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Rumely Domains with Atomic Constructible
Boolean Algebra. An Effective Viewpoint

Claude Sureson

Abstract The archetypal Rumely domain is the ring Z̃ of algebraic integers.
Its constructible Boolean algebra is atomless. We study here the opposite sit-
uation: Rumely domains whose constructible Boolean algebra is atomic. Re-
cursive models (which are rings of algebraic numbers) are proposed; effective
model-completeness and decidability of the corresponding theory are proved.

1 Introduction

The notion of Rumely domain was introduced by Macintyre and van den Dries [14]
in order to axiomatize the theory of Z̃, the ring of algebraic integers; an axiomatiza-
tion formulated in slightly different terms, but also based on Rumely’s local-global
principle [10], was proposed by Prestel and Schmid [9].

Definition 1.1 ([14]) A domain R with fraction field K is a Rumely domain if it
has the following properties.
Ru.1: Its fraction field K is algebraically closed.
Ru.2: Every finitely generated ideal of R is principal.
Ru.3: (Local-global principle) If C ⊆ m K is a smooth, irreducible, closed curve,

f ∈ K [X1, . . . , Xm] and C f = {x ∈ C : f (x) 6= 0} has points in (1/a) mR
and in (1/b) mR where a, b ∈ R \ {0} are relatively prime, then C f has a
point in mR.

R is a good Rumely domain if it satisfies, moreover, the following properties.
Ru.4: (Good factorization) For all a, b ∈ R \ {0}, there are a1, a2 in R such that

a = a1a2, a1 and b are relatively prime and b belongs to the Jacobson
radical of a2.

Ru.5: Every nonzero nonunit is the product of two relatively prime nonunits.
Ru.6: Its Jacobson radical is equal to {0} and R 6= K .
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All these properties are first-order expressible in the language of rings Lring =

{0, 1,+,−, · }, and we treat them as axioms. All localizations of Z̃ satisfy Ru.1 –
Ru.4; the ring Z̃ satisfies, moreover, Ru.5 and Ru.6 [14].

We recall the definition of the constructible Boolean algebra.

Definition 1.2 Let R be a ring.

(1) Max(R) denotes the set of maximal ideals of R. It is endowed with the
Zariski topology: the basic open sets are of the form DR(a) = {M∈Max(R) :
a /∈M}, for a ∈ R. The basic closed sets are the sets VR(b) = {M∈Max(R) :
b ∈M}, for b ∈ R.

(2) The constructible Boolean algebra B(R) associated with R is the algebra
generated by the basic open sets. Its elements are called constructible.

Properties Ru.4 and Ru.5 determine the structure of the constructible algebra: if a
Bezout domain R 6= Frac(R) satisfies Ru.4, then one can check that

Ru.5 holds in R iff B(R) is atomless.

To obtain atomic constructible algebras, in opposition to Ru.5, we shall consider the
following definition.

Definition 1.3

(1) Let Atomic.5 be the following property of a ring: given any nonzero nonunit
a, there is a nonunit b dividing a such that b is not the product of two rela-
tively prime nonunits.

(2) The theory T atomic
ring is the theory Ru.1 – Ru.4 + Atomic.5 + Ru.6.

As expected, for any Bezout domain R 6= Frac(R) satisfying Ru.4, one has the
equivalence,

Atomic.5 holds in R iff B(R) is atomic.

We propose in this article a study of the theory T atomic
ring , stressing the effective aspects.

Basic definitions are introduced in Section 1. Section 2 deals with models of T atomic
ring .

As Z̃ is a canonical recursive good Rumely domain, we propose some “natural”
recursive models of T atomic

ring + char = 0 (with recursive axiomatizations). Models of
T atomic

ring + char = p, for p > 0, are also proposed. Section 3 is devoted to model
completeness issues.

We introduce the languages which allow (partial) quantifier elimination.

Definition 1.4

(1) Let rad and size=1 be, respectively, binary and unary relation symbols whose
interpretations in a ring R are the following:

R |H a rad b iff a ∈ radR(b) (the Jacobson radical of b in R)

iff a ∈ ∩VR(b).

R |H size=1(u) iff u nonzero nonunit is not the product of two
relatively prime nonunits.

(2) In any Bezout domain, let (x : y) denote a generator of the principal ideal
(x) : (y). For each n, k, l < ω, let Sn,k,l be the 2k + 2l relation symbol
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defined in any Bezout domain as

Sn,k,l(x, y, z, t)↔ ∃(ur )r<n
[∧

r<nsize=1(ur ) ∧
∧

r 6=r ′ gcd(ur , ur ′) = 1∧∧
r<n(gcd j<l(z j : t j )) rad ur ∧

∧
r<n gcd(ur ,

∏
i<k(xi : yi )) = 1

]
.

In any model R of Ru.2 + Ru.4 + Ru.6, the meanings of the two predicates size=1
and Sn,k,l are the following ones: for u ∈ R, a,b ∈ k R, c,d ∈ l R,

R |H size=1(u) iff VR(u) is an atom in B(R),

R |H Sn,k,l(a,b, c,d) iff

 in B(R), the constructible set
DR(

∏
i<k(ai :bi )) ∩ VR(gcd j<l(c j :d j ))

is above at least n distinct atoms.

Let us note that the predicates radk,l , for k, l < ω, introduced in [13] and [14] and
defined as radk,l(x, y, z, t) ↔

∏
i<k(xi : yi )) rad gcd j<l(z j : t j ), can be recovered

from the Sn,k,ls:

T atomic
ring ` radk,l(x, y, z, t)↔ ¬S1,k,l(x, y, z, t).

We shall prove that T atomic
ring is effectively model complete with respect to the lan-

guage Lring ∪{ rad , size=1} and that it admits a strong form of model completeness
relative to the language Lring ∪{Sn,k,l : n, k, l < ω} (this is very reminiscent of [14]
which showed model completeness of the theory of good Rumely domains with re-
spect to Lring ∪{ rad } and proposed a strong form of model completeness relative
to Lring ∪{ radk,l : k, l < ω}). The method of proof consists in connecting truth in
the model of T atomic

ring and truth in its constructible Boolean algebra via a Feferman-
Vaught type result and in applying a result of Tarski ([11], [12]) concerning (effec-
tive) quantifier elimination in the theory of atomic Boolean algebras relative to an
adequate language.

Decidability of T atomic
ring is then easily deduced, in Section 5, from the strong form

of model completeness. We also present recursive axiomatizations of some models
constructed in Section 2.

We must mention here the work of Darnière [3] and Ershov [5] who proposed a
high level of generalization of the theory of Rumely domains. (Noneffective) model
completeness and decidability of the theory T atomic

ring can be obtained by their methods
(modulo some argumentation and a version of Tarski’s result for relatively comple-
mented lattices). Contrary to these more abstract articles which pursue different
goals, our scope is more reduced and this allows some informative effective study
(in the spirit and manner of [13] and [14]).

2 Basic Notions and Definitions

Let us first recall a few basic notions from the domain of Boolean algebras.

Definition 2.1 Let B = 〈B, 0, 1,+, , · ,− 〉 be a Boolean algebra, and let Lboole
be the language {0, 1,+, · ,− }.

(a) (i) An atom a ∈ B is a nonzero element such that for any b ∈ B, 0 ≤ b ≤ a
implies b = 0 or b = a (x ≤ y iff x · y = x).

(ii) B is atomless if it has no atoms.
(iii) B is atomic if for any b ∈ B \ {0}, there exists an atom a ∈ B such that

a ≤ b.
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(b) For each n > 0, let Rn be the unary relation symbol whose interpretation is

Rn(x) holds iff there exist at least n distinct atoms ≤ x .

We shall be dealing here with atomic Boolean algebras; hence let us set the following
definition.

Definition 2.2

1. T atomic
boole is the theory of atomic Boolean algebras, and

2. Latomic
boole is the language Lboole ∪ {Rn : n < ω}.

The following result is due to Tarski (see [6], p. 73).1 (See also [12], [4], and [1],
chapter 5.5)

Theorem 2.3 ([11]) The theory T atomic
boole admits effective quantifier elimination in

Latomic
boole .

Let us restrict the discussion now to constructible Boolean algebras of Rumely do-
mains. Since they are fields of sets, we shall also use the set theoretical notation
∪,∩,⊆,∅,Max(R) for +, · ,≤, 0, 1. The role of axioms Ru.2 and Ru.4 is essen-
tial.

Lemma 2.4 ([14], 2.12) In any Bezout domain R with good factorization, every
constructible set in B(R) is a basic open set or a basic closed set.

Let us first state without proof the following easy but useful fact.

Fact 2.5 Let R 6= Frac(R) satisfy Ru.2 + Ru.4.
(a) If a ∈ R and M belongs to DR(a), then there exists b ∈ R \ {0} such that

M ∈ VR(b) ⊆ DR(a).
(b) Any atom in B(R) is of the form VR(b), with |VR(b)| = 1, for some

b ∈ R \ {0}.

We can now link properties Ru.5, Atomic.5 to the presence or absence of atoms in
the constructible Boolean algebra.

Lemma 2.6 Let R (6= Frac(R)) satisfy Ru.2 + Ru.4 and let a ∈ R \ {0} be a
nonunit.

(a) VR(a) is not an atom iff a is the product of two relatively prime nonunits.
(b) Ru.5 holds in R iff B(R) is atomless.
(c) Atomic.5 holds in R iff B(R) is atomic.

Proof Let R 6= Frac(R) satisfy Ru.2 + Ru.4.

(a) Let a be a nonzero nonunit. We suppose VR(a) is not an atom. Hence by
Fact 2.5(a), there is b ∈ R \ {0} with ∅ ⊆/ VR(b) ⊆/ VR(a). By good factorization, we
obtain a0, a1 such that

(i) a = a0a1,
(ii) a0 and b are relatively prime,

(iii) VR(a1) ⊆ VR(b).
Hence VR(a1) = VR(b) 6= ∅, VR(a0) = VR(a) \ VR(b) 6= ∅, and a is the product
of two relatively prime nonunits. The opposite implication is immediate.
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(b) We suppose that Ru.5 holds in R. It follows from (a) that no VR(b), for
b ∈ R \ {0} can be an atom. By Fact 2.5(b), B(R) is atomless. Conversely let
B(R) be atomless. Then for all nonzero nonunit a ∈ R, VR(a) is not an atom, and
we conclude by (a) that Ru.5 holds in R.

(c) Let Atomic.5 hold in R, and let X be a nonempty constructible set. Then by
Fact 2.5(a), there is b ∈ R \ {0} such that ∅ 6= VR(b) ⊆ X . By Atomic.5, there is d
dividing b such that d is not the product of two relatively prime nonunits. Hence by
(a), VR(d) is an atom such that VR(d) ⊆ VR(b) ⊆ X . Therefore, B(R) is atomic.

Conversely let B(R) be atomic. Then, given a nonzero nonunit a in R, there is
b ∈ R \ {0} such that VR(b) ⊆ VR(a) and VR(b) is an atom. By the same argument
as in (a), we can assume that b divides a. Since VR(b) is an atom, b cannot be the
product of two relatively prime nonunits. Hence R satisfies Atomic.5. �

Let us state some definitions which were (partially) proposed in the introduction.

Definition 2.7 size=1, Sn , and Sn,k,l , for n, k, l < ω, are the predicates defined as
1. size=1(x) if and only if x nonzero nonunit is not the product of two relatively

prime nonunits.
2. Sn(x) if and only if

∃(xi )i<n
[∧

i<n size=1(xi ) ∧
∧

i 6= j (gcd(xi , x j ) = 1) ∧
∧

i<n x rad (xi )
]
.

3. Sn,k,l(x, y, z, t) if and only if

∃u
[
Sn(u) ∧ (gcd j<l(z j : t j )) rad u ∧ gcd(u,

∏
i<k(xi : yi )) = 1

]
.

The previous lemma implies that these predicates have their expected meaning.

Claim 2.8 Let R be a Bezout domain satisfying Ru.4+ Ru.6. Then for any u in R,
a,b ∈ k R, c,d ∈ l R, n, k, l < ω,

1. R |H size=1(u)⇔ VR(u) is an atom,
2. R |H Sn(u)⇔ VR(u) is above at least n atoms,

3. R |H Sn,k,l(a,b, c,d)⇔
(

DR(
∏

i<k(ai :bi )) ∩ VR(gcd j<k(c j :d j ))

is above at least n atoms.

We note the following fact.

Fact 2.9 In any model R of T atomic
ring , for n ≥ 1, u ∈ R,

R |H Sn(u) iff |VR(u)| ≥ n.

Proof We show the implication from right to left for n ≥ 2. Let us assume
{M0, . . . ,Mn−1} ⊆ VR(u), with all Mi s distinct. For all i 6= j , let δi, j ∈ Mi \M j .
Since R is Bezout, for each i < n, let δi := gcd{δi, j : j 6= i}. Then, for any
i < n, δi ∈Mi \ (

⋃
j 6=i M j ). This gives Mi ∈ VR(δi ) \ (

⋃
j 6=i VR(δ j )).

All the constructible sets
(
VR(δi ) \ (

⋃
j 6=i VR(δ j ))

)
∩ VR(u), for i < n, are

nonempty and pairwise disjoint. Since B(R) is atomic, each one contains an atom.
�

A more algebraic definition of Sn—valid only in models of T atomic
ring —could have been

Sn(x) if and only if x is the product of n pairwise relatively prime nonunits. Let us
set the following definition.
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Definition 2.10 Let Latomic
ring := Lring∪{ rad , size=1} and let L′ := Lring∪{Sn,k,l :

n, k, l < ω}.

Notation 2.11 “gcd(x, y)” or “(x : y)” is defined in a Bezout domain, up to mul-
tiplication by a unit. This functional notation is convenient, but we shall also use the
relational “(x, y) = (z)” meaning by (x, y) (respectively, (z)) the ideal generated by
x and y (respectively, z).

3 Models of T atomic
ring

The canonical good Rumely domain Z̃ can be equipped with the recursive structure
defined by Rumely in [10], p. 32 (any α ∈ Z̃ is represented by a pair (P(x), a + bi)
where P(x) is a monic irreducible polynomial over Z, α is a root of P , and a+ bi is
a sufficiently good decimal approximation of α). It is thus natural to wonder whether
one can construct a recursive model of T atomic

ring + char = 0.
We shall do so by considering localizations of Z̃, turning appropriate VZ̃(u), u ∈ Z̃,

into atoms by introducing inverses which will kill all maximal ideals in VZ̃(u) except
one. It is thus interesting to obtain the following effective decomposition of basic
closed sets.

Lemma 3.1 There is an effective uniform procedure which produces for each
nonzero nonunit u ∈ Z̃ two sequences of algebraic integers 〈an :n < ω〉, 〈bn :n < ω〉
such that

1. Mu :=
⋃

n<ω anZ̃ is a maximal ideal of Z̃,

2. the VZ̃(bn)s, for n < ω, are nonempty and pairwise disjoint,

3. VZ̃(u) = {Mu}
◦

∪

◦⋃
n<ωVZ̃(bn), (

◦

∪ meaning disjoint union).

One can derive the following.

Corollary 3.2

(a) Given a nonunit u ∈ Z̃ \ {0}, one can effectively construct a multiplicative set
Su = {sn : n < ω} ⊆ Z̃ such that
(i) for all M ∈ VZ̃(u) except one, M ∩ Su 6= ∅,

(ii) for all M ∈ DZ̃(u), M ∩ Su = ∅.
(b) Let u and Su be as in (a). If R := (Su)

−1
· Z̃, then VR(u) is an atom and

DR(u) = {MR :M ∈ DZ̃(u)}.

Proof of Corollary 3.2 (a) Let u ∈ Z̃ be a nonzero nonunit, and let Mu ,
〈bn : n < ω〉 be obtained from Lemma 3.1. One takes for Su the multiplicative set
generated by 1 ∪ {bn : n < ω}.

(b) Let R := (Su)
−1
· Z̃. (b) follows from (a) since Max(R) is the set {MR :

M ∈ Max(Z̃),M ∩ Su 6= ∅}. �

Let us defer the (somewhat lengthy) proof of Lemma 3.1 and to motivate it, let us pro-
pose constructions of recursive models of T atomic

ring based on this lemma. We present
first an “almost” canonical example: a model where every nonzero element belongs
to finitely many maximal ideals. A recursive axiomatization of its theory is pre-
sented. We then describe more briefly a second example where each prime integer
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belongs to infinitely many maximal ideals. We finish up with a consistency state-
ment, to be used later, which gives the existence of (possibly nonrecursive) models
R of T atomic

ring whose algebraic part (i.e., R ∩ Q̃) is Z̃ or Q̃.

Example 3.3 We construct a recursive model R of “T atomic
ring + char = 0” such that

Max(R) has the structure of Max(Z). The method is to turn all VZ̃(p)s, for p prime
(rational) number, into atoms.

Definition 3.4 (Definition of R) By Lemma 3.1, for each prime p, one constructs
effectively

1. a maximal ideal Mp (more exactly, a defining sequence of Mp),
2. a sequence 〈bp,n : n < ω〉 of algebraic integers such that

VZ̃(p) = {Mp}
◦

∪

◦⋃
n<ω

VZ̃(bp,n). (1)

Let S be the multiplicative set generated by {1} ∪ {bp,n : p prime, n < ω}, and let
R := S−1Z̃.

We check that R is the expected model.

Ru.1 – Ru.4: By [14], 2.10, 3.5, any localization of Z̃ satisfies Ru.1 – Ru.4.

Atomic.5: Since Max(R) = {MR : M ∈ Max(Z̃),M ∩ S = ∅}, all maximal
ideals in Max(Z̃) \ {Mp : p prime} are “killed” in the transition from Z̃ to R. Let us
check that all Mps are “preserved.” We assume for a contradiction that, for p prime
and s ∈ S, s ∈ Mp. Since Mp is prime, by definition of S, there must exist bq,n, q
prime, n < ω, such that bq,n ∈Mp.

(a) If q = p, then we would get Mp ∈ VZ̃(bp,n) and a contradiction.
(b) If q 6= p, since VZ̃(q) ⊇ VZ̃(bq,n), we obtain q ∈ Mp which would give

(1) ⊆ (p, q) ⊆Mp and also a contradiction.
Hence, for each prime p, VR(p) = {Mp R} is an atom. Since Max(R) is the disjoint

union
◦⋃
{VR(p) : p prime}, R satisfy Atomic.5.

Ru.6: Let v ∈ Z̃\{0}. We check that v does not belong to the radical of R. There is
a finite set of prime numbers P such that VZ̃(v) ⊆

⋃
p∈P VZ̃(p). If q is a prime num-

ber not in P , then necessarily VZ̃(v) ∩ VZ̃(q) = ∅, and hence VR(v) ∩ VR(q) = ∅.
Since VR(q) is nonempty, v cannot belong to the radical of R. Hence R is a model
of T atomic

ring .

Let us present the following result we shall prove in Section 5.

Proposition 3.5 The theory of R is recursively axiomatized as
1. T atomic

ring + char = 0,
2. the quantifier-free diagram of Z̃,
3. for each prime p, the axiom “size=1(p)” (formally its Lring equivalent),
4. for each prime p, each n < ω, the axiom “bp,n unit”.

Example 3.6 We sketch the construction. If instead of turning all VZ̃(bp,n)s,
p prime, n < ω, into empty sets, one transforms them into atoms, then one
obtains a situation where if R′ is the final model, then every VR′(p) contains
infinitely many atoms. More precisely, each VR′(p) is equal to some union
{Mp R′} ∪ {Mp,n R′ : n < ω} where the {Mp,n R′}s are the atoms VR′(bp,n),
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but {Mp R′} is not an atom, and hence not a constructible set. Since R |H ¬S2(p)
and R′ |H S2(p), for any prime p, R and R′ are not elementarily equivalent.

Let us present now some consistency results also based on Lemma 3.1 we shall need
in Section 5.

Lemma 3.7 Let t := 〈ti : i < k〉 be a sequence of nonzero nonunits which are
pairwise relatively prime in Z̃, and let m := 〈mi : i < k〉 ∈ kω. Then there is a
localization R of Z̃ satisfying T atomic

ring and such that for each i < k, VR(ti ) contains
exactly mi atoms.

Proof Let t,m, k be as in the lemma. We set I := {i < k : mi 6= 0}. Then our
strategy is as follows:

(a) for each i ∈ I , to split VZ̃(ti ) into mi nonempty disjoint basic closed sets
VZ̃(ti,s), s < mi ,

(b) for every i ∈ I, s < mi , to transform VZ̃(ti,s) into an atom,
(c) to turn Max(Z̃) \ (

⋃
i<k VZ̃(ti )) = DZ̃(

∏
i<k ti ) into a union of atoms,

(d) for each i ∈ (k \ I ), to turn ti into a unit.
Let us successively take care of all these steps.

(a) We use Ru.5 to find the appropriate ti,s, for i ∈ I, s < mi .

(b) By Corollary 3.2, for each i ∈ I, s < mi , one defines sets Si,s ⊆ Z̃ such that
(i) for all N ∈ VZ̃(ti,s) except one, Si,s ∩N 6= ∅,

(ii) for all N ∈ DZ̃(ti,s), Si,s ∩N = ∅.

(c) Let u =
∏

i<k ti . Since Max(Z̃) =
◦⋃
{VZ̃(p) : p prime},

DZ̃(u) =
◦⋃
{DZ̃(u) ∩ VZ̃(p) : p prime}.

Let P be the set of primes p such that DZ̃(u) ∩ VZ̃(p) is nonempty. Since there
is a finite set T of primes such that VZ̃(u) ⊆

⋃
p∈T VZ̃(p), P must be infi-

nite. By good factorization, for each p ∈ P , there is u p ∈ Z̃ \ {0} such that

DZ̃(u) ∩ VZ̃(p) = VZ̃(u p). Then DZ̃(u) =
◦⋃
{VZ̃(u p) : p ∈ P}.

Again, by Corollary 3.2, for each p ∈ P , one can define Sp ⊆ Z̃ such that
(i) for all N ∈ VZ̃(u p) except one, Sp ∩N 6= ∅,

(ii) for all N ∈ DZ̃(u p), Sp ∩N = ∅.

(d) We simply put {ti : i ∈ k \ I } in the final set: let S be the multiplicative set
generated by {1} ∪ {ti : i ∈ k \ I } ∪

⋃
{Si,s : i ∈ I, s < mi } ∪

⋃
{Sp : p ∈ P}.

Let R := S−1
· Z̃. We have

Max(R) =
◦⋃
{VR(ti,s) : i ∈ I, s < mi }

◦

∪

◦⋃
{VR(u p) : p ∈ P}.

Hence Max(R) is a disjoint union of atoms, and Atomic.5 holds in R.
Also since there is an infinite set P of primes p such that VR(p) is nonempty, by

the same argument as in Example 3.3, one checks that Ru.6 holds in R. �

One can obtain models R of T atomic
ring + char = 0 with any prescribed algebraic part

(i.e., R ∩ Q̃). Let us only consider the following.
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Lemma 3.8 There exist models A0, A1 of T atomic
ring such that A0 ∩ Q̃ = Z̃ and

A1 ∩ Q̃ = Q̃.

(We shall see later that, up to elementary equivalence, these models are unique.)

Proof of Lemma 3.8 We start with A0 and Z̃. Let 2 be the Lring(Z̃) theory defined
as

2 := T atomic
ring + the quantifier-free diagram of Z̃+ {“z nonunit” : z nonunit in Z̃}.

We check that any finite subset of2 admits a model. Let2fin⊆ T atomic
ring + diagram(Z̃)

+ {zi nonunit : i < k}, where the zi s are nonzero nonunits of Z̃. For each nonempty
I ⊆ k, by good factorization in Z̃, let z I ∈ Z̃ \ {0} be such that

VZ̃(z I ) :=
( ⋂

i∈I VZ̃(zi )
)
∩

( ⋂
i /∈I (VZ̃(zi ))

c)
=

⋂
i∈I

(
VZ̃(zi ) \ VZ̃(

∏
i /∈I zi )

)
.

For every i < k, since VZ̃(zi ) =
◦⋃

I3i VZ̃(z I ), we note that there exists at least one I
such that i ∈ I and z I is a nonunit in Z̃.

Claim 3.9 For any ring R ⊇ Z̃ and any u, v, w ∈ Z̃,(
VZ̃(w) = VZ̃(u) \ VZ̃(v)

)
implies

(
VR(w) = VR(u) \ VR(v)

)
.

Proof We have the implications,

VZ̃(w) = VZ̃(u) \ VZ̃(v) H⇒

{
· (v,w) = (1) in Z̃,
· VZ̃(uv) = VZ̃(wv),

H⇒


· (v,w) = (1) in Z̃,

· ∃m, n < ω, ∃ λ,µ ∈ Z̃ such that
(uv)m = λ(wv) and (wv)n = µ(uv),

H⇒

{
· VR(v) ∩ VR(w) = ∅,
· VR(u) ∪ VR(v) = VR(w) ∪ VR(v),

H⇒ VR(w) = VR(u) \ VR(v).

�

Let t := 〈t j : j < m〉 be an enumeration of the set {z I nonunit : ∅ 6= I ⊆ k }.
t is a sequence of nonzero nonunits which are relatively prime in Z̃. We can thus
apply Lemma 3.7: there is a model R ⊇ Z̃ of T atomic

ring such that each VR(t j ),

j < m, contains an atom. By Claim 3.9, and the fact that a gcd in Z̃ remains a
gcd in R, we deduce that

VR(z I ) =
(⋂

i∈I VR(zi )
)
∩

(⋂
i /∈I (VR(zi ))

c) and VR(zi ) =
◦⋃

i∈I VR(z I ).

We noticed above that, for each i < k, there is I ⊆ k with i ∈ I and z I nonunit.
We derive that there must exist j < m such that VR(t j ) ⊆ VR(zi ). Therefore, all zi s
are nonunits in R. Hence 2fin is consistent. Therefore, 2 admits a model, and any
model R of 2 satisfies R ∩ Q̃ = Z̃.

To deal with Q̃, we consider the theory,

T atomic
ring + quantifier-free diagram of Z̃+ {“z unit” : z ∈ Z̃ and z nonzero nonunit},
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and simply replace the requirement “VR(t j ) contains exactly one atom” by the con-
dition “VR(t j ) contains no atom”. �

It remains to prove Lemma 3.1.

Proof of Lemma 3.1 By arguments of [10], p. 32 (and, for example, [8], The-
orem 2.12.23, about computation of primitive elements), it is possible to con-
struct a “recursive” sequence of number fields Kn = Q(αn), n < ω such that
αn ∈ Z̃, Kn ⊆ Kn+1, and

⋃
n<ω Kn = Q̃ (one defines inductively the two sequences

〈Pn(x) : n < ω〉, 〈an + ibn : n < ω〉 as in [10] representation of Z̃). Given u ∈ Z̃, it
is then possible to obtain effectively the least n < ω such that u ∈ Kn . For n < ω,
we denote by On the ring of integers of Kn .

We shall make effective the following (nonconstructive) argument: let u be a
nonzero nonunit of On0 , for n0 < ω, and let uOn0 = (M0,0)

e0 · · · (M0,k0−1)
ek0−1 ,

for k0 ≥ 1, be the factorization of the principal ideal uOn0 into prime ideals of On0 .
By the “finiteness of the class number” argument ([7], p. 38, or [14], 2.4), there is
n1 ≥ n0 such that all ideals M0,i become principal in On1 : for i < k0, let a0,i ∈ On1

be such that M0,iOn1 = a0,iOn1 .
Let us set a0 := 〈a0,i : i < k0〉 and u1 := a0,0. We then repeat the procedure with

u1 and On1 , defining a1 := 〈a1,i : i < k1〉 and u2 := a1,0 . . .. This way, one builds a
sequence (of finite sequences) 〈an: n < ω〉. If we set 〈an : n < ω〉 = 〈an,0 : n < ω〉
and 〈bn : n < ω〉 = 〈

∏
1≤ j<kn

an, j : n < ω〉, then the sequences 〈an : n < ω〉 and
〈bn : n < ω〉 satisfy the requirements of Lemma 3.1.

No systematic effective procedure was available in our sources ([8], [2]) to fac-
torize ideals. So instead, we considered factorizations of integers. Even though the
rings On, n < ω, are rarely unique factorization domains, this suffices. �

Notation 3.10 Let K be a number field, O its ring of integers, and let v be a
nonzero nonunit of O. Let vO = (M0)

e0 · · · (MkO(v)−1)
ekO (v)−1 , kO(v) ≥ 1, ei ≥ 1,

for i < kO(v), be the factorization of vO into prime ideals (Mi 6= M j for i 6= j).
For each i < kO(v), let hi be the order of the equivalence class of Mi in the ideal
class group. Since the ideal class number h is finite, each hi divides h and there
must exist ai ∈ O such that (Mi )

hi = aiO. For i < kO(v), let us set λi := (h/hi )ei .
Let aO(v) := 〈ai : i < kO(v)〉 and let λO(v) := 〈λi : i < kO(v)〉.

These definitions are noneffective, but up to order and multiplication by units, we
can recover aO(v) in an effective manner.

Lemma 3.11 There is an effective uniform procedure which applied to a nonzero
nonunit v in O produces a sequence 〈bi : i < k〉 of elements of O such that
k = kO(v) and for some permutation σ of kO(v), and all i < kO(v), bi and aσ(i) are
associates in O (“associate” meaning equal modulo multiplication by a unit).

Proof Let us list without proof some easy properties of the sequences aO(v) :=
〈ai : i < kO(v)〉 and λO(v) := 〈λi : i < kO(v)〉.

Claim 3.12

(i) For i < kO(v), ai is a nonunit,
(ii) for i 6= j < kO(v), ai and a j are relatively prime,

(iii) vh and
∏

i<kO(v)〉
aλi

i are associates.
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Claim 3.13 Let 〈b0, . . . , bl−1〉 ∈ Ol , for l < ω, be such that

(i) the bi s are nonunits,
(ii) for i 6= j, (bi , b j ) = (1),

(iii) vh and
∏

i<l bµi
i are associates for some sequence 〈µi : i < l〉 ∈ (ω \ {0})l .

Then necessarily l ≤ kO(v).

Claim 3.14 Let 〈b0, . . . , bkO(v)−1〉 satisfy (i), (ii), and (iii) of the previous claim
(i.e., l = kO(v)). Then there exists a permutation σ of kO(v) such that, for any
i < kO(v), ai divides bσ(i).

Proof By (ii) and (iii), one has VO(v) =
◦⋃

i<kO(v)
VO(bi ). From |VO(v)| = kO(v),

we deduce |VO(bi )| = 1, for each i < kO(v). VO(v) = {Mi : i < kO(v)}. (ii) and
(iii) imply the existence of a permutation σ of kO(v) such that VO(bi ) = {Mσ(i)}.

Hence by uniqueness of the factorization of biO, there must exist ti ∈ ω \ {0}
such that biO = (Mσ(i))

ti . By definition, the order of the class of Mσ(i) in the ideal
class group is hσ(i). Therefore, hσ(i) divides ti . We deduce that, for each i < kO(v),
there is νi ∈ ω \ {0} such that biO = (Mσ(i))

hσ(i)νi = (aνi
σ(i))O. Hence aσ(i) divides

bi . Claim 3.14 follows. �

Let NK/Q denote the norm relative to the field extension K/Q. By |NK/Q(α)|, we
mean the absolute value of NK/Q(α) (elsewhere by | | we mean the cardinality). To
“compute” aO(v), we shall resort to Theorem 6.4.2 of [8].

Theorem 3.15 ([8]) Let a ∈ ω. Then there are finitely many nonassociate elements
α ∈ O such that |NK/Q(α)| = a. Those can be effectively computed.

(If K = Q(β), for β ∈ Z̃, then one can check that the procedure is uniform in β).
Hence let B be an effectively computed maximal set of nonassociate ele-

ments α such that 1 < |NK/Q(α)| ≤ |NK/Q(v
h)| (the minimum polynomial

gives the absolute value of the norm, and by requiring 1 < |NK/Q(α)|, we ex-
clude units). Setting l0 := blog(|NK/Q(v

h)|)c, we exhaustively test all sequences
〈bi : i < l〉, 〈µi : i < l〉, for l ≤ l0, bi ∈ B, and 1 ≤ µi ≤ l0, checking (in Z̃)
whether

(ii) gcd(bi , b j ) = 1 for i 6= j ,
(iii) (

∏
i<l bµi

i )|v
h and vh

|
∏

i<l bµi
i ( | means “divides”).

We know from Claim 3.12 that the sequences aO(v) (up to multiplication by
units), λO(v) will pass the test. Hence let us consider the set Smax of pairs
(〈bi : i < l〉, 〈µi : i < l〉) which pass the test and such that l is maximal. By
Claim 3.13, the sequences in Smax have length kO(v). On Smax, we consider the
following partial order

(b,µ)‖(b′,µ′) iff there is a permutation σ of |b| such that
for any i < |b|, bi divides b′σ(i).

By Claim 3.14, (aO(v),λO(v)) is a minimum for ‖ on Smax (up to multiplication
by units for aO(v)). We choose a minimum element (b,µ) of Smax (according to a
fixed recursive well ordering of Z̃). One can check that by definition of Smax and ‖,
b := 〈bi : i < kO(v)〉 satisfies the requirements of Lemma 3.11. �
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Definition 3.16 Let ≈ be the equivalence relation defined on finite sequences of
algebraic integers as follows:

a ≈ b iff |a| = |b| and there is a permutation σ of |a| such that
for all i < |a|, ai and bσ(i) are associates.

We can now develop the inductive argument which gives Lemma 3.1. Let u be our
initial algebraic integer in On0 . By applying repeatedly Lemma 3.11, we construct
recursively a sequence 〈bn: n < ω〉where bn is a finite sequence of nonzero nonunits
of On0+n such that

(∗) b0 ≈ aOn0
(u),

(∗∗) bn+1 ≈ aOn0+n+1(bn(0)).

From Claim 3.12(ii), (iii), we deduce

(�) VZ̃(u) =
◦⋃

i<|b0| VZ̃(b0(i)),

(��) for all n < ω, VZ̃(bn(0)) =
◦⋃

i<|bn+1| VZ̃(bn+1(i)).

Claim 3.17 The infinite intersection
⋂

n<ω VZ̃(bn(0)) is reduced to a unique max-
imal ideal Mu .

Proof In order to treat (∗) and (∗∗) simultaneously, let us set b−1 = 〈u〉. For each
n < ω, (∗), (∗∗), and the definition of the (partial) function aO : O → O<ω imply
the existence, for each n < ω, of distinct prime ideals Mn,i ∈ Max(On0+n), integers
en,i ≥ 1, hn,i < ω, for i < |bn| such that

(a.1) bn−1(0)On0+n = (Mn,0)
en,0 · · · (Mn,k)

en,k (k = |bn| − 1),
(a.2) for any i < |bn|, hn,i is the order of the equivalence class of Mn,i and

(Mn,i )
hn,i = bn(i)On0+n .

We claim that Mu :=
⋃

n<ω Mn,0 is “the” maximal ideal lying in the intersection.

1. By (a.1) and (a.2), (Mn,0On0+n+1)
hn,0 ⊆ Mn+1,0. Hence by primeness of

Mn+1,0, Mn,0 ⊆ Mn+1,0. Therefore, Mu :=
⋃

n<ω Mn,0 is a prime ideal of
Z̃ containing u.

2. Let M ∈
⋂

n<ω VZ̃(bn(0)). We check M = Mu . Since for each n < ω,

(Mn,0)
hn,0 = bn(0)On0+n , we obtain (Mn,0)

hn,0 ⊆M∩On0+n and by prime-
ness of M ∩On0+n,Mn,0 ⊆M. Therefore, M =Mu . �

Claim 3.18 VZ̃(u) = {Mu}
◦

∪

◦⋃
{VZ̃(bn(i)) : n < ω, i ≥ 1}.

Proof From (�) and (��) above, we derive that, for any n < ω,

VZ̃(u) = VZ̃(bn(0))
◦

∪

◦⋃
{VZ̃(b j (i)) : j ≤ n, i ≥ 1}.

Let M ∈ VZ̃(u) \
⋃
{VZ̃(bn(i)) : n < ω, i ≥ 1}. Because of the above equality,

M ∈
⋂

n<ω VZ̃(bn(0)), and hence by the previous claim, M is Mu . �

For each n < ω, one can compute the ideal class number h(n) of On0+n ([2], 6.5.9,
[8], 6.5.1). For b ∈ Z̃ and k ∈ ω \ {0}, we denote by b1/k the least root of X k

− b
(according to a fixed recursive well ordering of Z̃).

Claim 3.19 Mu =
⋃

n<ω(bn(0))1/h(n)Z̃.
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Proof Let n < ω be fixed. Keeping the notation of (a.1), (a.2) in the proof of
Claim 3.17, hn,0 is the order of the class of Mn,0 and (Mn,0)

hn,0 = bn(0)On0+n . Let
r ≥ n0 + n be such that (bn(0))1/hn,0 ∈ Or . Then Mn,0Or = (bn(0))1/hn,0Or . This
implies

Mu =
⋃

n<ωMn,0 =
⋃

n<ωMn,0 · Z̃ =
⋃

n<ω(bn(0))1/hn,0 · Z̃. (2)

The sequence 〈hn,0 : n < ω〉 has not been obtained in an effective manner, but
the sequence 〈h(n) : n < ω〉 of ideal class numbers works as well: for any
n < ω, hn,0 divides h(n). Hence in Z̃, (bn(0))1/hn,0 is associate to a power
of bn(0)1/h(n). Combined with equality (2) and primeness of Mu , this gives
Mu ⊆

⋃
n<ω(bn(0))1/h(n)Z̃ ⊆Mu . �

Now to obtain Lemma 3.1, it suffices to set (with the notation of the lemma)
1. 〈 an : n < ω 〉 := 〈 (bn(0))1/h(n)

: n < ω 〉,
2. 〈 bn : n < ω 〉 := 〈

∏
1≤i<|bn| bn(i) : n < ω 〉.

For further use, let us note a consequence of Lemma 3.11: effective good factoriza-
tion.

Claim 3.20

1. Let K = Q(α) be a number field and let O be its ring of integers. There is an
effective procedure (uniform in α) which applied to b ∈ O \ {0} and c ∈ O
gives d ∈ O such that VO(b) \ VO(c) = VO(d).

2. Therefore, there is an algorithm which, on inputs (b, c) ∈ (Z̃ \ {0}) × Z̃,
produces d ∈ Z̃ such that VZ̃(b) \ VZ̃(c) = VZ̃(d).

Proof Let b ∈ O \ {0} and c ∈ O. We dismiss the easy cases:
1. b is a unit or c = 0; we set d = 1.
2. b is a nonunit and c is a unit; we set d = b.

If both b and c are nonzero nonunits, then by Lemma 3.11, one can effectively obtain
sequences b = 〈bi : i < kb〉, c = 〈c j : j < kc〉 such that b ≈ aO(b) and c ≈ aO(c).
Setting D := {bi : i < kb and ∀ j < kc (bi , c j ) = (1)}, we deduce the equality
VO(b) \ VO(c) = VO(

∏
D), and set d :=

∏
D (by convention

∏
∅ := 1). �

Positive characteristic In positive characteristic, one can obtain analogs of the
constructions in Examples 3.3 and 3.6 (we do not claim effectiveness, because we
relied on results of [8] which require separability). Instead of considering Z and the
prime numbers, one builds from the ring Fp[t] and the monic irreducible polyno-
mials of Fp[t]. The obtained models are localizations of F̃p[t]. Corresponding to
Example 3.3, one has the following proposition.

Proposition 3.21 Let p > 0 be prime. One can define a localization R of F̃p[t]
satisfying “T atomic

ring + char = p” such that Max(R) has the structure of Max(Fp[t]).

Remark 3.22 Let us note that there is also an equivalent of Example 3.6: a model
where every monic irreducible polynomial of Fp[t] belongs to infinitely many max-
imal ideals. We shall see later that the theory “T atomic

ring + char = p” is complete.
As opposed to the case of characteristic 0, the two examples are thus elementarily
equivalent (but not isomorphic).
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4 Model Completeness

We introduced in 2.10, the languages
1. Latomic

ring := Lring ∪ { rad , size=1} and
2. L′ := Lring ∪ {Sn,k,l : n, k, l < ω}.

The following proposition shows their relation to the model completeness of T atomic
ring .

We denote by Prime the set of rational prime numbers.

Proposition 4.1 Let p ∈ Prime ∪ {0}.
(a) Relative to T atomic

ring + char = p, each Latomic
ring formula is effectively equivalent

to an existential Latomic
ring formula.

(b) With any L′ formula ϕ(y), one can associate effectively a disjunction of L′

formulas ϕ0(y) ∨ · · · ∨ ϕr−1(y) such that
(i) T atomic

ring + char = p ` ϕ(y)←→
∨

i<r ϕi (y), and
(ii) each L′ formula ϕi (y), for i < r , is of the type

∃z
(
ze
+ Pe−1(y)ze−1

+ · · · + P0(y) = 0 ∧ ψ(y, z)
)

where each Pj (y) ∈ Z[y] and ψ(y, z) is an L′ quantifier-free formula.

Remark 4.2 We note that by (b), given any Lring sentence σ , one can effectively
obtain a finite set of algebraic integers {αi : i < k} (set stable by automorphisms
of Z̃) and an L′ quantifier-free formula δ(x) such that in any model R of T atomic

ring
+ char = 0, R |H σ ↔ δ(α0, . . . , αk−1). Let p prime > 0. One deduces a similar
result for T atomic

ring + char = p, with F̃p instead of Z̃.

Replacing in the special existential formulas of [13] and [14], the “nonunit” predicate
by the “size=1” predicate, we consider “specific” existential Latomic

ring formulas.

Definition 4.3 A specific existential formula ψ(y) is an Latomic
ring formula of the fol-

lowing type: for E(x, y) ∈ sZ[x, y], f (x, y), αi (x, y), βi (x, y), δ j (x, y) ∈ Z[x, y],
i < I, j < J , let

g(x, y) := f (x, y) ·
∏

i<Iβi (x, y) ·
∏

j<J δ j (x, y),

ψ(y) := ∃x
(

E(x, y) = 0 ∧ g(x, y) 6= 0 ∧
∧

i<I αi (x, y) radβi (x, y)∧∧
j<J size=1(δ j (x, y))

)
.

Claim 4.4 Relative to T atomic
ring , every existential Latomic

ring formula is effectively equiv-
alent to a disjunction of specific existential formulas.

Proof We check that the negations of the predicates rad and size=1 can be ex-
pressed by existential positive Latomic

ring formulas. Let us first note

T atomic
ring ` x nonunit ↔ ∃y (size=1(y) ∧ x rad y), and

¬(x rad y) ↔ ∃z
(
(z, x) = (1) ∧ (z, y) 6= (1)

)
↔ ∃z, t

(
(z, x) = (1) ∧ t nonunit ∧ (z, y) = (t)

)
.

Now in any model R of T atomic
ring , for u ∈ R, one has

VR(u) is not an atom ⇐⇒ VR(u) = ∅ or there is v ∈ R such that
(VR(v) atom and VR(v) ⊆/ VR(u)).
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Hence, T atomic
ring ` ¬(size=1(x)) ↔ ∃y

(
xy = 1∨(size=1(y)∧x rad y∧¬(y rad x))

)
.

Therefore, in T atomic
ring , ¬(size=1(x)) is (equivalent to) a formula of the right form.

Now in the definition of specific formulas, we require some terms to be 6= 0. Let
us simply note that, by Ru.6,

x rad y ↔ (y = 0 ∧ x = 0) ∨ (y 6= 0 ∧ x rad y),

size=1(x) ↔ (x 6= 0 ∧ size=1(x)).

Combining all these elements, we deduce Claim 4.4. �

What makes possible the link between truth in the model of T atomic
ring and truth in its

constructible Boolean algebra is the following.

Lemma 4.5 ([14], 2.13) Let R be a Bezout domain with algebraically closed
fraction field. Let b be in R and let ψ(x) be an Lring formula. Then the set
{M ∈ Max(R) : RM |H ψ(b)} is constructible.

Notation 4.6 Let R,b and ψ(x) be as in Lemma 4.5. Then one sets

‖ψ(b)‖R := {M ∈ Max(R) : RM |H ψ(b)}.

Because of Claim 4.4, our goal is to show that any specific existential Latomic
ring formula

is effectively equivalent to a universal Latomic
ring formula.

Modulo an assumption about the irreducibility of the closed set defined by the
equations E = 0 in the specific formula ϕ(y) (an assumption which will be lifted
later by resorting to [13]’s splitting descriptions), the pattern of proof is as follows:

(1) to prove a “Feferman-Vaught transfer principle,” obtaining Lring formulas
ϕi (y), i < k, and an Lboole formula 8(X0, . . . , Xk−1) such that in any
model R of T atomic

ring , for any b in R,

R |H ϕ(b) iff B(R) |H 8(‖ϕ0(b)‖R, . . . , ‖ϕk−1(b)‖R);

(2) by (effective) quantifier elimination in T atomic
boole , to construct a quantifier-

free Latomic
boole formula 9(X0, . . . , Xk−1) equivalent to 8(X0, . . . , Xk−1) in

T atomic
boole ;

(3) given 9, ϕ0, . . . , ϕk−1, to define a quantifier-free L′ formula ψ(y) such that
in any model R of T atomic

ring , for any b in R,

B(R) |H 9(‖ϕ0(b)‖R, . . . , ‖ϕk−1(b)‖R) iff R |H ψ(b);

(4) to check that any quantifier-free L′ formula is equivalent to an existential
(and hence also to a universal) Latomic

ring formula.

All the steps will be effective.
For later use, let us set some notation.

Notation 4.7 For an Lring formula ψ , let ψ (0) := ¬ψ , ψ (1) := ψ .

Attributing values to the variables y in the specific formula, we are led to consider
the following.

Definition 4.8 Let R satisfy T atomic
ring . (a) We say that an Latomic

ring (R) existential
sentence ∃xϕ(x) is suitable if ϕ(x) is of the following form: for W an absolutely
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irreducible closed set defined over R, for f,, Si , Ti , Pj ∈ R[X], i < m, j < n, one
has

ϕ+(x) := x ∈ W ∧
(

f (x) ·
∏

i<m Ti (x) ·
∏

j<n Pj (x)
)
6= 0 ∧

∧
i<m Si (x) rad Ti (x),

ϕ(x) := ϕ+(x) ∧
∧

j<nsize=1(Pj (x));

(b) ϕ being defined as above, for σ ∈n 2, we set (using Notation 4.7)

ϕσ (x) := ϕ+(x) ∧
∧

j<n(Pj (x) nonunit)(σ ( j)).

Considering atomic Boolean algebras, to improve legibility, we write “u atom” for
“R1(u) ∧ ¬R2(u)”.

Lemma 4.9 Let R be a model of T atomic
ring , and let ∃xϕ(x) be suitable. Then the

following are equivalent:
(a) R |H ∃xϕ(x),
(b) B(R) |H ∃ 〈Yσ : σ ∈ n2〉 partition of 1 such that

(1)
∧
σ∈ n2

(
Yσ ⊆ ‖∃xϕσ (x)‖R

)
∧

(2)
∧

j<n
(
(
∑
σ( j)=1 Yσ ) atom

)
.

(In the definition of a partition, we do not require all elements to be 6= 0).

Proof

(a)⇒ (b) Let R |H ϕ(a), for some a in R. By definition of ϕ,
(i) R |H ϕ+(a),

(ii) for each j < n, VR(Pj (a)) is an atom.
We set Yσ := ‖ϕσ (a)‖R . One has ` (ϕ+(x) ↔

∨
σ∈ n2 ϕσ (x)) and ` ¬(ϕσ (x) ∧

ϕτ (x)), for σ 6= τ . Also R |H ϕ+(a) implies ‖ϕ+(a)‖R = Max(R). We
deduce that 〈Yσ : σ ∈ n2〉 is a partition of Max(R). Obviously, for any
σ ∈ n2, Yσ ⊆ ‖∃xϕσ (x)‖R , and (1) holds. Also

VR(Pj (a)) = ‖Pj (a) nonunit‖R = ‖ϕ
+(a) ∧ Pj (a) nonunit‖R

= ‖
∨
σ( j)=1 ϕσ (a)‖R =

∑
σ( j)=1 Yσ .

and (2) holds.

(b)⇒ (a) Let 〈Yσ : σ ∈ n2〉 be a partition of Max(R) satisfying (1) and (2).

Notation 4.10 By (2), for each i < n, there exists a unique σi ∈
n2 such that

σi (i) = 1 and Yσi is an atom. We set 6 := {σi : i < n}, and for each σ ∈ n2, let
Iσ = {i < n : σ(i) = 1}. For each σ ∈ 6, since Yσ is an atom, let uσ ∈ R \ {0} be
such that VR(uσ ) = Yσ .

If σ ∈ 6, then Iσ 6= ∅. Also
⋃
σ∈6 Iσ = n. We also note (by (b)(2)) the following.

Claim 4.11 Let σ ∈ 6. Then |Yσ | = 1, and for any τ 6= σ , either Iτ ∩ Iσ = ∅ or
Yτ = ∅.

We shall prove (a) by using the local-global argument of [14], Proposition 3.8. (The
existence of a “solution” in each RM, M∈Max(R) implies the existence of a “solu-
tion” in R.) A step toward realizing this program is the following.

Claim 4.12 For M∈Max(R), let (∗M) be the statement

RM |H ∃x
[
ϕ+(x) ∧

∧
σ∈6

∧
j∈Iσ

(
Pj (x) rad uσ ∧ uσ rad Pj (x)

)]
.

Then (∗M) holds for every M∈Max(R).
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Proof Let M ∈ Max(R) be fixed. We check (∗M). Let us set T := {σ ∈ 6 :
uσ /∈ M}, I :=

⋃
{Iσ : σ ∈ T }, and J :=

⋃
{Iσ : σ ∈ 6 \ T } (by Claim 4.11,

J = n \ I ). If σ ∈ T , then RM |H (y rad uσ )∧ (uσ rad y←→ y unit). Similarly, for
σ ∈ 6 \ T , RM |H (y rad uσ ←→ y nonunit) ∧ (uσ rad y). Hence, in RM (adopting
the convention that an empty conjunction always holds),

(i)
∧
σ∈6

∧
j∈Iσ uσ rad Pj (x) ←→

∧
σ∈T

∧
j∈Iσ Pj (x) unit

←→
∧

j∈I Pj (x) unit;

(ii)
∧
σ∈6

∧
j∈Iσ Pj (x) rad uσ ←→

∧
σ∈6\T

∧
j∈Iσ Pj (x) nonunit

←→
∧

j∈J Pj (x) nonunit.

Hence it suffices to prove (∗∗M):

RM |H ∃x
[
ϕ+(x) ∧

∧
j∈I Pj (x) unit ∧

∧
j∈J Pj (x) nonunit

]
.

Since 〈Yσ : σ ∈ n2〉 is a partition of Max(R), there is a unique σ̄ ∈ n2 such that
M ∈ Yσ̄ .

Subclaim 4.13 σ̄|I ≡ 0 and σ̄|J ≡ 1.

Proof We check σ̄|I ≡ 0. Let us suppose for a contradiction σ̄ ( j) = 1 with j ∈ I .
There must exist σ ∈ T such that j ∈ Iσ . Then j ∈ Iσ ∩ Iσ̄ . By Claim 4.11, neces-
sarily σ = σ̄ . But M ∈ Yσ̄ and M /∈ VR(uσ ) = Yσ . We reached a contradiction.

We prove σ̄|J ≡ 1. Let us assume σ̄ ( j) = 0, for some j ∈ Iσ , with σ ∈ 6 \ T .
Then M ∈ VR(uσ ) = Yσ and M ∈ Yσ̄ . Since the Yss define a partition, necessarily
σ = σ̄ . But σ( j) = 1 and σ̄ ( j) = 0. Again we obtained a contradiction. �

Now by definition, ϕσ̄ (x) := ϕ+(x) ∧
∧

j<n(Pj (x) nonunit)(σ̄ ( j)). Since σ̄|I ≡ 0,
and σ̄|J ≡ 1, we deduce

ϕσ̄ (x) ←→
(
ϕ+(x) ∧

∧
j∈I Pj (x) unit ∧

∧
j∈J (Pj (x) nonunit)

)
.

Since we know M ∈ Yσ̄ ⊆ ‖∃xϕσ̄ (x)‖R , the equality

‖∃xϕσ̄ (x)‖R = ‖∃x
(
ϕ+(x) ∧

∧
j∈I Pj (x) unit ∧

∧
j∈J (Pj (x) nonunit)

)
‖R

gives
RM |H ∃x

[
ϕ+(x) ∧

∧
j∈I Pj (x) unit ∧

∧
j∈J Pj (x) nonunit

]
.

Therefore, (∗∗M) holds. Claim 4.12 follows. �

For each M∈Max(R), we thus have

RM |H ∃x
[
x ∈ W ∧ ( f (x)·

∏
i<I Ti (x)·

∏
j<n Pj (x) 6= 0) ∧

∧
i<I Si (x) rad Ti (x)

∧
∧
σ∈6

∧
j∈Iσ (uσ rad Pj (x) ∧ Pj (x) rad uσ )

]
.

Since the uσ s are 6= 0, we can apply [14], 3.8, (Ru.5 is not required in the hypotheses
of [14], 3.8) and deduce that the right-hand side formula holds in R: let a in R be
such that

R |H a ∈ W ∧ ( f (a)·
∏

i<I Ti (a)·
∏

j<n Pj (a) 6= 0) ∧
∧

i<I Si (a) rad Ti (a)
∧

∧
σ∈6

∧
j∈Iσ (uσ rad Pj (a) ∧ Pj (a) rad uσ ).

We thus have R |H ϕ+(a) and for any σ ∈ 6, j ∈ Iσ , VR(Pj (a)) = VR(uσ ) which
is an atom. Now since n =

⋃
σ∈6 Iσ , for any j < n, R |H size=1(Pj (a)). This

concludes the proof of Lemma 4.9. �
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Let 8(〈Xσ : σ ∈ n2〉) be the Latomic
boole formula,

“∃ 〈Yσ : σ ∈ n2〉 partition of 1 s.t.
[∧

σ∈n2 Yσ ⊆ Xσ ∧
∧

j<n
(∑

σ( j)=1Yσ
)

atom
]
”.

By (effective) quantifier elimination of T atomic
ring (Theorem 2.3) relative to the language

Latomic
boole , one can construct a quantifier-free Latomic

boole formula9(〈Xσ : σ ∈ n2〉)which
is equivalent in T atomic

boole to the formula 8(〈Xσ : σ ∈ n2〉). The next element is thus
the following.

Claim 4.14

(a) With any Latomic
boole quantifier-free formula9(X0, . . . , Xs−1) and any Lring for-

mulas ϕ0(y), . . . , ϕs−1(y), one can effectively associate an L′ quantifier-free
formula ψ(y) such that in any model R of T atomic

ring , for any b in R,

(∗) B(R) |H 9(‖ϕ0(b)‖R, . . . , ‖ϕs−1(b)‖R) iff R |H ψ(b).

(b) Every L′ quantifier-free formula is (effectively) equivalent in T atomic
ring to an

existential Latomic
ring formula.

Proof First, given any Lring formulas ϕi (y), for i < k, one can easily construct by
induction on the length of an Lboole term t (X0, . . . , Xk−1) an Lring formula ϕt (y)
such that in any ring R, for any b in R,

t (‖ϕ0(b)‖R, . . . , ‖ϕk−1(b)‖R) = ‖ϕ
t (b)‖R .

We exhaust the different possibilities for the atomic formulas of Latomic
boole . Let 9(X)

be the formula t (X) = 0, for some Lboole term t . We note that, in an atomic Boolean
algebra, one has

t (X) = 0↔ ¬R1(t (X)).

Hence this case can be reduced to the following one: Let 9(X) be the formula
Rn(t (X)), for n ≥ 1.

To express B(R) |H Rn(‖ϕ
t (b)‖R), we return to van den Dries’s argument in [13],

1.3 (replacing conjunctive by disjunctive normal form): by effective quantifier elim-
ination in algebraically closed valuation rings, one can effectively obtain formulas
〈ϕi : i < I 〉 such that ‖ϕt (b)‖R = ‖

∨
i<I ϕi (b)‖R , and each ϕi (x) is of the form∧

j<k(α j (x)|β j (x)) ∧
∧

r<l(γr (x) 6 | δr (x)),

where α, β∈ kZ[x],γ , δ∈ lZ[x].
Moreover, by (effectively) increasing the number of disjuncts ϕi s and their

lengths, we can assume ` ¬(ϕi ∧ϕ j ), for i 6= j < I . Hence ‖ϕt (b)‖R is the disjoint
union of the ‖ϕi (b)‖Rs, for i < I . There are at least n atoms in ‖ϕt (b)‖R if and
only if there is a sequence m = 〈mi : i < I 〉 such that

∑
m :=

∑
i<I mi = n and

each ‖ϕi (b)‖R contains at least mi atoms. Hence

B(R) |H Rn(‖ϕ
t (b)‖R)↔

∨∑
m=n

∧
i<I Rmi (‖ϕi (b)‖R).

Hence we have to prove that expressions of the following kind,

Rm(‖
∧

j<k(α j (b)|β j (b)) ∧
∧

r<l(γr (b) 6 | δr (b))‖R),

can be formulated in an L′ quantifier-free way.
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But ‖
∧

j<k(α j (b)|β j (b)) ∧
∧

r<l (γr (b) 6 | δr (b))‖R is equal to the following:⋂
j<k‖(α j (b)|β j (b))‖R ∩

⋂
r<l ‖(γr (b) 6 | δr (b))‖R,⋂

j<k DR(α j (b) :β j (b)) ∩
⋂

r<l VR(γr (b) :δr (b)),

DR(
∏

j<k(α j (b) :β j (b))) ∩ VR(gcdr<l(γr (b) :δr (b))).

So finally,

B(R) |H Rm(‖
∧

j<k(α j (b)|β j (b)) ∧
∧

r<l (γ j (b) 6 | δr (b))‖R) iff

R |H Sm,k,l(α(b), β(b),γ (b), δ(b)).

This concludes the proof of 4.14(a).

(b) To check that any quantifier-free L′ formula is equivalent to an existential Latomic
ring

formula, it suffices to verify that both Sn,k,l and its negation have existential Latomic
ring

definitions with respect to T atomic
ring . Let us first check that this holds for the predicates

Sn , n < ω and for their negations. The definition of Sn given in 2.7 is clearly Latomic
ring

existential. Now in T atomic
ring , for n ≥ 1, one has the equivalence,

¬Sn(x)↔
[

x unit ∨ ∃x0, . . . , xn−2
(∧

i<n−1size=1(xi ) ∧ (
∏

i<n−1xi ) rad x
) ]
.

Hence ¬Sn also admits an existential definition in Latomic
ring .

Let us deal now with the Sn,k,ls and their negations. By Definition 2.7, the above,
and the fact that “(x) : (y) = (z)” is Lring existential in Bezout domains, one obtains
an existential definition for Sn,k,l . To express ¬Sn,k,l , let us note that in any model
R of T atomic

ring , for u in R \ {0}, DR(u) contains infinitely many atoms. Hence, for
a,b ∈ k R, c,d ∈ l R, n ≥ 1, the following (i) and (ii) are equivalent:

(i) B(R) |H ¬Rn
(
DR(

∏
i<k(ai :bi )) ∩ VR(gcd j<l(c j :d j ))

)
,

(ii)


( gcd j<l(c j :d j ) =

∏
i<k(ai :bi ) = 0 ) or{

gcd j<l(c j :d j ) 6= 0 and ∃e ∈ R VR(e) = VR(gcd j<l(c j :d j ))\

VR(
∏

i<k(ai :bi )) with ¬Rn(VR(e)) in B(R).

Therefore, with respect to T atomic
ring , ¬Sn,k,l(x, y, z, t), for n ≥ 1, is equivalent to the

formula,[
gcd j<l(z j : t j ) =

∏
i<k(xi : yi ) = 0

]
∨

[
gcd j<l(z j : t j ) 6= 0∧

∃e
(
(e,

∏
i<k(xi : yi )) = (1)∧

(e ·
∏

i<k(xi : yi )) rad (
∏

i<k(xi : yi ) · gcd j<l(z j : t j ))∧

(
∏

i<k(xi : yi ) · gcd j<l(z j : t j )) rad (e ·
∏

i<k(xi : yi )) ∧ ¬Sn(e)
)]
.

We thus deduce that, relative to T atomic
ring , ¬Sn,k,l(x, y, z, t) also admits an existential

Latomic
ring definition. This concludes the proof of Claim 4.14. �

Combining the previous results with “full splitting descriptions” of [13] and [14], we
obtain the following claim.

Claim 4.15 Let ϕ(y) be a specific existential Latomic
ring formula with system of equa-

tions E(x, y) = 0.
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(i) Then one can effectively construct a quantifier-free L′ formula λ(y) satisfying
the following equivalences: for any model R of T atomic

ring , any b such that the
set {x ∈ Frac(R)N

: E(x,b) = 0} is absolutely irreducible,

R |H ϕ(b)↔ λ(b).

(ii) Let p ∈ Prime ∪ {0}. Then one can obtain effectively a sequence of L′

formulas 〈λi
p(y) : i < I 〉 of the form “∃z

(
ze
+ Pe−1(y)ze−1

+ · · ·+ P0(y) =
0 ∧ ψ(y, z)

)
” with Pj (y) ∈ Z[y] and ψ(y, z) quantifier-free formula such

that
T atomic

ring + char = p ` ϕ(y)↔
∨

i<Iλ
i
p(y).

(iii) Let again p ∈ Prime ∪ {0}. Then one can effectively construct an Latomic
ring

universal formula µp(y) such that

T atomic
ring + char = p ` ϕ(y)↔ µp(y).

Proof (i) follows from 4.9, 2.3, and 4.14(a).

(ii) To split uniformly the algebraic set defined by the set of equations of ϕ into
irreducible components and apply (i), we appeal to van den Dries’s arguments and
refer to the proof of [13], 2.7(ii).

(iii) Similarly, we resort to the proof of [13], 2.7(i) and add the fact that any
quantifier-free L′ formula is equivalent to a universal Latomic

ring formula. �

Proof of Proposition 4.1 Let p ∈ Prime ∪ {0}. By Claim 4.4 and Claim 4.15(iii),
every Latomic

ring existential formula is effectively equivalent in T atomic
ring + char = p to

a universal Latomic
ring formula. This gives 4.1(a). From the model completeness of

T atomic
ring + char = p in Latomic

ring , Claim 4.4, and Claim 4.15(ii), we derive that any L′

formula is equivalent in T atomic
ring + char = p to a disjunction of formulas of the right

form. 4.1(b) follows. �

5 Decidability of T atomic
ring

Decidability of T atomic
ring can be deduced from the strong form of model completeness

(Proposition 4.1(b)).

Proposition 5.1 Let p ∈ Prime. The theory T atomic
ring + char = p is complete.

Proof All elements of F̃p are 0 or units. Hence, if A0, A1 are two models of
T atomic

ring + char = p, then (identifying (F̃p)
A0 and (F̃p)

A1 ), for n, k, l ≥ 1, a,b
in k F̃p, c,d in l F̃p, one easily checks

A0 |H Sn,k,l(a,b, c,d) ⇔ A1 |H Sn,k,l(a,b, c,d).

Hence, by Remark 4.2, A0 and A1 are elementarily equivalent. �

Proposition 5.2 The theory T atomic
ring + char = 0 is decidable.

Proof We propose an algorithm which, applied to any Lring sentence σ , decides
whether there exists a model of T atomic

ring + (char = 0) + σ . This implies that the
set {τ : (T atomic

ring + char = 0) 6` τ } is recursive and hence that the theory T atomic
ring

+ char = 0 is decidable.



Rumely Domains 419

So let σ be a fixed Lring sentence. By Remark 4.2, one can obtain effectively a
quantifier-free L′ formula ϕ(x) under disjunctive normal form and algebraic integers
αi , i < n, such that in any model R ⊇ Z̃ of T atomic

ring , one has R |H σ ↔ ϕ(α). It
thus suffices to decide for each conjunction C(α) of ϕ(α) whether it holds in some
model R ⊇ Z̃ of T atomic

ring . We deal with a given conjunction C(α) as follows.

Step (0) Since T atomic
ring ` x = 0 ↔ ¬S1,1,1(〈x〉, 〈1〉, 〈0〉, 〈1〉), we can assume all

our conjuncts or their negation are of the form Sn,k,l(P(α),Q(α),S(α),T(α)), for
P,Q ∈ kZ[X], S,T ∈ lZ[X], with n, k, l < ω.

Step (1) One computes in Z̃ all polynomials in α and the expressions
∏

i<k
(
Pi (α) :

Qi (α)
)

and gcd
(
(S0(α) : T0(α)), . . . , (Sl−1(α) : Tl−1(α))

)
(which occur in the

predicates Sn,k,l , for n, k, l < ω). These computations are valid in any R ⊇ Z̃.
Since Sn,k,l(a,b, c,d) ←→ Sn,1,1

(
〈
∏

i<k(ai : bi )〉, 〈1〉, 〈gcd j<l(c j : d j )〉, 〈1〉
)
, we

have computed a new sequence β of algebraic integers and a conjunction C ′(β)
equivalent in any R ⊇ Z̃ to C(α), whose conjuncts or negation are of the form
Sn,1,1(〈βi 〉, 〈1〉, 〈β j 〉, 〈1〉).

Step (2) To decide whether a conjunct Sn,1,1(〈βi 〉, 〈1〉, 〈β j 〉, 〈1〉) of C ′(β) holds
in a model R of T atomic

ring , we have to decide whether Rn(VR(β j ) ∩ DR(βi )) holds
in the associated constructible algebra. The only problematic case is when β j 6= 0
(for n ≥ 1, Rn(DR(βi )) ⇔ βi 6= 0). By 3.20, one can compute γ ∈ Z̃ such
that VZ̃(γ ) = VZ̃(β j ) \ VZ̃(βi ). By 3.9, this implies that for any R ⊇ Z̃,
VR(γ ) = VR(β j ) \ VR(βi ). Hence, if R ⊇ Z̃, R |H Sn,1,1(〈βi 〉, 〈1〉, 〈β j 〉, 〈1〉)
↔ Sn(γ ). We have thus effectively obtained a sequence γ of algebraic integers and
a conjunction C ′′(γ ) equivalent to C ′(β) in any model R ⊇ Z̃ of T atomic

ring such that
all conjuncts of C ′′(γ ) or their negation are of the form Sn(γi ), for some n < ω.

Step (3) In order to apply the consistency result 3.7, we need to turn the sequence
γ of parameters into a sequence t of nonzero nonunits which are pairwise relatively
prime in Z̃. Doing this, we shall get (effectively) a disjunction of conjunctions such
that in any model R ⊇ Z̃ of T atomic

ring , R |H C ′′(γ ) ↔
∨

s<S Cs(t). Lemma 3.7 will
allow us to conclude for each Cs(t). Hence let g = |γ |. We can assume all γi s, for
i < g, are 6= 0 (Sn(0) always holds in a model R of T atomic

ring ).
Exactly as in the proof of 3.8, for each nonempty I ⊆ g, one obtains effec-

tively γI ∈ Z̃ such that VZ̃(γI ) :=
( ⋂

i∈I VZ̃(γi )
)
∩

( ⋂
i /∈I (VZ̃(γi ))

c). The γI s are
nonzero and pairwise relatively prime in Z̃. By the same arguments as in 3.8, for
R ⊇ Z̃, one has{

VR(γI ) =
( ⋂

i∈I VR(γi )
)
∩

( ⋂
i /∈I (VR(γi ))

c),
VR(γi ) =

◦⋃
i∈I VR(γI ).

From the last equality, for m < ω, i < g, one deduces the equivalence

VR(γi ) contains at least m atoms iff


there is a sequence 〈m I : I 3 i〉 such
that

∑
I3i m I = m and each VR(γI ),

with i ∈ I, contains at least m I atoms.

Hence, for i < g, R |H Sm(γi )←→
∨
(
∑

i∈I m I )=m
∧

I3i Sm I (γI ).
After some elementary handling, we obtain effectively

C ′′(γ )←→
∨

s<SCs(〈γI : ∅ 6= I ⊆ g〉),
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with each Cs(〈γI : ∅ 6= I ⊆ g〉) of the form∧
I∈P0

Sm I (γI ) ∧
∧

I∈P1
¬Sn I (γI ).

To take care of each Cs, s < S, we first get rid of the γI s which are units in Z̃

( T atomic
ring ` x unit↔ ¬S1(x)).
Hence finally, if t is an enumeration of the set {γI nonunit in Z̃ : ∅ 6= I ⊆ g}, then

we are left with a conjunction
∧

i∈J Sµi (ti ) ∧
∧

i∈J ′ ¬Sνi (ti ) which by Lemma 3.7
(all ti s are nonzero nonunits which are pairwise relatively prime in Z̃) is realized in
a model R of T atomic

ring if and only if for each i ∈ J ∩ J ′, µi < νi . Therefore, having
decided for all the conjunctions Cs(〈γI : ∅ 6= I ⊆ g〉), s < S, we have decided for
their disjunction and hence for our initial conjunction C(α). �

From the two previous propositions, one infers the following.

Proposition 5.3 T atomic
ring is a decidable theory.

In order to get axiomatizations of complete extensions of T atomic
ring + char = 0, we

shall apply the following.

Claim 5.4 Let A0, A1 ⊇ Z̃ be two models of T atomic
ring such that for any n < ω, any

a ∈ Z̃, A0 |H Sn(a) ⇔ A1 |H Sn(a). Then A0 and A1 are elementarily equivalent.

Proof Let σ be an Lring sentence. By arguments in Steps (0) – (2) of the proof of
Proposition 5.2, one constructs a quantifier-free formula ϕ(x) in Lring ∪{Sn : n < ω}

and a sequence β of algebraic integers such that for any model R ⊇ Z̃ of T atomic
ring ,

R |H σ ↔ ϕ(β). Hence necessarily, if A0, A1 satisfy the hypotheses of the claim,
A0 |H σ ⇔ A1 |H σ . �

We can now prove results announced in Section 3. Concerning Example 3.3, let us
recall that, for each prime p, we had the (effective) decomposition,

VZ̃(p) = {Mp}
◦

∪

◦⋃
n<ω

VZ̃(bp,n).

The recursive model R was obtained by turning all bp,ns into units and hence getting
all VR(p)’s atoms.

Proposition 3.5 The theory of R is recursively axiomatized as the theory T :
T atomic

ring + char = 0 +
the quantifier-free diagram of Z̃ +

for each prime p, the axiom “size=1(p)” (formally its Lring equivalent) +
for each prime p, each n < ω, the axiom “bp,n unit”.

Proof Example 3.3 is clearly a model of T . To show completeness of T , we check
the following: for any model R of T , v ∈ Z̃, and n < ω, one has the equivalence

R |H Sn(v) iff there exist distinct primes p0, . . . , pn−1
such that for all i < n, v ∈Mpi .

Let p ∈ Prime be fixed in this paragraph. Since VZ̃(p)={Mp}
◦

∪

◦⋃
n<ωVZ̃(bp,n) and

since all bp,ns are units in R, necessarily VR(p) ⊆ {M∈Max(R) : Mp ⊆ M}. But
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VR(p) is an atom since R |H T ; hence there must exist a unique maximal ideal MR
p

such that VR(p) = {MR
p } and Mp ⊆MR

p .
Let now v ∈ Z̃. Since VR(v) =

⋃
p∈Prime(VR(v) ∩ VR(p)) and since each in-

tersection VR(v) ∩ VR(p) has size at most 1, for each p ∈ Prime, we deduce the
equivalences,

R |H Sn(v) ⇔ |VR(v)| ≥ n (Fact 2.9)
⇔ there are distinct primes p0, . . . , pn−1

such that, for i < n, |VR(v) ∩ VR(pi )| = 1
⇔ there are distinct primes p0, . . . , pn−1

such that, for i < n, VR(v) ∩ VR(pi ) = {M
R
pi
}

⇔ there are distinct primes p0, . . . , pn−1
such that, for i < n, v ∈Mpi .

Let now A0, A1 be two models of T . For any n < ω, v ∈ Z̃, we have

A0 |H Sn(v) ⇔

(
there are distinct primes p0, . . . , pn−1

such that, for i < n, v ∈Mpi

)
⇔ A1 |H Sn(v).

Hence, by Claim 5.4, A0 and A1 are elementarily equivalent. T is complete. �

In symmetry with the atomless case, one has the following.

Proposition 5.5 Up to elementary equivalence, there is a unique model R of T atomic
ring

+ char = 0 whose algebraic part (i.e., R ∩ Q̃) is Z̃ (respectively, Q̃).

Proof We showed existence in Section 2; we check unicity. Let us assume first that
R is a model of T atomic

ring such that R ∩ Q̃ = Z̃. We verify that for any v ∈ Z̃ and any
n ≥ 1, R |H Sn(v) ⇔ v nonunit in Z̃.

We show the implication from right to left. Let v be a nonzero nonunit of Z̃. Then
by Ru.5 in Z̃, VZ̃(v) is infinite. Now every maximal ideal M of Z̃ generates a proper
ideal MR of R (using gcd and the fact that nonunits of Z̃ remain nonunits in R)
which is included in a maximal ideal of R. Hence VR(v) is also infinite. By Fact 2.9,
R |H Sn(v), for any n < ω.

We can now conclude from Claim 5.4 that, up to elementary equivalence, there
is a unique model of T atomic

ring with algebraic part equal to Z̃. Concerning Q̃, either
we argue as for Proposition 5.1, or we note that for R model of T atomic

ring such that
R ∩ Q̃ = Q̃, v ∈ Z̃ and n ≥ 1 (R |H Sn(v) ⇔ v = 0). �

It is possible to develop this study in a more general setting including both the atom-
less (good Rumely domains) and the atomic cases: the situation where, in the associ-
ated constructible algebra, the set of atoms admits a sup. The gradual move from the
atomless to the atomic case is expressed by the growing “size” of this sup: empty, fi-
nite, nowhere dense (closed, infinite), dense (open, nonempty), and finally the whole
space.

Tarski (see [6], p. 74) proved that the theory of Boolean algebras such that the
set of atoms has a sup, admits quantifier elimination in an appropriate language. It
is then possible to convert this theorem into a result of model completeness for the
corresponding theory of rings (in an adequate language), to construct models, and to
show decidability. We chose to propose the atomic case because proofs in the general
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situation, though more complicated, follow the same pattern (yet construction of
models is interesting).

Note

1. The theorem is proposed as an exercise in [6], p. 73; a proof of the effective version is
available at http://www.logique.jussieu.fr/~sureson.
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