ∈ L, [x] is an abbreviation of [{x}]. Points in
time are represented by real numbers.

Sentences in L may contain information about what obtains at one or several points
in time. They may also refer to general (timeless) properties of the world.
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Definition 2.2 A temporal restriction operator is a function h from points in time
and sentences to sentences. ht (p) is an alternative notation for h(t, p).

The intended interpretation of the temporal restriction operator is as follows: Points
in time are represented by (some set of) real numbers such that a larger number rep-
resents a later point in time. For every proposition-representing sentence p and every
point in time t , ht (p) is a sentence representing the maximal proposition implied by
p that satisfies Lewis’s criterion of admissibility at t . In other words, ht (p) contains
all the information that p carries about particular facts before t and about (probabilis-
tic and other) laws. Hence, ht (p) will contain information about what happened and
obtained before t that can be deduced from information in p about what happened
at t or later. However, it contains no direct information about events at t or later.
For an example, let t be the very first time when a certain coin was tossed. Suppose
that beginning at t we have tossed the coin 1000 times, and it yielded heads only
98 of these times. Let p be a sentence that includes this information. Then ht (p)
will include the information that the probability that the first toss would yield heads
was about 0.1, but it will not include the information that the first toss nevertheless
yielded heads.

The following seven postulates are offered as plausible properties of the temporal
restriction operator.

(1) ` p → ht (p). (implication)

Implication is a direct consequence of the intended property of ht that it restricts the
contents of a proposition, that is, removes parts of it but does not add anything.

(2) If ` p → q, then ` ht (p) → ht (q). (inheritance)

According to inheritance, if we lose information (go from p to the logically
weaker q), then this does not lead to any addition to the t-restricted part of the
information.

(3) There is no infinite series p1, p2, . . . such that for each k ≥ 1,
` ht (pk) → ht (pk+1) and 0 ht (pk + 1) → ht (pk). (groundedness).

Groundedness ensures that our beliefs about the past are not infinitely fine-grained,
that is, divisible infinitely many times into smaller and smaller parts. This condition
is closely related to the property of finite-basedness in belief revision (Hansson [8]).
It is included partly for technical reasons. (See the proof of Theorem 2.10 below.)

(4) ` ht (p ∨ q) ↔ ht (p) ∨ ht (q). (disjunctive distribution)

The right-to-left direction of disjunctive distribution follows from inheritance. The
left-to-right direction is perhaps best understood in the equivalent form

For all x, (ht (p) → x) & (ht (q) → x) → (ht (p ∨ q) → x),

which says that whatever follows from the temporal restriction of each of two sen-
tences also follows from the temporal restriction of their disjunction. For an example,
let p denote that a fossilized skeleton of a Kentriodon has been found in a Miocene
stratum in a particular location, and q that a fossilized skeleton of an Hadrodelphis
has been found in the same place. (These are two groups of prehistoric whales.) Let
x denote that the place in question was a sea in the Miocene period, and let t denote
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the end of the Miocene era. Then we have ht (p) → x and ht (q) → x . If the identi-
fication of the skeleton is uncertain, we may know that p ∨q without knowing either
p or q, but x can nevertheless be inferred.

(5) For each p there is some p̄ such that ` ht ( p̄) ↔ ¬ht (p). (negatability)

Negatability is a condition on the richness of the language. It follows immediately
from the plausible condition

` ht (¬ht (p)) ↔ ¬ht (p),

which says essentially that the negation of a t-reduced sentence is also t-reduced.

(6) If t1 ≤ t2, then ` ht1(ht2(p)) ↔ ht1(p). (postreduction)

According to postreduction, if we perform temporal reduction twice, first to a later
and then to an earlier point in time, then this has the same effect as performing the
latter reduction directly.

(7) If t1 ≤ t2, then ` ht2(p) → ht1(p). (successive specification)

Finally, successive specification says that a restriction to a certain point in time re-
moves all the information that is removed by a restriction to some later point in time.
The information that Russell’s autobiography contains about the first two decades of
his life is a subset of the information that it contains about his first three decades.

Observation 2.3 Let ht satisfy implication, postreduction, and successive specifi-
cation. Then it satisfies

If t1 ≤ t2, then ` ht2(ht1(p)) ↔ ht1(p). (prereduction)

It follows from pre- and postreduction that any series of temporal restrictions such
as hta (htb (htc (p))) is equivalent to a single restriction, namely, to that which has the
earliest cutoff time.

The seven postulates are proposed as plausible properties for a temporal restric-
tion operator that corresponds to the notion of admissibility outlined above. These
postulates may also hold for other types of temporal restriction operators (such as an
operator that cuts off all information obtained after a specified point in time t), but
such interpretations will not be pursued here.

A semantics for the temporal restriction operator can be constructed in a possible
worlds framework. The crucial constructive element that we need in addition to pos-
sible worlds is a representation of branching development. For this purpose, we can
introduce, for each point in time t , an equivalence relation Et over the set of possible
worlds. It represents indistinguishability before t . The most obvious interpretation
of Et is that it reflects actual indeterminacy in physical reality. Hence, if a quantum-
mechanical randomizing device will determine at time t whether a certain lamp will
be lit, then there are worlds w and w′ such that the lamp is lit in w but not in w′, and
wEtw

′. The branching structure of the world is obtained with a series of equivalence
classes, as follows.

Definition 2.4 Let E and E ′ be two equivalence relations over the same set. Then
E ′ is a refinement of E if and only if (1) for all x and y, x E ′y → x Ey, and (2) there
are at least two elements x and y such that x Ey and not x E ′y.
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Definition 2.5 A time-setter is a function E from points in time to equivalence
classes in W. Et is an alternative notation for E(t). A time-setter E is weakly
branching if and only if it satisfies

If t1 < t2 then Et2 is either equal to or a refinement of Et1 .

It is strictly branching if and only if it satisfies

If t1 < t2 then Et2 is a refinement of Et1 .

Furthermore, a time-setter E is finitely weakly (strictly) branching if and only if it is
weakly (strictly) branching and each Et has a finite number of equivalence classes.

Clearly, a time-setter can only be finitely strictly branching if it operates on a finite
number of points in time. To simplify the formal treatment it is useful to focus on
models that have sentential representations, in the following sense.

Definition 2.6 Let A ⊆ W. Then a set X of sentences is a sentential representation
of A if and only if it holds for all W ∈ W that

W ∈ A if and only if X ⊆ W.

Furthermore, a sentence x is a monosentential representation of A if and only if it
holds for all W ∈ W that

W ∈ A if and only if x ∈ W.

A set A ⊆ W is sententially representable if and only if it has a sentential repre-
sentation. It is monosententially representable if and only if it has a monosentential
representation.

Definition 2.7 The time-setter E is monosententially representable if and only if it
holds for all sentences p and all points in time t that {W ∈ W | (∃W ′

∈ W)(WEt W ′ &
p ∈ W ′)} is monosententially representable.

As the following observation shows, these conditions are substantial restrictions in
the sense that if W is infinite, then it has subsets that are not sententially repre-
sentable.

Observation 2.8 Let L have an infinite set of logically independent sentences.
Then there are subsets of W that do not have a sentential representation.

If we assume monosentential representability, then we can connect the above seman-
tics with the temporal restriction operator in a simple and straightforward way. For
that purpose, the following notation will be useful.

Definition 2.9 Let E be a time-setter for W. Then

[p]Et = {W ∈ W | (∃W ′
∈ W)(W Et W ′ & p ∈ W ′)}. (1)

Furthermore, if E is monosententially representable, then

dpeEt = &
⋂

[p]Et . (2)

The simplified notation [p]t and dpet is used whenever ‘E’ can be omitted without
creating ambiguity.
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[p]t is the union of the equivalence classes in Et in which p has at least one member.
Intuitively, for any sentence p and point in time t , [p]t is the set of worlds such that
W ∈ [p]t if and only if the information contained in p concerning the status of the
world up to the time t is compatible with W .

For an example, let p denote that I won £50 yesterday on a lottery ticket that I
bought a week ago. Let t be the point in time when the winning ticket was drawn
(presumably by a truly randomizing method). Then [p]t contains the worlds that are
compatible with the information contained in p concerning the status of the world at
points in time before t . This includes the information that I bought a lottery ticket,
but not the information that I won. Hence, [p]t consists of worlds in which I bought
the lottery ticket in question. Among these worlds there are both worlds in which I
won and worlds in which I did not.

dpet is a monosentential representation of [p]t . It contains all the information
that p contains about the status of the world up to the time t . As should be evident,
dpet has been constructed to be the semantical counterpart of the temporal restriction
operator. The following theorem confirms the fit of the construction.

Theorem 2.10 The following two conditions on a temporal restriction operator h
are equivalent:

(1) h satisfies implication, inheritance, groundednesss, disjunctive distribution,
negatability, postreduction, and successive specification.

(2) There is a monosententially representable and finitely weakly branching time-
setter E such that ht (p) = dpet holds for all sentences p and points in time t.

3 The Logic of Past Probabilities

We can now turn to the task of representing past probabilities in formal language.
This can be done with conditional probabilities. Let P( ) and P( | ) be the standard
monadic and dyadic probability functions.

Definition 3.1 P( ) is a probability function over L that satisfies the standard
properties. P( | ) is the standard dyadic probability function based on P; that is,

P(p | q) =
P(p & q)

P(q)
.

The function that provides us with conditional past probabilities will be denoted
Q( | ). The difference can be illustrated with the coin example referred to at the
beginning of Section 1. Let p be the statement that the coin I tossed yesterday
yielded heads, and q the statement that the coin in question is fair. Then P(p | q) is
the probability that the coin actually landed heads (and is thus equal to either 0 or 1),
whereas Q(p | q) is the probability that the coin would land heads on the occasion
in question (and is thus equal to 0.5).

In order to define Q, we need the temporal restriction operator as defined above
and, in addition, a function that assigns to each event an appropriate time index for
that operator.

Definition 3.2 τ is a function from L to the set of real numbers.

If p represents a single event that takes place at one moment, then τ(p) is the real
number representing that moment. This applies for instance if p represents a pos-
sible outcome of tossing a coin on one particular occasion. If p instead represents
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a sequence of events, then τ(p) will represent the time when that sequence begins.
Hence, if p denotes that three consecutive tosses of a fair coin all yield heads, then
τ(p) will represent the time of the first of these tosses.

We can now define Q as follows.

Definition 3.3 Q(p | q) = P(p | hτ(p)(q)).

Before examining the properties of Q, we need to introduce an essential property of
the probability function P .

Definition 3.4 A probability function P satisfies strict coherence if and only if

If 0 p and 0 ¬p, then 0 < P(p) < 1.

According to strict coherence, only a priori falsehoods can have the initial probability
0 and only a priori truths can have the initial probability 1 (Stalnaker [14]). Assuming
that probabilities are updated in the standard Bayesian way when new information
arrives (i.e., when we learn that r is true, then we replace P(p) by P(p | r) for all
p), probabilities between 0 and 1 will tend to be gradually adjusted in the direction
of actual physical frequencies, but probabilities equal to 0 or 1 will never change.
Therefore, strict coherence is what we need to ensure that subjective probability
tends to move in the direction of experienced frequencies in the physical world.

The following properties have been obtained for Q.

Observation 3.5 Let P satisfy strict coherence and let h satisfy implication. Let
Q be based on P , τ , and h according to Definition 3.3. Then

(1) 0 ≤ Q(p | q) ≤ 1,
(2) Q(p | p) > 0 if p 0⊥,
(3) it does not hold in general that Q(p | p) = 1,
(4) if p 0⊥, then Q(> | p) = 1,
(5) if τ(p1) = τ(p2) = τ(p1 & p2) = τ(p1 ∨ p2), then

Q(p1 ∨ p2 | q) = Q(p1 | q) + Q(p2 | q) − Q(p1 & p2 | q),

(6) if p1 and p2 are mutually exclusive, and τ(p1) = τ(p2) = τ(p1 & p2) =

τ(p1 ∨ p2), then

Q(p1 ∨ p2 | q) = Q(p1 | q) + Q(p2 | q).

In the (unrealistic) limiting case when ht (p) = p for all p and t , P and Q will
coincide. Therefore, Q is a weaker version of P; that is, the theorems that apply to
Q are a subset of those that apply to the standard conditional probability function P .

Appendix: Proofs

Definition 3.6 Let h be a temporal restriction operator and t a point in time. An
ht -atom of W is a nonempty set A ⊆ W such that

(i) A = [ht (p)] for some p, and
(ii) there is no q such that ∅ ⊂ [ht (q)] ⊂ A.

Lemma 3.7 Let A ⊆ W. If A has a monosentential representation, then (1)
⋂

A
is finite-based and (2) &

⋂
A is a monosentential representation of A.
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Proof of Lemma 3.7

Part 1 Suppose to the contrary that A has a monosentential representation and
⋂

A
is not finite-based. Let r be a monosentential representation of A. Then clearly
r ∈

⋂
A but since

⋂
A is not finite-based we have Cn({r}) ⊂

⋂
A. There must then

be some sentence s ∈
⋂

A such that r 0 s. Since r & ¬s is consistent, there must
be some W ∈ W such that r & ¬s ∈ W . It follows from ¬s ∈ W and s ∈

⋂
A that

W /∈ A. Since r is a monosentential representation of A it follows from r ∈ W that
W ∈ A. This contradiction completes this part of the proof.

Part 2 Let A ⊆ W have a monosentential representation. We know from Part 1 that
&

⋂
A is well defined. Now suppose for reductio that &

⋂
A is not a monosentential

representation of A. Then there must be some W such that either (i) W ∈ A and
&

⋂
A /∈ W or (ii) W /∈ A and &

⋂
A ∈ W . It is obvious that (i) does not hold.

For (ii), let r be a monosentential representation of A. Then clearly r ∈
⋂

A,
thus ` &

⋂
A → r . Since &

⋂
A ∈ W it follows that r ∈ W . However, since r

is a monosentential representation of A it follows from W /∈ A that r /∈ W . This
contradiction concludes the proof. �

Lemma 3.8 Let A1, . . . An be monosententially representable subsets of W. Then

` &
⋂

(A1 ∪ · · · ∪ An) ↔
(
&

⋂
A1

)
∨ · · · ∨

(
&

⋂
An

)
.

Proof of Lemma 3.8

Cn
(
{&

⋂
(A1 ∪ A2 ∪ · · · ∪ An)}

)
= Cn

( ⋂
(A1 ∪ A2 ∪ · · · ∪ An)

)
= Cn

(( ⋂
A1

)
∩

( ⋂
A2

)
∩ · · · ∩

( ⋂
An

))
= Cn

(
&

⋂
A1

)
∩ Cn

(
&

⋂
A2

)
∩ · · · ∩ Cn

(
&

⋂
An

)
(monosentential representability and Lemma 3.7)

= Cn
((

&
⋂

A1
)
∨

(
&

⋂
A2

)
∨ · · · ∨

(
&

⋂
An

))
.

�

Lemma 3.9 Let E1 and E2 be equivalence relations with the same domain such
that E2 is either equal to or a refinement of E1. Then it holds for all elements W1
and W2 of their range of arguments that

W1 E1W2 if and only if (∃V )(W1 E1V E2W2).

Proof of Lemma 3.9 (Left to right) Since E2 is reflexive, W1 E1W2 yields
W1 E1W2 E2W2.

(Right to left) W1 E1V E2W2
W1 E1V E1W2 (since E2 is equal to or a refinement of E1)
W1 E1W2 (transitivity of E1).

�

Lemma 3.10 Let ht satisfy implication, inheritance, and postreduction. If ∅
⊂ [ht (p)] ∩ [ht (q)] ⊂ [ht (p)], then ∅ ⊂ [ht (ht (p) & ht (q))] ⊂ [ht (p)].



216 Sven Ove Hansson

Proof of Lemma 3.10 Let ∅ ⊂ [ht (p)] ∩ [ht (q)] ⊂ [ht (p)]. It follows that there is
some W ∈ [ht (p)] ∩ [ht (q)] and also some W ′

∈ [ht (p)] \ [ht (q)].

1 It follows from W ∈ [ht (p)] that ht (p) ∈ W and similarly from W ∈ [ht (q)]
that ht (q) ∈ W . Thus ht (p) & ht (q) ∈ W . It follows from implication that
ht (ht (p) & ht (q)) ∈ W . Thus, W ∈ [ht (ht (p) & ht (q))] and consequently
∅ ⊂ [ht (ht (p) & ht (q))].

2 It follows from inheritance that ` ht (ht (p) & ht (q)) → ht (ht (p)) and from
postreduction that ` ht (ht (p)) → ht (p). It follows from this that ` ht (ht (p) &
ht (q)) → ht (p). Thus, [ht (ht (p) & ht (q))] ⊆ [ht (p)].

3 Next, suppose that [ht (p)] ⊆ [ht (ht (p) & ht (q))]. We have W ′
∈ [ht (p)], and

it would then follow that W ′
∈ [ht (ht (p) & ht (q))].

It follows from inheritance that ` ht (ht (p) & ht (q)) → ht (ht (q)) and from
postreduction that ` ht (ht (q)) → ht (q). Hence, ` ht (ht (p) & ht (q)) → ht (q);
thus [ht (ht (p) & ht (q))] ⊆ [ht (q)]. Combining this with W ′

∈ [ht (ht (p) & ht (q))]
we obtain W ′

∈ [ht (q)], contrary to the defining assumption of W ′. It follows from
this contradiction that [ht (p)] * [ht (ht (p) & ht (q))].

4 We now have ∅ ⊂ [ht (ht (p) & ht (q))], [ht (ht (p) & ht (q))] ⊆ [ht (p)], and
[ht (p)] * [ht (ht (p) & ht (q))]. It follows that ∅ ⊂ [ht (ht (p) & ht (q))] ⊂ [ht (p)],
as desired. �

Lemma 3.11 Let ht satisfy implication, inheritance, postreduction, and negatabil-
ity. If W ∈ [ht (p)] and there is some q such that ∅ ⊂ [ht (q)] ⊂ [ht (p)], then there
is some r such that W ∈ [ht (r)] ⊂ [ht (p)].

Proof of Lemma 3.11 The case when W ∈ [ht (q)] is trivial. When W /∈ [ht (q)],
it follows from negatability that there is some q̄ such that W ∈ [ht (q̄)] and
[ht (q)] ∩ [ht (q̄)] = ∅. It follows that ∅ ⊂ [ht (q̄)] ∩ [ht (p)] ⊂ [ht (p)], and then
from Lemma 3.10 that [ht (ht (p)) & ht (q̄))] ⊂ [ht (p)].

It follows from implication that ` ht (p) & ht (q̄) → ht (ht (p) & ht (q̄)).
Thus, [ht (p) & ht (q̄)] ⊆ [ht (ht (p) & ht (q̄))]. We also have W ∈ [ht (p)] and
W ∈ [ht (q̄)]. Thus, W ∈ [ht (p) & ht (q̄)]. Hence, W ∈ [ht (ht (p) & ht (q̄))]. Com-
bining these results we obtain W ∈ [ht (ht (p) & ht (q̄))] ⊂ [ht (p)], as desired. �

Lemma 3.12 Let ht satisfy inheritance and postreduction. If [ht (r)] ⊂ [ht (p)],
then there is some q such that ` q → p and [ht (q)] ⊂ [ht (p)].

Proof of Lemma 3.12 We are going to let r & ht (p) fill the function of q in
the lemma. From inheritance we have ` ht (r & ht (p)) → ht (ht (p)) and
then from postreduction, ` ht (r & ht (p)) → ht (p), from which it follows that
[ht (r & ht (p))] ⊆ [ht (p)].

Next, suppose that [ht (p)] ⊆ [ht (r & ht (p))]. Due to inheritance we have
` ht (r & ht (p)) → ht (r) and thus [ht (r & ht (p))] ⊆ [ht (r)] so that we ob-
tain [ht (p)] ⊆ [ht (r)], contrary to the conditions. We may conclude that
[ht (p)] * [ht (r & ht (p))]. Thus we have [ht (r & ht (p))] ⊂ [ht (p)], as de-
sired. �

Lemma 3.13 Let ht satisfy inheritance, postreduction, and negatability, and let
[ht (q)] contain no p-world. Then [ht (q)] ∩ [ht (p)] = ∅.
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Proof of Lemma 3.13

[ht (q)] ∩ [p] = ∅
` p → ¬ht (q)
` p → ht (q̄) (negatability)
` ht (p) → ht (ht (q̄)) (inheritance)
` ht (p) → ht (q̄) (postreduction)
` ht (p) → ¬ht (q)
[ht (q)] ∩ [ht (p)] = ∅

�

Lemma 3.14 Let ht satisfy implication, inheritance, and postreduction, and let
[ht (q)] be an ht -atom that contains at least one p-world. Then [ht (q)] ⊆ [ht (p)].

Proof of Lemma 3.14 Let [ht (q)] be an ht -atom and let p ∈ W ∈ [ht (q)].
It follows from implication that ht (p) ∈ W . Thus, W ∈ [ht (p)]. Hence,
[ht (q)] ∩ [ht (p)] 6= ∅. Now suppose that [ht (q)] ∩ [ht (p)] ⊂ [ht (q)]. It then
follows from Lemma 3.10 that [ht (q)] is not an atom, contrary to the assumptions.
Hence, [ht (q)] ∩ [ht (p)] = [ht (q)]; that is, [ht (q)] ⊆ [ht (p)]. �

Proof of Observation 2.3 Let t1 ≤ t2. ` ht1(p) → ht2(ht1(p)) follows from impli-
cation. For the other direction, let ht2(ht1(p)). It follows from successive specifica-
tion that ht1(ht1(p)) and then from postreduction that ht1(p). �

Proof of Observation 2.8 Suppose to the contrary that all subsets of W have a
sentential representation. Then it follows that for each W ∈ W, the set W \ W has
a sentential representation. Thus, for each W ∈ W there is some set XW such that
XW ⊆ ∩(W \ W ) and XW * W . It follows that there is some sentence xW ∈ XW
such that xW ∈ ∩(W \ W ) and xW /∈ W . Hence, for each W ∈ W there is a
sentence ¬xW that is an element of W but not of any other element of W. But this is
impossible due to cardinality considerations. �

Proof of Theorem 2.10

From Construction to Postulates

Implication Due to the reflexivity of Et , all p-worlds are in [p]t , that is, [p] ⊆ [p]t .
Due to the monosentential representability of Et and Lemma 3.7, dpet = &

⋂
[p]t

is a monosentential representation of [p]t , that is, [p]t = [dpet ]. Thus [p] ⊆ [dpet ],
from which it follows that ` p → dpet .

Inheritance

` p → q
{W ∈ W | (∃W ′

∈ W)(W Et W ′ & p ∈ W ′
}

⊆ {W ∈ W | (∃W ′
∈ W)(W Et W ′ & q ∈ W ′

}

[p]t ⊆ [q]t⋂
[q]t ⊆

⋂
[p]t

` &
⋂

[p]t → &
⋂

[q]t (sentential representability and Lemma 3.7)
` dpet → dqet .
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Groundedness Since Et has a finite number of equivalence classes, it follows from
the definition of [ ]t that there is only a finite number of sets expressible as [p]t
for some p. Consequently, there is only a finite number of nonequivalent sentences
expressible as dpet for some p. The rest is obvious.

Disjunctive distribution We have

dp ∨ qet = &
⋂

[p ∨ q]t (monosentential representability and Lemma 3.7.)

= &
⋂

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∨ q ∈ W ′))}

= &
⋂

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∈ W ′

∨ q ∈ W ′))}

= &
⋂

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∈ W ′))}

∪ {W ∈ W | (∃W ′
∈ W)((W Et W ′) & (q ∈ W ′))}.

Since the equivalence classes of Et are finite in number and all monosententially
representable, there are sets of sentences {a1, . . . , ak} and {b1, . . . , bm} such that

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∈ W ′))} = [a1] ∪ . . . [ak] and

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (q ∈ W ′))} = [b1] ∪ . . . [bm].

We can therefore continue,

&
⋂

({W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∈ W ′))}∪

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (q ∈ W ′))})

= &
⋂

([a1] ∪ · · · [ak] ∪ [b1] ∪ · · · [bm])

= &
⋂

([a1 ∨ · · · ak ∨ b1 ∨ · · · bm])

= &
⋂

([a1 ∨ · · · ak]) ∨ &
⋂

([b1 ∨ · · · bm])

= &
⋂

([a1] ∪ · · · [ak]) ∨ &
⋂

([b1] ∪ · · · [bm])

= &
⋂

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (p ∈ W ′))}∨

&
⋂

{W ∈ W | (∃W ′
∈ W)((W Et W ′) & (q ∈ W ′))}

= &
⋂

[p]t ∨ &
⋂

[q]t

= dpet ∨ dqet .

Negatability Let A1, . . . Am be the equivalence classes by Et that contain at least
one p-world, and B1, . . . Bn those that contain no p-world. Let p̄ = (&

⋂
B1)∨ . . .

∨ (&
⋂

Bn)). Then

¬ht (p) ↔ ¬dpet

↔ ¬&
⋂

{W ∈ W | (∃W ′
∈ W)(W Et W ′ & p ∈ W ′)}

↔ ¬&
⋂

(A1 ∪ · · · ∪ Am)

↔ &
⋂

(B1 ∪ · · · ∪ Bn).
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(Monosentential representability. Due to Lemma 3.7, if C ⊆ W has a monosen-
tential representation, then &

⋂
C is a monosentential representation of C, and thus

¬&
⋂

C a monosentential representation of W \ C.)

↔ (&
⋂

B1) ∨ · · · ∨ (&
⋂

Bn) (Lemma 3.8)
↔ &

⋂
({W ∈ W | &

⋂
B1 ∈ W }) ∨ · · · ∨ &

⋂
({W ∈ W | &

⋂
Bn ∈ W })

↔ &
⋂

({W ∈ W | W ∈ B1}) ∨ · · · ∨ &
⋂

({W ∈ W | W ∈ Bn ∈ W })

↔ &
⋂

({W ∈ W | (∃W ′
∈ W)(W Et W ′ & W ′

∈ B1)}) ∨ · · · ∨

&
⋂

({W ∈ W | (∃W ′
∈ W)(W Et W ′ & W ′

∈ Bn)})

(Since B1, . . . , Bn are equivalence classes by Et .)
↔ &

⋂
({W ∈ W | (∃W ′

∈ W)(W Et W ′ & &
⋂

B1 ∈ W ′)}) ∨ · · · ∨

&
⋂

({W ∈ W | (∃W ′
∈ W)(W Et W ′ & &

⋂
Bn ∈ W ′)})

↔ &
⋂

{W ∈ W |(∃W ′
∈ W)(W Et W ′ &((&

⋂
B1)∨· · ·∨(&

⋂
Bn)∈ W ′))}

↔ &
⋂

{W ∈ W | (∃W ′
∈ W)(W Et W ′ & p̄ ∈ W ′)}

↔ d p̄et

↔ ht ( p̄).

Postreduction

ddpet2et1
↔ &

⋂
{W ∈ W | (∃W ′

∈ W)(W Et1 W ′ & dpet2 ∈ W ′)}

↔ &
⋂

{W ∈ W | (∃W ′
∈ W)(W Et1 W ′ &

&
⋂

{V ∈ W | (∃V ′
∈ W)(V Et2 V ′ & p ∈ V ′)} ∈ W ′)}

↔ &
⋂

{W ∈ W | (∃W ′
∈ W)(W Et1 W ′ &

W ′
∈ {V ∈ W | (∃V ′

∈ W)(V Et2 V ′ & p ∈ V ′)}} (Lemma 3.7.)
↔ &

⋂
{W ∈ W | (∃W ′, V ′

∈ W)(W Et1 W ′Et2 V ′ & p ∈ V ′)}

↔ &
⋂

{W ∈ W | (∃V ′
∈ W)(W Et1 V ′ & p ∈ V ′)} (Lemma 3.9)

↔ &
⋂

[p]t1
↔ dpet1 .

Successive specification

t1 ≤ t2
[p]t2 ⊆ [p]t1 (weak branching)⋂

[p]t1 ⊆
⋂

[p]t2
` &

⋂
[p]t2 → &

⋂
[p]t1 (monosentential representability and Lemma 3.7)

` dpet2 → dpet1 .

From Postulates to Construction Let E be the time-setter so constructed that for
each t , Et is the relation such that for all W, W ′

∈ W,

W Et W ′ if and only if W and W ′ are elements of the same ht -atom.

We need to show that for each t , Et is an equivalence relation with the atoms as
equivalence classes. According to a standard result (Stoll [15], p. 34), this is done by
showing that

(1) all elements of W are elements of one of its atoms under ht , and
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(2) no element of W belongs to more than one atom under ht .

Furthermore, we have to show the following:

(3) Et has a finite number of equivalence classes,
(4) Et is monosententially representable,
(5) Et is weakly branching,
(6) ` ht (p) ↔ dpet for all p and t .

Part 1 Let W ∈ W. For each p ∈ W we have ht (p) ∈ W due to implication. It
follows that W ∈ [ht (p)]. In order to show that there is some p ∈ W for which there
is no q with ∅ ⊂ [ht (q)] ⊂ [ht (p)], suppose to the contrary that this is not the case.
Then it follows from Lemma 3.11 that there is an infinite series q1, q2, . . . such that
W ∈ [ht (qk)] for each qk and that [ht (p)] ⊃ [ht (q1)] ⊃ [ht (q2)] . . . . It follows from
[ht (q1)] ⊂ [ht (p)] that ` ht (q1) → ht (p) and 0 ht (p) → ht (q1), and similarly for
the rest of the series p, q1, q2 . . . . This is impossible due to groundedness.

We can conclude from this contradiction that for each W ∈ W there is some
p ∈ W such that W ∈ [ht (p)] and that there is no q with ∅ ⊂ [ht (q)] ⊂ [ht (p)];
that is, W is an element of one of the atoms.

Part 2 Let W ∈ [ht (p)] ∩ [ht (q)]. It follows from Lemma 3.10 that [ht (p)] is not
an atom.

Part 3 Suppose to the contrary that for some t , Et has an infinite number of atoms
(equivalence classes). It follows from Part 2 that there is then an infinite set of mu-
tually exclusive atoms, [ht (p1)], [ht (p2)] . . . . Due to disjunctive distribution there
is then an infinite series [ht (p1)] ⊂ [ht (p1 ∨ p2)] . . . ⊂ [ht (p1 ∨ p2 · · · ∨ pk)] . . . ,
contrary to groundedness.

Part 4 It follows directly from the construction for this part of the proof that each
atom, that is, each equivalence class by Et , has a monosentential representation.
Since the number of such equivalence classes if finite (due to Part 3) it follows
from disjunctive distribution that all subsets of W that can be formed as a union of
such equivalence classes have a monosentential representation. According to Defi-
nition 2.7 this is what it takes for E to be monosententially representable.

Part 5 Let t1 ≤ t2. We have to show that if W Et2 W ′ then W Et1 W ′. Let W Et2 W ′.
Then there is some p such that W, W ′

∈ [ht2(p)] and that [ht2(q)] 6⊂ [ht2(p)]
for all q . It follows from successive specification that [ht2(p)] ⊆ [ht1(p)]. Thus
W, W ′

∈ [ht1(p)]. It remains to be shown that [ht1(p)] is an atom. For that purpose,
suppose to the contrary that there is some r such that [ht1(r)] ⊂ [ht1(p)].

It follows from [ht1(r)] ⊆ [ht1(p)] and Lemma 3.12 that there is a sentence q
such that ` q → p and [ht1(q)] ⊂ [ht1(p)]. It follows from ` q → p and in-
heritance that ` ht2(q) → ht2(p). Suppose that also ` ht2(p) → ht2(q). Then
we have ` ht2(p) ↔ ht2(q), and due to inheritance we then have ` ht1(ht2(p)) ↔

ht1(ht2(q)). Postreduction yields ` ht1(p) ↔ ht1(q) so that [ht1(p)] = [ht1(q)],
contrary to what we have just shown. Hence, 0 ht2(p) → ht2(q). From this
and ` ht2(q) → ht2(p) it follows that [ht2(q)] ⊂ [ht2(p)], contrary to the con-
ditions. With this we have disproved the supposition that there is some r such that
[ht1(r)] ⊂ [ht1(p)]. Thus [ht1(p)] is an atom, as desired.
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Part 6 Let [ht (p1)], . . . [ht (pn)] be the ht -atoms that contain at least one p-world.
We then have

dpet ↔ &
⋂

[p]t

↔ &
⋂

{W ∈ W | (∃W ′
∈ W)(W Et W ′ & p ∈ W ′

}

↔ &
⋂

([ht (p1)] ∪ · · · ∪ [ht (pn)])

↔ (&
⋂

[ht (p1)]) ∨ · · · ∨ (&
⋂

[ht (pn)]) (Lemma 3.8)
↔ ht (p1) ∨ · · · ∨ ht (pn).

We now need to show that ` ht (p) ↔ ht (p1) ∨ · · · ∨ ht (pn). It follows
from Part 1 of the present direction of the proof that all elements of W are el-
ements of an ht -atom. From this and Lemmas 3.13 and 3.14 it follows that
[ht (p)] = [ht (p1)] ∪ · · · ∪ [ht (pn)], thus [ht (p)] = [ht (p1) ∨ · · · ∨ ht (pn)],
thus ` ht (p) ↔ ht (p1) ∨ · · · ∨ ht (pn). �

Proof of Observation 3.5

Part 1 Directly from the properties of the probability function P .

Part 2 We have

Q(p | p) = P(p | hτ(p)(p)) =
P(p & hτ(p)(p))

P(hτ(p)(p))
.

It follows from implication that ` p → hτ(p)(p). From this and p 0⊥ we can
conclude that hτ(p)(p) 0⊥. Strict coherence yields P(hτ(p)(p)) 6= 0. Furthermore,
implication yields ` p ↔ p & hτ(p)(p), thus p & hτ(p)(p) 0⊥. Thus due to strict
coherence P(p & hτ(p)(p)) 6= 0. The rest is obvious.

Part 3 Let p be such that P(p) < P(hτ(p)(p)). Then due to implication we have
P(p & hτ(p)(p)) < P(hτ(p)(p)). Since

Q(p | p) = P(p | hτ(p)(p)) =
P(p & hτ(p)(p))

P(hτ(p)(p))

it follows that Q(p | p) < 1.

Part 4 We have

Q(> | p) = P(> | hτ(>)(p)) =
P(> & hτ(>)(p))

P(hτ(>)(p))
=

P(hτ(>)(p))

P(hτ(>)(p))
.

It follows from implication that ` p → hτ(>)(p). From this and p 0⊥ it follows
that hτ(>)(p) 0⊥. Strict coherence yields P(hτ(>)(p)) 6= 0. Hence,

P(hτ(>)(p))

P(hτ(>)(p))
= 1.
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Part 5

Q(p1 ∨ p2 | q) = P(p1 ∨ p2 | hτ(p1)(q))

=
P((p1 ∨ p2) & hτ(p1)(q))

P(hτ(p1)(q))

=
P((p1 & hτ(p1)(q)) ∨ (p2 & hτ(p1)(q)))

P(hτ(p1)(q))

=
P((p1 & hτ(p1)(q)) + P(p2 & hτ(p1)(q)) − P(p1 & p2 & hτ(p1)(q))

P(hτ(p1)(q))

= P(p1 | hτ(p1)(q)) + P(p2 | hτ(p1)(q)) − P(p1 & p2 | hτ(p1)(q))

= Q(p1 | q) + Q(p2 | q) − Q(p1 & p2 | q).

Part 6 Since p1 and p2 are mutually exclusive, so are p1 & hτ(p1)(q)) and
p2 & hτ(p1)(q)). Hence, Q(p1 & p2 | q) = P(p1 & p2 | hτ(p1)(q)) = 0, which we
can insert into the result from Part 5. �
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