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A Note on Logics of Ignorance and Borders

Christopher Steinsvold

Abstract We present and show topological completeness for LB, the logic of
the topological border. LB is also a logic of epistemic ignorance. Also, we
present and show completeness for LUT, the logic of unknown truths. A simple
topological completeness proof for S4 is also presented using a T1 space.

1 Introduction

To say an agent is ignorant of the truth or falsity of proposition A, we mean the
agent doesn’t know A and doesn’t know the negation of A. We present an axiom
system intended to capture this notion of ignorance. The axiom system is LB, as it
is also the logic of the topological border, and a topological model is used to show
completeness. We also present and show completeness for the logic LUT, describing
the logic of true statements which the agent is ignorant of.

The logic S4 is often taken as a logic of knowledge. Also, S4 is topologically
complete when the box is interpreted as the interior (McKinsey and Tarski [7]). To
express that an agent is ignorant of the truth or falsity of A, we may say, “At world
w, ¬KA ∧ ¬K¬A is true” (where KA means the agent knows that A). Similarly,
if we want to say a point w is a member of the border of the set A, we would write
“w ∈ −I (A)∩−I (−A)” (where I (A) is the interior of A). Since knowledge and the
interior both obey S4, the structural resemblance between ignorance and the border
is clear, and LB describes both. Considering LUT, to express that a statement is true
but unknown, we may say A ∧ ¬KA is true at world w.

In van der Hoek and Lomuscio [5] a logic of ignorance was introduced. A re-
lational model was used to show completeness and they imposed no restrictions on
the relation (corresponding to the modal logic K); a logic of ignorance for when the
relation is transitive was also worked out. Here we show topological completeness
for a logic of ignorance corresponding to S4 (in relational terms, this corresponds to
a logic of ignorance where the relation is reflexive and transitive).
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Apart from the motivation given in [5], our own is mainly philosophical. We
are interested in exploring connections between epistemology and topology, as has
previously been done in van Benthem and Sarenac [2], Dabrowski, Moss, and Parikh
[3], Georgatos [4], Kelly [6], Steinsvold [8], and Vickers [9]. For relations between
logic and topology in general, see Aiello, Pratt-Hartmann, and van Benthem [1].

Following the philosophical interest in T1 spaces discussed in [8], we also include
a completeness proof using a T1 space for S4. The proof is a simple variation of the
completeness proof for S4 presented in the first chapter of [1]. The completeness
proofs for LB and LUT, both nonnormal modal logics, are structurally similar to the
aforementioned proof as well.

2 Topological Definitions

Definition 2.1 Let W be a nonempty set. Let τ be a subset of the power set of W
such that

1. τ is closed under finite intersection,
2. τ is closed under union,
3. W ∈ τ ,
4. ∅ ∈ τ .

τ is a topology on W .

Definition 2.2 Where τ is a topology on W , members of W are points or worlds,
and 〈W, τ 〉 is a topological space. The members of the topology τ are open sets, or
opens. We will use O and U as variables for open sets. A set is closed if and only
if the complement is open. The interior of A, I (A), is the union of all open subsets
of A. The closure of A, C(A), is the intersection of all closed supersets of A. The
border of A, b(A), is C(A) ∩ C(−A).

The interior operator and closure operator are duals, I (A) = −C(−A). A point x is
a member of I (A) if and only if there is some O ⊆ A and x ∈ O . A point x is in
C(A) if and only if, for all O , if x ∈ O , then O ∩ A is nonempty.

Definition 2.3 A topological space is T1 if and only if every cofinite set is open.

Definition 2.4 Let τ be a topology and let B ⊆ τ . B is a base for the topology τ
if and only if every member of τ can be formed using unions of members of B. The
members of B are called basic open sets. If B is a base for τ , τ is generated by B.

The following useful theorem is a common result; we omit proof.

Proposition 2.5 Let B be a subset of the power set of some set W . B is a base for
a topology on W if and only if

1.
⋃

{Y |Y ∈ B} = W , and
2. if X and Y are members of B and w ∈ X ∩ Y , then there is some Z ∈ B and

w ∈ Z ⊆ X ∩ Y .
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3 Topological Semantics

Definition 3.1 Given a topological space 〈W, τ 〉, we define a valuation V as a
function from atomic sentences to subsets of W . Intuitively, if b ∈ V (p) then p is
true at the world b. A topological model M = 〈W, τ, V 〉 is a topological space with
a valuation.

Definition 3.2 (Truth in a topological model M at a point w)

M, w |H p iff w ∈ V (p)

M, w |H ⊥ iff 0 = 1
M, w |H A → B iff M, w |H A then M, w |H B

M, w |H KA iff (∃O)[w ∈ O and (∀x ∈ O)(M, x |H A)]

M, w |H �A iff (∃O)[w∈ O and ((∀x ∈ O)(M, x |H A)

or (∀x ∈ O)(M, x 6|H A))]

M, w |H �A iff M, w |H A and (∀O)( if w ∈ O then (∃y ∈ O)(M, y 6|H A))

¬A is defined as A → ⊥, and > is defined as ¬⊥, so it is always true.
K is the box for S4, representing knowledge. �A is the dual of ignorance (the

agent knows whether or not A (KA ∨ K¬A)). This is the box for the logic LB, the
logic of borders.

Definition 3.3 Given a topological model M = 〈W, τ, V 〉 and a formula A,

[A]
M

= {x ∈ W |M, x |H A}.

To be sure that we are capturing the right operator, b, note that

M, w |H ♦A if and only if w ∈ C([A]
M ) and w ∈ C([¬A]

M ).

The black square � is the box for LUT, the logic of unknown truths. Thus �A is
intended to represent A ∧ ¬KA. Epistemically, we may think of LUT as a more
specific logic of ignorance. For if A ∧ ¬KA is true, then (since A → ¬K¬A),
¬KA∧¬K¬A. In other words, if �A is true at a point, then ♦A will be true as well.
Topologically, we may think of LUT as the logic of a type of border point.

Definition 3.4 A sentence ϕ is valid in a topological model if and only if ϕ is true
at every point in the model. A sentence ϕ is valid in a topological space if and only
if ϕ is valid in every topological model based on the space.

Each of our boxes can define the other. Thus all of the following sentences are valid:

(�A ∧ A) ↔ KA,

(KA ∨ K¬A) ↔ �A,

�A ↔ (A ∧ ¬KA),

(�¬A ∧ A) ↔ KA,

(A ∧ ¬(�A ∧ A)) ↔ �A,

[(�¬A ∧ A) ∨ (�A ∧ ¬A)] ↔ �A.
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4 The Logic S4

The following is a nonstandard, though equivalent, variant of S4:

Name Axiom Scheme

N K> ↔ >

T KA → A
K (KA∧KB) ↔ K (A∧B)

along with the following inference rule, R4,

from S4 ` KA → B, infer S4 ` KA → KB,

with MP, substitution of equivalents, and all tautologies and their modal instances.
The 4 axiom (or the KK thesis), KA → KKA, is an immediate consequence of

R4. For S4 ` KA → KA (tautology) and applying R4 gives us S4 ` KA → KKA.
(Furthermore, R4 is a valid rule of inference in the logic K4). We leave topological
soundness to the reader.

4.1 Completeness for S4 Let W be the maximally consistent sets of S4.

Definition 4.1 For any formula A, Â = {x ∈ W |A ∈ x}.

Let B = { K̂A − F | where A is a formula and F is a finite subset of W }.

Proposition 4.2 B is a base for a topology on W .

Proof We show this with Proposition 2.5 in mind. Where F is the empty set,
K̂> − F = W , and so W ∈ B, satisfying the first condition of Proposition 2.5.
To see that the second condition of Proposition 2.5 holds, assume K̂A − F1 and
K̂B − F2 are members of B. We show that the intersection of the two sets are also
members of B. For (K̂A − F1) ∩ (K̂B − F2) = ̂KA ∧ KB − (F1 ∪ F2). By axiom K,

̂KA ∧ KB = ̂K (A ∧ B), so (K̂A− F1)∩ (K̂B− F2) = ̂K (A ∧ B)− (F1 ∪ F2). Since
A ∧ B is a formula and F1 ∪ F2 is a finite set, ̂K (A ∧ B) − (F1 ∪ F2) is in B. �

Let τ be the topology generated by B. For all p, let x ∈ V (p) if and only if p ∈ x .
This gives a topological model, M = 〈W, τ, V 〉.

Proposition 4.3 For all formulas A, (∀w ∈ W )(M, w |H A if and only if A ∈ w).

Proof The nonmodal cases are straightforward. Assume w ∈ K̂A. By axiom T,
K̂A ⊆ Â. By induction hypothesis (hereafter, IH), A is true at all points in K̂A.
Where F is empty, K̂A − F = K̂A; thus K̂A is open, so M, w |H KA.

Assume M, w |H KA. Thus for some open set O , w ∈ O and A is true at all
points in O . Since O is formed using the basic open sets from B, there must be
some K̂B− F ∈ B, w ∈ K̂B− F , and K̂B− F ⊆ [A]

M . By IH, K̂B− F ⊆ Â, which
implies that ̂KB ∧ ¬A ⊆ F . But then F must be empty, and KB ∧ ¬A inconsistent
(for all consistent formulas C , Ĉ is infinite). Thus S4 ` KB → A. By the inference
rule R4, S4 ` KB → KA. Thus, KA ∈ w. �

By the construction of B, all cofinite sets are in τ (for all finite F , K̂> − F ∈ B),
and thus our space is T1. As mentioned, our model is a simple variation of the model
used in Chapter 1 of [1] to show completeness for S4. There, the set of all K̂A is used
as a base.
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5 LB: The Logic of Borders

The axiom system for LB is as follows:

Name Axiom Scheme

N �> ↔ >

Z �A ↔ �¬A
R (�A∧�B) → �(A∧B)

along with the following inference rule, WM,

from LB ` (�A ∧ A) → B, infer LB ` (�A ∧ A) → (�B ∧ B),

with MP, substitution of equivalents, and all tautologies and their modal instances.
The following theorem will be useful in proving completeness for LB.

Proposition 5.1 LB ` (�A ∧ �B ∧ A ∧ B) ↔ (�(A ∧ B) ∧ A ∧ B).

Proof

1. LB ` (A ∧ B) → B tautology
2. LB ` (�(A ∧ B) ∧ A ∧ B) → B 1, classical logic
3. LB ` (�(A ∧ B) ∧ A ∧ B) → (�B ∧ B) using WM on line 2
4. LB ` (A ∧ B) → A tautology
5. LB ` (�(A ∧ B) ∧ A ∧ B) → A 4, classical logic
6. LB ` (�(A ∧ B) ∧ A ∧ B) → (�A ∧ A) using WM on line 5
7. LB ` (�(A ∧ B) ∧ A ∧ B) → (�A ∧ �B ∧ A ∧ B) 3, 6 using

classical logic.

Conversely,

8. LB ` (�A ∧ �B) → �(A ∧ B) axiom R
9. LB ` (�A ∧ �B ∧ A ∧ B) → (�(A ∧ B) ∧ A ∧ B) 8, classical logic

10. LB ` (�A ∧ �B ∧ A ∧ B) ↔ (�(A ∧ B) ∧ A ∧ B) 7 and 9.
�

We leave soundness to the reader and move to completeness.

5.1 Completeness Let W be the set of all maximally consistent sets of LB. Let

B = { �̂A ∧ A|A is a formula }.

Proposition 5.2 B is a base for a topology on W .

Proof We show this with Proposition 2.5 in mind. By axiom N, W = �̂> ∧ >,
and �̂> ∧ > ∈ B. Secondly, assume �̂A ∧ A and �̂B ∧ B are in B. Now, by
Proposition 5.1, LB ` (�A ∧ A ∧ �B ∧ B) ↔ (�(A ∧ B) ∧ A ∧ B). Thus, since
A ∧ B is a formula, �̂A ∧ A ∩ �̂B ∧ B is in B. �

Let M = 〈W, τ, V 〉, where B generates τ and x ∈ V (p) if and only if x ∈ p̂.

Proposition 5.3 For all formulas A, (∀w ∈ W )(M, w |H A if and only if A ∈ w).

Proof The nonmodal cases are straightforward. Assume �A ∈ w. Either A ∈ w or
not. Assume A ∈ w. Then there is an open set, �̂A ∧ A, w is a member of the open
set, and �̂A ∧ A ⊆ Â. By IH, for all x in �̂A ∧ A, M, x |H A. Thus M, w |H �A.
Assume A 6∈ W , so ¬A ∈ w. Now, by axiom Z, �̂A = �̂¬A, so w is in the
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basic open set ̂�¬A ∧ ¬A, and ̂�¬A ∧ ¬A ⊆ ¬̂A. By IH, for all x ∈ ̂�¬A ∧ ¬A,
M, x |H ¬A. By definition of truth in a model, M, w |H �A.

Assume M, w |H �A. Thus there is some O , w ∈ O and either O ⊆ [A]
M or

O ⊆ [¬A]
M . Assume O ⊆ [A]

M . Since O is formed using the basic open sets
in B, there must be some �̂B ∧ B, w ∈ �̂B ∧ B, and �̂B ∧ B ⊆ [A]

M . By IH,
�̂B ∧ B ⊆ Â, and so LB ` (�B∧B) → A. By WM, LB ` (�B∧B) → (�A∧ A).
Thus �A ∈ w. Assume O ⊆ [¬A]

M ; so for some basic open set �̂B ∧ B,
w ∈ �̂B ∧ B ⊆ [¬A]

M . By IH, LB ` (�B ∧ B) → ¬A. By WM, LB
` (�B ∧ B) → (�¬A ∧ ¬A). Thus �¬A ∈ w. By axiom Z, �A ∈ w. �

6 LUT : The Logic of Unknown Truths

The axiom system for LUT is

Name Axiom Scheme

T A → �A
U �⊥ ↔ >

V (�A∧�B) → �(A∨B),

along with the following inference rule, SM,

from LUT ` (�¬A ∧ A) → B, infer LUT ` (�¬A ∧ A) → (�¬B ∧ B),

with MP, substitution of equivalents, all tautologies and their modal instances.

Proposition 6.1 LUT ` (�¬(A ∧ B) ∧ A ∧ B) ↔ (�¬A ∧ A ∧ �¬B ∧ B).

Proof

1. LUT ` (�¬A ∧ �¬B)
→ �(¬A ∨ ¬B) instance of axiom V

2. LUT ` (�¬A ∧ �¬B)
→ �¬(A ∧ B) from 1, De Morgan’s

3. LUT ` (�¬A ∧ A ∧ �¬B ∧ A)
→ (�¬(A ∧ B) ∧ A ∧ B) from 2, classical logic

4. LUT ` (A ∧ B) → A tautology
5. LUT ` (�¬(A ∧ B) ∧ A ∧ B) → A from 4, classical logic
6 LUT ` (�¬(A ∧ B) ∧ A ∧ B)

→ (�¬A ∧ A) from 5, using SM
7. LUT ` (A ∧ B) → B tautology
8. LUT ` (�¬(A ∧ B) ∧ A ∧ B) → B from 7, classical logic
9. LUT ` (�¬(A ∧ B) ∧ A ∧ B)

→ (�¬B ∧ B) from 8, using SM
10. LUT ` (�¬(A ∧ B) ∧ A ∧ B)

→ (�¬A ∧ A ∧ �¬B ∧ B) from 6 and 9
11. LUT ` (�¬(A ∧ B) ∧ A ∧ B)

↔ (�¬A ∧ A ∧ �¬B ∧ B) from 3 and 10
�

We leave soundness for the reader and move to completeness.
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6.1 Completeness Let W be the set of all maximally consistent sets of LUT. Let

B = { ̂�¬A ∧ A|A is a formula }.

Proposition 6.2 B is a base for a topology on W .

Proof By axiom U, W = �̂⊥ ∧ >, so the first clause of Proposition 2.5 is satisfied.
Proposition 6.1 satisfies the second clause of Proposition 2.5. �

Let M = 〈W, τ, V 〉, where B generates τ and x ∈ V (p) if and only if x ∈ p̂.

Proposition 6.3 For all formulas A, (∀w ∈ W )(M, w |H A if and only if A ∈ w).

Proof The nonmodal cases are straightforward. Assume M, w |H �A. So
w ∈ [A]

M
∩ C([¬A]

M ). By IH, w ∈ Â ∩ C(¬̂A). If �A 6∈ w, then w ∈ ̂�¬A ∧ A,
which is a basic open set. Thus ¬̂A ∩ ̂�¬A ∧ A is nonempty, contradiction. So,
�A ∈ w.

Conversely, assume M, w 6|H �A. Then w ∈ [¬A]
M

∪ I ([A]
M ). Assume

w ∈ [¬A]
M . By IH, A 6∈ w; thus ¬A ∈ w. By axiom T, �¬A ∈ w; thus w 6∈ �A.

Otherwise, assume w ∈ I ([A]
M ). Thus there is some O , w ∈ O and O ⊆ [A]

M .
By IH, O ⊆ Â. There must be some ̂�¬B ∧ B ∈ B, where w ∈ ̂�¬B ∧ B ⊆ Â.
Thus LUT ` (�¬B ∧ B) → A, and using the inference rule SM we get LUT
` (�¬B ∧ B) → (�¬A ∧ A). Thus �¬A ∈ w and w 6∈ �A. �

If we change the base for LUT (LB) to the set of all ̂�¬A ∧ A − F (�̂A ∧ A − F)
where F is a finite, we have a T1 space and completeness still goes through. Both
truth lemmas need the fact that for all consistent formulas C, Ĉ is infinite.
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