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The Borel Complexity of Isomorphism
for Theories with Many Types

David Marker

Abstract During the Notre Dame workshop on Vaught’s Conjecture, Hjorth
and Kechris asked which Borel equivalence relations can arise as the isomor-
phism relation for countable models of a first-order theory. In particular, they
asked if the isomorphism relation can be essentially countable but not tame. We
show this is not possible if the theory has uncountably many types.

1 Preliminaries

We begin by recalling the basic definitions and background material. Suppose Ei is
an equivalence relation on a standard Borel space X i for i = 1, 2. We say that E1 is
Borel reducible to E2 if there is a Borel measurable f : X1 → X2 such that x E1 y if
and only if f (x)E2 f (y) for all x, y ∈ X1.

An equivalence relation is countable if every equivalence class is countable and
essentially countable if it is Borel reducible to a countable equivalence relation. If
E1 ≤B E2 and E2 ≤B E1, we write E1 ∼B E2. A Borel equivalence relation E on
X is tame if there is a Polish space Y and a Borel measurable f : X → Y such that
x Ey if and only if f (x) = f (y).

If L is a countable first-order language we let XL be the Polish space of L-
structures with universe N. For σ ∈ Lω1,ω let Mod(σ ) be the Borel set of M ∈ XL

with M |H σ and let ∼=σ be the equivalence relation of isomorphism on Mod(σ ). In
general, ∼=σ is 61

1 but need not be Borel.
The following well-known theorem shows that ∼=σ can be ∼B to any countable

Borel equivalence relation.

Theorem 1.1 Let Ê be a countable Borel equivalence relation on a Polish space
X. There is τ ∈ Lω1,ω such that Ê ∼B∼=τ .

We give a sketch of the proof.1
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Sketch of proof Since Ê is a countable Borel equivalence relation, by the Feldman-
Moore Theorem [2], Ê is the orbit equivalence relation of a Borel action of a count-
able discrete group G on a Polish space X . Let E(G, 2ω) be the orbit equivalence
relation of the natural shift action of G on (2ω)G . There is a Borel reduction of Ê to
E(G, 2ω) (see [1], 1.2).

Let L = {ĝ : g ∈ G} ∪ {Un : n ∈ ω} where each ĝ is a unary function symbol
and Un is a unary predicate. Let σ be an Lω1,ω-sentence such that M |H σ if and
only if α(g, x) = ĝ(x) is a faithful and transitive action of G on M.

For M |H σ , we associate fM ∈ (2ω)G where fM(g)(n) = 1 if and only if
M |H Un(ĝ(0)). This is a Borel map from Mod(σ ) to (2ω)G and M ∼= N if and
only if fM E(G, 2ω) fN . Thus ∼=σ ≤B E(G, 2ω).

Fix g0, g1, . . . an enumeration of G with g0 = 1. For h ∈ (2ω)G , construct
Mh |H σ such that ĝi (0) = i and Mh |H Un(i) if and only if h(i)(n) = 1. Then
fMh = h and Mh1

∼= Mh2 if and only if h1 E(G, 2ω)h2. Thus ∼=σ ∼B E(2ω, G).
We need one lemma to complete the proof. Recall that for E an equivalence

relation on X , and A ⊆ X , the saturation of A is [A]E = {x : ∃y ∈ A x Ey}.

Lemma 1.2 Suppose E, F, G are Borel equivalence relations on Polish spaces
X, Y, Z; E and G are countable; and f : X → Y and g : Y → Z are Borel
reductions of E to F and F to G, respectively. Then [ f (X)]F is Borel and
E ∼B F |[ f (X)]F .

Proof We make repeated use of the Lusin-Novikov Uniformization Theorem (see
[4], 18.10) for Borel sets with countable sections. The map g ◦ f : X → Z is
countable-to-one; thus g( f (X)) is Borel. Since G is countable, [g( f (X))]G is Borel.
Since [( f (X))]F = g−1([g( f (X))]G), [ f (X)]F is Borel.

Since E is countable, the set A = {(x, y) : x ∈ X, f (x)Fy} is Borel with
countable sections in X and the projection of A to Y is [ f (X)]F . Thus there is
a Borel h : [ f (X)]F → X such that (h(y), y) ∈ A for all y ∈ [ f (X)]F . Let
y1, y2 ∈ [ f (X)]F . Since f (h(yi ))Fyi and f is a reduction of E to F ,

y1 Fy2 ⇔ f (h(y1))F f (h(y2)) ⇔ h(y1)Eh(y2).

Thus h is a reduction of F |[ f (X)]F to E . �

We can now finish the proof of the theorem. Since Ê ≤B E(2ω, G) ∼B∼=σ , we
can apply Lemma 1.2 to find a Borel C ⊆ Mod(σ ) that is isomorphism invariant
and Ê ∼B∼=σ |C . By Lopez-Escobar (see [4], 16.8) C is Mod(τ ) for some Lω1,ω-
sentence τ and Ê ∼B∼=τ . �

Hjorth and Kechris asked if the same result is true for first-order theories. It is easy
to give examples of theories T with continuum many countable models where ∼=T is
tame. For example, let T be the theory of an equivalence relation with infinitely many
classes where each class contains an algebraically closed field. Then models are
determined up to isomorphism by the set of transcendence degrees of the equivalence
classes. Are there any first-order theories T with ∼=T essentially countable but not
tame? We show that any such theory must have few types.

Let C be the Cantor space 2ω. Fix 〈 , 〉 : ω2
→ ω a pairing function. For x ∈ C,

let Ax ⊆ C be the set {x1, x2, . . . } where xi ( j) = x(〈i, j〉). We say x F2 y if and
only if Ax = Ay .

The equivalence relation F2 is not essentially countable. See [3], Exercise 2.64.
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Theorem 1.3 Let T be a first-order theory in a countable language where the type
space S(T ) is uncountable. Then F2 ≤B ∼=T . Thus ∼=T is not essentially countable.

This result is not surprising as the set of realized types is a natural invariant of a
model.

2 Theories with Many Types

Suppose T is a first-order theory in a countable language with S(T ) uncountable. We
can find T a perfect tree of types in S(T ). Choose rT ∈ C such that L, T, T ≤T rT .
Using T we can code elements of the Cantor space as types.

Lemma 2.1 There is continuous one-to-one map τ : C → S(T ) such that
τ(x) ≤T x ⊕ rT and x ≤T τ(x) ⊕ rT , where x ⊕ y is the join of x and y.

2.1 Scott sets

Definition 2.2 We say that S ⊆ C is a Scott set

(i) if x ∈ S and y ≤T x , then x ∈ S;
(ii) if x, y ∈ S, then x ⊕ y ∈ S;

(iii) if x ∈ S codes an infinite subtree t of 2<ω, then there is y ∈ S an infinite path
through t .

We need a refinement of recursively saturated models.

Definition 2.3 Let T be a complete first-order theory in a countable language and
let S be a Scott set with T ∈ S. We say that M |H T is S-saturated if

(i) for all x ∈ S if a1, . . . , an ∈ M and p(v, a1, . . . , an) is a partial type recur-
sive in some x ∈ S, then p is realized in M;

(ii) tp(a1, . . . , an) ∈ S for all a1, . . . , an ∈ M .

S-saturated models were studied in papers of Knight and Nadel ([5], [6]) and
Wilmers [8]. The next result summarizes the facts that we will need.

Proposition 2.4 Let T be a first-order theory in a countable language. Let S be a
countable Scott set with T ∈ S.

(i) There is a countable S-saturated model of T .
(ii) S-saturated models of T are ω-homogeneous.

(iii) Any two countable S-saturated models of T are isomorphic.

The proof of (i) is a Henkin argument where one alternates trying to realize types
in S, witnessing existential sentences and making sure that for all Henkin constants
c1, . . . , cn , tp(c1, . . . , cn) ∈ S. The uniformity of this construction (and the unique-
ness of S-saturated models) allows us to prove the following.

Lemma 2.5 Let S = {x ∈ C : Ax is a Scott set}. Then S is Borel and there is a
Borel µ : S → Mod(T ) such that µ(x) is the Ax -saturated model of T .

In fact, by the main result of [7], if T ∈ Ax , then an Ax -saturated model can be
constructed recursively in x .
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2.2 Borel closure systems Let F = { f1, f2, . . . } be a countable set of Borel
functions fi : Cmi → C. For A ⊆ C, let clF (A) be the closure of A under the
functions in F .

Definition 2.6 We say that I ⊆ C is F -independent if

clF (A) ∩ I = A

for all A ⊆ I.

Lemma 2.7 For any countable set of Borel functions F , there is a perfect F -
independent set.

Proof If P is a perfect set of suitably generic Cohen reals, then P is F -independent.
�

Let F be the following collection of functions:

(i) j (x, y) = x ⊕ y;
(ii)

fe(x) =

{
ϕx

e if ϕx
e is a total function in C

x otherwise
for e = 0, 1, . . . .

(iii) t (x) = leftmost path in the tree coded by x if x codes a tree on 2<ω and
t (x) = x otherwise.

(iv) the constant function x 7→ rT .

If A ⊆ C, then clF (A) is a Scott set containing A ∪ {rT }. The construction of
closures is uniform.

Lemma 2.8 There is a Borel ν : C → C such that Aν(x) is the F -closure of Ax for
all x ∈ C. In particular, Aν(x) is a Scott set containing Ax ∪ {rT }.

2.3 Proof of Theorem 1.3 Let P be a perfect F -independent set with ρ : C → P
a homeomorphism. There is a Borel ρ∗

: C → C such that Aρ∗(x) = ρ(Ax ).
For A ⊆ C countable, let SA = clF (ρ(A)) and let MA be the unique countable

SA-saturated model of T .

Lemma 2.9 If A 6= B, then MA 6∼= MB .

Proof Suppose x ∈ A \ B. Then ρ(x) ∈ SA, but, since P is F -independent,
ρ(x) 6∈ SB . Since rT ∈ SA∩SB , it follows from Lemma 2.1, that τ(ρ(x)) ∈ S(T )∩SA
and τ(ρ(x)) 6∈ S(T ) ∩ SB . The type τ(ρ(x)) is realized in MA but not MB . Thus
MA 6∼= MB . �

We now build our reduction of F2 to ∼=T . For x ∈ C, let g(x) = µ(ν(ρ∗(x)).
Unraveling the definition,

(i) Aρ∗(x) = ρ(Ax );
(ii) Aν(ρ∗(x)) = clF (ρ(Ax ));

(iii) g(x) is a code for a clF (ρ(Ax ))-saturated model of T .

Since S-saturated models are unique, if x F2 y, then g(x) ∼= g(y). By Lemma 2.9, if
x 6F2 y, then g(x) 6∼= g(y). Thus F2 ≤B ∼=T .
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Remarks Let hMod(T ) ⊆ Mod(T ) be the codes for homogeneous models of T .
Countable homogeneous models are determined by the types they realize over ∅.

Corollary 2.10 Suppose S(T ) is uncountable; then F2 ∼B∼=T | hMod(T ).

Problem Find a first-order theory T where ∼=T is not tame and F2 6≤B ∼=T . Note
that counterexamples to Vaught’s conjecture have this property. Is there an ω-stable
theory with this property?

Note

1. I am grateful to Kechris for showing me this argument and the referee for pointing out an
error in my original presentation.
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